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1. Introduction

In this paper we study two-real dimensional minimal surfaces in Euclidean
space which are stable, that is, which minimize area on each compact set up to
second order. The earliest result for such surfaces is due to S. Bernstein [4],
who proved that all complete minimal graphs in R3 (these are automatically
stable) are planes. This Bernstein result was generalized by R. Osserman in [21]
and [22] where he showed that any complete minimal surface in R3 whose
Gauss map omits an open set (or even just a set of positive logarithmic
capacity) from the sphere must be a plane. In these theorems Osserman makes
no assumption about the stability of the minimal surface. The theorem of
Osserman was later extended, partially by S. S. Chern [8] and to its full
generality by Osserman [23], to minimal surfaces in R", for any «, again
without any assumption on stability. F. Xavier [30] has recently strengthened
the theorem of Osserman for minimal surfaces in R3 in a remarkable way: he
has proved that if the Gauss map of a complete minimal surface in R3 omits 7
or more points from the sphere, then it must be a plane. The relationship of the
stable regions on a minimal surface M to the area of their Gaussian image has
been studied by J. L. Barbosa and M. doCarmo in [3]. The methods of R.
Schoen, L. Simon and S. T. Yau [25] yield a proof of the Bernstein result for
stable minimal surfaces M in R3 provided the area growth of a ball of geodesic
radius r in M is not larger than r6. (This condition is automatically satisfied by
all minimal graphs in R3.) A classification theorem for complete stable minimal
surfaces in three dimensional manifolds of nonnegative scalar curvature has
been obtained by D. Fischer-Colbrie and R. Schoen in [12]. A corollary of
their theorem states that all complete oriented stable minimal surfaces in R3

are planes, thereby giving another direct generalization of the Bernstein
theorem. This corollary was also proved by M. doCarmo and C. K. Peng [6].
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All the results mentioned so far, with the exception of the ones due to Chern
[8] and Osserman [23], deal with hypersurfaces. For higher codimensions, the
following result due to W. Wirtinger [29] is well known: a holomorphic curve
in C" (= R2n) is absolutely area minimizing with respect to arbitrary com-
pactly supported deformations. Actually, the result as stated is a very special
case of a much more general theorem due to H. Federer [11]. A characteriza-
tion of the Gauss map for holomorphic curves in C" has been obtained by H.
Blaine Lawson, Jr. [18], pp. 164-166.

In view of the Wirtinger result, it is reasonable to ask whether an area
minimizing surface in R" lies in an even dimensional affine subspace of Rn and
is holomorphic with respect to some orthogonal complex structure on this even
dimensional affine subspace. The result mentioned above, due to D. Fischer-
Colbrie and R. Schoen and also due to M. doCarmo and C. K. Peng, shows
that this is the case when n — 3. F. Morgan [20] has shown that the nonzero
sum of oriented two-planes in Rn is area minimizing only if all the planes are
complex under some complex structure on the span of the planes. In this paper
we obtain a partial affirmative answer to the above question for n > 4. The
best results are for n — 4 when, in particular, we prove (Theorem I in §5) that
any complete oriented parabolic stable minimal surface in R4 is holomorphic
with respect to some orthogonal complex structure on R4. There are plenty of
examples of complete parabolic minimal surfaces in Euclidean space: entire
two-dimensional minimal graphs (entire means that the graph is defined over
all of R2), complete minimal surfaces of finite total curvature and also minimal
surfaces of quadratic area growth. It is interesting to note that R. Osserman
[24, pp. 40-42] has constructed examples of entire minimal graphs in R4 which
are not holomorphic with respect to any orthogonal complex structure on R4;
these minimal graphs are therefore unstable by our theorem.

Let us now recall that the Grassmannian of oriented two-planes in R4 is
homeomorphic to S2 X S2. Theorem II concerns stable isometric minimal
immersions of an oriented surface with a complete metric into R4 for which
one of the projections of the Gauss map onto the factors of S2 X S2 omits an
open set; the theorem states that such immersions are holomorphic with
respect to an orthogonal complex structure on R4. There are many examples of
nonholomorphic, complete minimal surfaces in R4 whose Gauss map satisfies
the condition required in Theorem II. These must therefore be unstable. In the
case that the surface is simply connected, the condition on the Gauss map in
Theorem II may be relaxed to one of the projections onto the factors of
S2 X S2 omitting a set of positive logarithmic capacity.

