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1. Statement of the main result

Let M be a compact manifold of dimension n and suppose we are given a
G-structure (possibly of higher order) on M. Thus GCGL(n,R) if the
G-structure is of first order, and in general G C GL(AI, R)(/C) for some k, where
GL(w,R)(/c) is the group of /c-jets at 0 of diffeomorphisms of R" fixing 0. We
shall suppose G is a real algebraic group (i.e. the R-points of an algebraic
R-group). The G-structure is given by a principal G-bundle P -* M which is a
reduction of the bundle of (k - l)-jets of frames P(k) -> M to G. We let
Aut(P) be the automorphism group of the G-structure, so Aut(P) C
Diffeo(M). In general of course Aut(P) is infinite dimensional, although it
will be a finite dimensional Lie group in a number of important situations. The
point of this paper is to examine (irrespective of whether or not Aut(P) is a Lie
group) which semisimple Lie groups can be subgroups of Aut(P). In other
words, what are the obstructions for a smooth action of a semisimple Lie group
to preserve a G-structure? If G C 0(w,R), then the G-structure is essentially a
Riemannian metric and, as is well known, Aut(P) is then compact. Thus any
semisimple Lie group admitting an embedding into Aut(P) must also be
compact. If G is of finite type in the sense of E. Cartan (see [8]), then Aut(P) is
a Lie group and in explicit circumstances one can derive bounds on
dim(Aut(P)). Our main result is the following. For a Lie group Q, L(Q) will
denote its Lie algebra.

Theorem 1. Suppose H is a connected simple Lie group with finite center and
with R-rank(if) ^ 2. Let M be a compact n-manifold and P -* M a G-structure
where G C GL(«,R)( /c) {for some k) is a real algebraic subgroup. Suppose that
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H acts smoothly on M with H C Aut(P) and that H preserves a volume density
on M. Then there is an embedding of Lie algebras L(H) -> L(G) (and hence
L(H) -* L(G/rad(G)) where rad(G) is the radical ofG).

Thus, roughly speaking, a higher R-rank simple Lie automorphism group of
P can only be as large as a simple component of G. We remark that the
condition that H preserves a volume density will of course follow from the
condition H C Aut(P) if the first order part of G is contained in SL'(w,R)
(matrices with det2 = 1), which is true in many important situations. We also
recall that GL(H, R) ( / C ) = GL(«, R) x Nnk where Nnk is a connected unipotent
group. Hence any semisimple subgroup of G C GL(n, R)(k) must actually be a
subgroup of G Π GL(H, R), i.e. of the first order part of G. In fact, Theorem 1
remains true if we replace Aut(P) by the group of "automorphisms up to order
l"ofP[6].

We do not know whether or not Theorem 1 is true if R-rank(iZ) = 1. It
seems unlikely that our argument can be made to apply to this case. If one
makes the further (strong) assumption that H acts transitively on M then for
first order G-structures Theorem 1 can be readily deduced from the Borel
density theorem [2], and this argument applies in the R-rank 1 case as well.
(The proof of Theorem 1 in general in fact makes use of the Borel density
theorem, both in the proof of Lemma 6 below and in the proof of Theorem 2,
which is quoted from earlier work [11], [13].)

2. Proof of Theorem 1

The proof of Theorem 1 will rely heavily on results from ergodic theory, i.e.
on the measure theoretic behavior of the actions in question. We thus begin by
recalling two basic results in this direction. The first is a consequence of
super-rigidity for measurable cocycles of semisimple Lie group actions which
we proved in [11], a generalization of Margulis' super-rigidity theorem [9] (see
also [12]). The second is a consequence of the subadditive ergodic theorem,
namely, the existence of an "exponent" for a suitable cocycle of a measure
preserving transformation of a measure space.

Suppose P -> M is a principal G-bundle, so that G acts on the right of P and
M = P/G. By choosing a measurable section φ of P, we obtain a measurable
trivialization of P, namely F: M X G -> P given by F(m, g) = φ(m)g. The
action of Aut(P) on P can then be described as the action on M X G given by
Λ(m, g) = (Λm, α(Λ, m)g) for (m, g) G M X G, h G Aut(P), and α(Λ, m) G
G. Further, a must satisfy the cocycle identity

α(A,A2, m) = α(Λ,, h2m)a(h2, m).
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Two cocycles α, β: H X M -» G are called equivalent if there is a measurable

function/: M -> G such that for all h E H,

a(h,m)=f(m)β(h,m)f(hmyl

for almost all m E M. The notions of cocycle and equivalence of cocycles

clearly make sense for any measurable action of a group on a measure space.