Following Osserman [24, p. 122] we say that an isometric immersion F:
M2 -> R" of an oriented surface M has a degenerate Gauss map if the Gauss
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image lies in a hyperplane of CPn~λ. Thus, the Gauss map of Fis degenerate if
there exists a fixed, nonzero vector A EC" such that A Fz = 0, where z is a
local complex coordinate on M and t> w = Σ / t ^ for t> = (t^,- ,υπ), w =
(ιv,, ,w π )eC" . We also say that the Gauss map of Fis δ-degenerate, where
δ =\A A \/\A |2 E [0,1]. Theorem III states that a complete oriented stable
minimal surface in R4 whose Gauss image is at least 1/3 degenerate is a plane.
It is worth pointing out that surfaces in R4 which lie in a 3-dimensional affine
subspace are 1-degenerate. Therefore, Theorem III is a generalization of the
theorem that all complete oriented stable minimal surfaces in R3 are planes. At
the other extreme, holomorphic curves in C 2 (= R4) are 0-degenerate.

Theorem IV provides an affirmative answer to the question addressed in this
paper when the surface is oriented, complete, of finite total curvature and
genus zero and the ambient Euclidean space is of any dimension.

A first step in proving all these theorems is a theorem (Theorem A in §3) on
a characterization of holomorphic immersions F: M2 -> Cn in terms of a
parallel orthogonal splitting of the complexified normal bundle of M into (1,0)
and (0,1) subbundles. A complex version of the stability inequality (§2) is used
to establish the parallel orthogonal splitting required in Theorem A. This
complex version of the stability inequality was inspired by a manipulation of
Ju. A. Aminov [2]. A similar technique was used by Siu and Yau in [26]. This
inequality also suggests that one should look for holomorphic sections of the
complexified normal bundle of M of appropriate growth. In §4 we use the
Gauss map to produce such sections which are used in the proof of Theorem
II. In the case of finite total curvature and genus zero (Theorem IV), the
Riemann Roch theorem provides the required sections. The proof of Theorem
I is somewhat different. The complexified normal bundle of a codimension two
oriented submanifold of an oriented Riemannian manifold always splits as the
sum of two complex line bundles. In the proof of Theorem I, we utilize the
projection of a constant vector field in C 4 onto one of these line bundles.
When the minimal surface is degenerate (as in Theorem III), each of the
projections of A (where A Fz = 0) onto these line bundles is a (bounded)
holomorphic section.

A few words about notation. Covariant differentiation by means of the usual
Levi-Civita (Riemannian, flat) connection on the Euclidean space Rn corre-
sponds to the usual directional derivative and so, when it acts on vector-valued
functions, we will denote it by d. Moreover, we use 3Z (3f) instead of dz (dΞ)
when we differentiate vector-valued functions in the direction θ/θz (9/θz)
along an oriented surface immersed in RΛ, where z is a local complex
coordinate on the surface. Finally, all manifolds are assumed to be C°° and
connected.
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The paper is organized as follows:
§2 contains the complex version of the stability inequality. In §3 we describe

a characterization of holomorphic immersions F\ M2 -> Cn (Theorem A) and
its relation to the stability inequality. In §4 we construct meromorphic sections
of the complexified normal bundle of a minimal surface in R4 by means of the
Gauss map. §5 contains the main theorems in this paper.

The results in this paper are based on the author's doctoral dissertation
under the direction of Professor Richard M. Schoen. It is a pleasure to express
my gratitude to him for his inspiring guidance, patience and encouragement
and also for his contribution to some parts of the proof of Theorem IV (the
higher dimensional case).

2. A complex version of the stability inequality

The condition that a minimal submanifold M of the Euclidean space Rn be
stable is expressed by the following inequality (see, for example, [18]) that has
to hold for all compactly supported normal sections s (a normal section is a
section of the normal bundle NM of M):

(2-1)

In (2.1), ds = (dsl9 -,dsn\ where s = (su- •,$„), the superscripts T and N
denote orthogonal projection onto the tangent space and normal space of M
respectively, | ds | is the length of the vector-valued one-form ds with respect to
the induced metric on M (similarly for |(tfc)Γ| and \(ds)N\) and the integra-
tions are carried out with respect to the volume element for the induced metric
on M. Inequality (2.1) is still valid for compactly supported sections of
NCM = NM ®RC, the complexified normal bundle of M; all we have to do is
simply add up the stability inequalities for the real and imaginary parts of s.
From now on we assume M to be a two-real dimensional oriented surface.
Then, isothermal parameters for the induced metric together with the orien-
tation on the surface give rise to a complex structure on M. Let z denote a
complex coordinate for this complex structure. We can then write ds = ds + ds
where ds — (dzs)dz and ds = (dfs)dz. Thus (2.1) may be rewritten in the
following way:

f I(Λ)7!2 < / \ds\2 = f \ds\2+f \d
JM JM JM JM

I ( ) ! / \\ f \ \ f \ds\\
JM JM JM JM
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Integration by parts yields fM\ds\2 = / M | 9 ^ | 2 because Rn is flat and s has
compact support. Therefore

that is

Similarly,

(2-3)

It is perhaps worth noting that (2.1), (2.2) and (2.3) are all equivalent to one

another.

As was mentioned in the introduction, the above manipulation was inspired

by a manipulation due to Ju. A. Aminov in [2]. He adds the stability

inequalities for two orthogonal normal variations of equal length, mixes terms

and integrates by parts to obtain an inequality which can be derived from

(2.2). Our manipulation is more general in that the real and imaginary parts of

s are required to be neither orthogonal nor of equal length.

The usefulness of inequalities (2.2) and (2.3) will become apparent in the

next section.

3. A characterization of holomorphic immersions F: M2m -> C"

and its relation to stability

Let N2n be a Kahler manifold (of real dimension In). We denote the

complex structure and Levi-Civita (Riemannian) connection on TN by J and

V respectively. By extending J to TCN = TN ® R C , the complexified tangent

bundle of N, we have TCN = TCN
]>° θ TCN° \ where TcN

h0 and TCN
OΛ are

the eigenspaces of/ corresponding to the eigenvalues + ι and — / respectively.

Since N is Kahler, this splitting of TCN into (1,0) and (0,1) subbundles is

preserved by v . Moreover s t = 0 for all sections s, t of TcN
h0, where s tis

the inner product of s and t taken with respect to the Riemannian (indeed,

Hermitian) metric on TN extended complex linearly in both arguments to TCN.

In other words TcN
h0 is orthogonal to TCN°>1 with respect to the inner

product ( , ) which is defined by (s9t)= s - t, where t is the complex

conjugate of t. (Here we are using the fact that ΓCΛ^01 = ΓCA^10.)
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If F: M2m -> N2n is a holomoφhic immersion of a complex manifold M2m

(of real dimension 2m) into iV, then it is easy to verify from the above

comments that M2m itself becomes a Kahler manifold when equipped with the

induced metric and that:

(i) TCM = TcM
ι>° ®TcM

ι>°, NCM = NcM
ιfi ΘA^M 1 ^.

(ii) ΓcM^θΛiJlf1'0 is orthogonal to ^ M ^ e ^ M 1 ' 0 with respect to

< • > • > •

(iii) v : Γ ( Γ C M 1 0 θ NcM
ι>°) -> Γ((Γ C M 1 0 θ Λ^M 1 ' 0) ® Γ*M).

In the above, we are still denoting by V the induced connection on F*(TCN).

The converse of the above observation is not true in general. However, we do

have the following

Theorem A. Let F: M2m -> R2w be an immersion, with R2" having the usual

Euclidean metric. Suppose that there exist vector bundles E and V over M which

satisfy conditions (i), (ii) and (iii) below.

(i) TCM = E®E, NCM =_FΘ_F.

(ii) E ® Vis orthogonal to E θ Vwith respect to ( , ).

(iii) d: T(E θ V) -> Γ((£ θ V) 0 Γ*M).
Then there exist complex structures J and J on M2m and R2" respectively such

that J is orthogonal with respect to the metric induced on M by the immersion, J

is orthogonal with respect to the Euclidean inner product on R2 n and F is

holomorphic with respect to J andJ.

Remark. / is actually constant on all of R2w, thereby giving R2w the usual

Kahler structure of Cn. Since F is holomoφhic, / and the induced metric also

yield a Kahler structure on M.

Proof of Theorem A. Let {ex,- ,em} and {em+l9- -,en} be local frame

fields for E and V respectively which are orthonormal with respect to ( , •>.

By assumption (iii),

for some n X n matrix of one-forms (ωAB), A, B E {1, •,«}. We define a

In X In complex matrix C by 'C = (el9- ,eπ, el9- -,£„), where the super-

script t denotes transpose so that C is the matrix whose rows are the 2rc-tuples

of complex numbers with which the eA and eA are being identified by means of

the canonical coordinate functions on R2 π. From (*) we have dC — ω ® C,

where

ω =
0 (ωAB))'



STABLE MINIMAL SURFACES IN EUCLIDEAN SPACE 63

Let

-I

- I

+ 1

0 +/

2n

where / and -/ each appear «-times along the diagonal. Define JhyJ— C~%C.
Then J2 = C~\J0)

2C- - l 2 n , the negative of the identity matrix on C
Moreover/ is a matrix with real entries: by assumption (ii),

o ]

h
where \n is the identity matrix on Cn and C"1 = 'C. Therefore,

/ -J = 1CJ0C +tCJ0C = 1C(j0CC + C'CJ0)C = 0.