The super-rigidity theorem for cocycles [11], [12] implies via the arguments of

[12, Chapter 9] or [13, Theorem 2.8] the following.

Theorem 2. Suppose H is a connected simple Lie group with finite center and

R-rank(//) > 2, and S is a (standard) Borel H-space with a finite H-invariant

measure. Let G C GL(«, R) be a real algebraic group and suppose a: H X S -> G

is a (measurable) cocycle. Then either:

(a) considered as a cocycle a: H X S -» G L ( H , R), a is equivalent to a cocycle

that takes values in O(n, R); or

(b) there is an embedding of Lie algebras L(H) -> L(G).

The other main ergodic theoretic result we shall need is the existence of the

Lyapunov exponent of a tempered cocycle of an action of Z (see [3], [5], [7] for

proofs). Thus, let Z act on a (standard) probability space (S, μ) and suppose a:

Z X 5 - > GL(«, R) is a cocycle. We call a tempered if for each w G Z (equίva-

lently for n = 1), s -> \\a(n, s)\\ and s -* ||α(/ι, s)~x\\ are in L 0 0 ^). We then

have the following result.

Theorem 3 [5], [7]. Ifa:ZXS-> GL(n9 R) is a tempered cocycle, then

= Urn ^

+ =exists for almost all s. (Here log+ = max{0, log}.) We call ea the exponent of a.

We now make some comments on this result that we will need.

Lemma 4. Suppose a ~ β where a and β are tempered. Then ea — eβ (a.e.).

Proof. Let a(n, s) =f(s)β(n, s)f(ns)'1. Choose A C S to be of positive

measure so that for some B E R, ||/(s)||, | |/(^)" ] | | < B for s E A. Let N(A, s)

= {n EZ+\ns E A}. Since there is an invariant probability measure, Poincare

recurrence implies N(A, s) is infinite for almost all s EL A. Thus, for almost all

s E A we have

a(s) = lim i log+ \\f(s)β(n,
n—*oo **
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The reverse inequality follows in a similar fashion and hence ea(s) — eβ(s) for
a.e. s EA. Letting B -* oo, we can choose μ(S) arbitrarily close to 1, and
hence ea = eβ a.e.

Suppose now that M is a compact «-manifold, and φ: M -> M is a diffeo-
moφhism. Let £ be a measurable Riemannian metric on M, i.e. for each
m E M an inner product £m on the tangent space ΓMm such that ξm varies
measurably mm EL M. If we measurably trivialize TM by measurably choosing
an orthonormal basis of TMm with respect to £m, the action of Z on ΓΛί
defined by the powers of φ and dφ yields a cocycle. a: Z X M -> GL(/7, R). We
will say that a is associated to the measurable metric ξ. The equivalence class
of this cocycle is independent of the choice of ξ and the choice of orthonormal
basis. If I is a continuous metric it is clear that a will be tempered owing to
compactness of M. For inner products η, σ on a finite dimensional real vector
space we let M(τj/σ) = max | | χ | | o = 1 {Hxllη}. Thus if η, σ are measurable
Riemannian metrics on ΛΓ, M(η/σ)(s) = M(ηs/σs) is a measurable function
on M. If η is a measurable Riemnannian metric, we will call η bounded if
M(τj/£) and M(ξ/η) are in L°°(M) for some smooth metric ξ. It is clear that
this is independent of the smooth metric involved. The following is straightfor-
ward.

Lemma 5. Suppose η is a bounded measurable Riemannian metric on a

compact manifold M, and a is an associated cocycle for some diffeomorphism of

M. Then a is tempered.

To prove Theorem 1 it suffices to consider the case of a first order
G-structure (cf. the remarks in the next to last paragraph of §1). Thus, we need
only eliminate the possibility of conclusion (a) in Theorem 2 where α:
H X M -> GL(Λ,R) is the cocycle defined by the derivative via a measurable
trivialization of TM. For h E //, set ah — a | {hn} X M so we may view ah as a
cocycle Z X M -> GL(«,R). Since O(n,R) is compact, clearly any cocycle
taking values in O(«,R) is tempered and has 0 exponent, and hence condition
(a) of Theorem 2 would imply via Lemmas 4 and 5 that for all h E H, ea = 0
a.e. for any cocycle a associated to any bounded measurable Riemannian
metric on M. Thus, the proof will follow once we establish the existence of a
bounded measurable Riemannian metric with associated cocycle a such that
for some h EH, eah ^ 0.

We will need the following result which has been observed independently by
C. C. Moore (private communciation).