Finally,

dJ= -C-χdCC-ιJ{fi+C-ιJodC= -C-\ωJo-Joω)C = 0.

Therefore J is constant along F{M). Thus, we can define a complex structure
on R2n by declaring it to be / at any point; this is possible because / is
constant along F(M) and / has real entries. / is orthogonal with respect to the
Euclidean inner product because it was defined by means of an orthonormal
frame. Note that / preserves E (it multiplies sections of it by /), that is, /
preserves F^(TpM) at all points F(p) in F(M). But this is precisely the
definition for M to be a complex submanifold of R2w with respect to the
complex structure /. (The complex structure / on TM is, of course, defined by
demanding that F be holomorphic with respect to / and /, that is, / is defined
by / = F~ι ° / ° F^.) The proof of Theorem A is complete.

Remark. The above proof also works for immersions F: M2m -> T2",
where T2n = R2 w/Z2 / I is the flat 2n-real dimensional torus. (This is because
the tangent bundle of Γ2 n, like that of R2n, admits a global parallel orthonor-
mal frame.) Therefore Theorem A is valid for such immersions too.

We now restrict our attention to m = 1 and n = 2, that is, to immersions F:
M2 -> R4 of an oriented surface M into Euclidean 4-space, and discuss the
relation of Theorem A in this special case to the stability inequality (2.2). Let
{el9 el9 e3, eΛ) be a local oriented orthonormal frame for R4 over an open set
of F(M) such that {el9 e2) and {e3, e4) are local oriented orthonormal frames
for the tangent and normal bundles of M respectively. In this case, therefore,
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TM and NM can each be given a complex structure, namely, rotation by 90° in
an anticlockwise direction. Let E - (TCM)UO and V- (NcM)h0, where type
(1,0) is meant with respect to the complex structure just mentioned. The fibres
of E are then locally spanned by (e, - ie2) and those of V by (e3 — ie4). E
and V satisfy conditions (i) and (ii) required in the hypotheses of Theorem A.
Moreover,

d(eι -ie2) = iωl2®(ei -ie2)+[d(ex - ie2)]N

and

d(e3 - ie4) = /ω34 <S> (e3 - ie4) + [d(e3 - ie4)]T,

where ω12 and ω34 are the connection one-forms for TM and NM respectively.
Therefore assumption (iii) of Theorem A is satisfied if and only if

(**) [d(e3-ie4)] (ex-ie2)=0.

Let z be a local complex coordinate on M. Then Fz = μ(eλ — ie2), where μ is a
locally defined nonvanishing complex valued function. Thus we see that (**) is
satisfied if and only if

(***) 3 ( e 3 - ι e 4 ) F 2 Ξ 0 and 3(e3 - ie4) Fz = 0,

where we have used d(e3 — ie4) = 9(e3 — ie4) + 3(e3 — ie4). But

d(e3-ie4).Fz=[d-(e3-ie4) Fz]dz

= -[(e3-ie4) FzΞ]dϊ

= [dz(e3-ie4) FΞ]dz.

Therefore (***) is equivalent to dz(e3 — ie4) Fz = 0 and dz(e3 - ie4) F - Ξ O ,
that is, to [d(e3 — ie4)]τ = 0. But if s is a section of K, that is, locally
s = S(e3 ~~ ̂ 4)5 then (3»s)Γ = g[9(^3 — ̂ 4)]Γ This implies that, for an immer-
sion of an oriented two-real dimensional surface M into R4 to be holomorphic,
all that has to be true is that on the neighbourhood of any point in M, there
exists a local nonzero section s of V with the property that (ds)τ = 0. But (ds)τ

is precisely the term on the left in the stability inequality (2.2). This is why
there is some hope of being able to use the complex version of the stability
inequality derived in §2 to solve the problem addressed in this paper.

Remark. A. N. Wang in [28] has already noticed that if (ds)τ = 0 for all
sections s of K, then F: M2 -» R4 is holomorphic with respect to some
orthogonal complex structure on R4. He states the condition that (ds)τ — 0 in
terms of the second fundamental form.
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4. Construction of meromorphic sections of the normal bundle

of a minimal surface in R4 by means of the Gauss map

For more details than will be given in this section we refer the reader to
Hoffman and Osserman [14], Lawson [18] and the author's doctoral disserta-
tion [19].