Lemma 6. Let H be a connected simple noncompact Lie group and S a

(standard) H-space with finite invariant measure. For s E S, let Hs be the

stabilizer of s in H. Then there is a conull set So C S such that for s E So either

Hs = H or Hs is discrete.



AUTOMORPHISM GROUPS OF C-STRUCTURES 121

Proof. Via the ergodic decomposition of the action it suffices to see that

the assertion is true in each ergodic component. Thus, we may as well assume

that H acts ergodically on S. Let S be the set of closed subgroups of H. Then S

has the structure of a standard Borel space and the map s -* Hs is a Borel map

S - S [10]. Let V — Un

k=0Gτk(L(H)) be the union of the Grassmann varie-

ties of A>planes in the Lie algebra L(H). Then the map S -» V given by

Q -> L(Q) is also Borel. Thus φ(s) — L(HS) is a Borel map, and this is clearly

an //-map where H acts on L(H) (and hence on F) by the adjoint representa-

tion. As observed in [1], the action of H on Fis smooth in the sense of ergodic

theory, i.e., the orbit space V/H is a countably separated Borel space. (See [4],

[12] for a discussion of this notion). (This follows immediately from the fact

that Ad(//) is a subgroup of finite index in a real algebraic group and that the

action of Ad(//) on V is algebraic; thus the orbits are locally closed and this

implies that the action is smooth.) We let φ be the composition of φ with the

natural projection V -> V/H. Thus φ: S -> V/H is a measurable //-invariant

map. Since H acts ergodically on S and V/H is a countably separated Borel

space, φ is essentially constant. In other words, by passing to a conull

//-invariant subset of S, we can assume φ(S) lies in a single //-orbit in F. This

orbit can be identified with H/Hλ, where //, is the stabilizer of a point in this

orbit, and we thus have a measurable //-map φ: S ^> H/Hx. If the orbit

/////, C F actually lies in Gτk(L(H)) for A: = 0 or k = dimL(//), then

L(HS) = 0 or L(HS) = L(H) for almost every j , as asserted. Suppose on the

other hand that /////, C Grλ(L(i/)) for 0 < k < dim L(//). Since H is

simple, we must have //, ^ //. Furthermore Ad #(//,), being the stabilizer in

AdH(H) of a A:-plane in L(H), is of finite index in a real algebraic group.

Thus AdH(Hx), and hence //, (since // has a finite center), has only finitely

many connected components. However, if μ is a finite //-invariant measure on

5, then φ^M is a finite //-invariant measure on H/Hv By the Borel density

theorem [2], [12], either Hλ is discrete or //, = H. Since //, T̂  //, //, is discrete,

and having only finitely many components, //, is finite. This obviously

contradicts the existence of a finite invariant measure on H/Hv Thus k — 0 or

dim(L(//)) and the proof of the lemma is complete.

Returning to the proof of Theorem 1, by the preceding lemma we can choose

an //-invariant set Mo C M of positive measure such that the stabilizers are

discrete. For any m G Λf0, let Vm C TMm be the tangent space to the //-orbit

through m. Fix an inner product on the Lie algebra L(H). For each m E Mo,

the map H -> M, Λ -> Λm induces an isomorphism of L(//) with Fm, and hence

an inner product £„, on Fm. The assignment w -> ξm is measurable in the

obvious sense. Since any measurable function is bounded on a set of large

measure, it is clear that there is a bounded measurable Riemannian metric η on
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M and a subset M, C Mo of positive measure such that for m G M,, η and ξ

are equal when restricted to Vm. Suppose now that h G H and m E Mo with

Λw G Mo as well. Then JΛ: TMm -* ΓMΛ m, <ft(Km) = Vhm, and it is easy to see

that under the above identifications of Vm and Vhm with L(H), the map dh \ Vm

corresponds to Ad(Λ). Fix some h G H such that, letting λ be the maximum

absolute value of the eigenvalues of Ad(Λ), we have λ > 1. (Since H is a

noncompact simple Lie group, such an element always exists.) Since H acts in

a finite volume preserving manner on M and M, is of positive measure,

Poincare recurrence implies there is a subset M2 C M,, M 2 conull in M 1 ? so

that for every x E M2 there is a sequence of distinct positive integers ni

(depending on x) with hnix G M 2 for all i. Let α be a (tempered) cocycle

corresponding to the bounded Riemannian metric η. Then for s G M2 we have

= Urn -J-log+ | |α(Λ\

By the choice of M2 and the construction of TJ,

| |«(Λ«.,S)| |η

By the choice of h,

It follows that for s G Af2, ^ α /^) > 0, and this contradiction completes the

proof.

The author would like to thank M. Markowitz for a number of useful

conversations related to this work.
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