Let Gkn denote the Grassmannian of oriented λ -planes in Rw. Let F:
Mk -* Rn be an immersion of a λ -real dimensional oriented manifold into the
Euclidean space R", 2 < k < n — 1. The generalized Gauss map G: Mk -* Gk n

is defined by G(p) = FJTpM\ where TpMis the oriented tangent space of M
at p and F+(TpM) is translated from F(p) to the origin of R".

We now focus on the special case k — 2 and recall that G2n may be
identified with the quadric β n _ 2 C CPn~ι defined by w w = Σy(wy)

2 = 0
where w = (w]9- *,ww) is a homogeneous coordinate for a point in CPn~ι. If z
is a local complex coordinate on M2, then Fz(p) is a homogeneous coordinate
for <?(/?).

From now on, we further restrict our attention to n — 4 and recall that β 2

(and therefore G 2 4) may be identified with S2 X S2. Let P and (2 be two fixed
vectors in C 4 such that P P = P Q = P β = Q β = 0 and P P = β
β = 1. (This makes {P, P, β, β) an orthonormal basis for C4.) If F: M2 -* R4

is an immersion then

(4.1) Fz = Fz - P(P - Wlco2P + ω,β + ω 2 β )

outside the zero set of Fz P, where

_ Fz β _ fi.g

The significance of ω, and ω2 is that (ω,(/?), ω2(^)) is the coordinate of G(p)
under stereographic projection of the two factors of S2 X S2 from ooj and oo2

respectively, where (ool5 oo2) is the point in S2 X S2 (= β 2 C CP 3) with P as
a homogeneous coordinate. Thus

(4.2) P - ω1ω2P + ω , β + ω 2 β

is a section of the holomorphic tangent bundle of M (outside the zero set of
Fz P) written in terms of the Gauss map of F. Indeed, this section is none
other than FZ/(FZ P).

Let Π be a given oriented two-plane in R4 and let Π' be the two-plane
normal to Π, with the orientation on IT being chosen as follows: if {ex, e2}
and {e3,e4} are bases for Π and IT respectively such that exf\e2 and
ex Λ e2 Λ e3 Λ e4 determine the orientations on Π and R4, then the orientation
on IT is that determined by e3 Λ e4. It turns out that, regarding Π and IT as
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points of S2 X S2, IT is obtained from Π by the antipodal map on the second
factor. This fact was observed by Chern and Spanier [10] and a different proof
was given by the author in [19]. Using this fact it is clear that, on replacing ω2

in (4.2) by - l / ω 2 and then multiplying throughout by ω2, the resulting
expression will be a section of NCM outside the zero set of Fz P. Indeed, if we
write

(43) U - |

then {e3, e4) is an oriented orthonormal frame for NCM outside the zero set of
Fz - P. This fact was also observed by Hoffman and Osserman in [15].

Let D denote covariant differentiation along M in the complexified normal
bundle. Then D(e3 — ieΛ) = /ω34 ® (e3 — ie4% where ω34 is the connection
one-form which defines D. The computation of ω34 is easy:

<°34 = ~ J [D(e3 ~ ie4)] ' (e3 + ^4)

(4.4) = ~ \ id(e3 ~ ***)] ' (e3 + ^4)

xdωλ — ωλdωx w2ί/<o2 ~ ω2dω2

1+KI2 i + KP
We now restrict ourselves to considering only minimal immersions F:

M2 -» R4 and under this assumption we look for complex valued normal
sections s for which DΞs = 0. We recall that the minimality of F implies that F
is harmonic and therefore that ωx and ω2 are meromorphic. Thus (4.4)
simplifies to

We look for sections s of the form g(e3 — ie4), where g is a smooth complex
valued function. DΣs = 0 implies {dΞg + *gω34(9f)}(e3 — ie4) — 0. Using (4.5)
it is easily seen that

1/2
I I -+- I /Λ. V-

(4.6)

where h is any holomorphic function.
At this point we recall a proposition due to Koszul and Malgrange [17]: Let

V be a complex vector bundle over a Riemann surface M and suppose that V
has a connection defined on it. Then V can be made into a holomorphic vector
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bundle over M with 3 operator equal to the (0,1) part of its connection, that is,
a section s of V is holomorphic if and only if DΞs = 0, where z is a local
complex coordinate on M and D is covariant differentiation in V defined by
means of the connection on V.

Thus we see that what we have done two paragraphs above is to use the
Gauss map to construct sections of F, the complex line subbundle of NCM
which was introduced in §3 after the proof of Theorem A and whose fibres are
spanned by e3 — ieA, which are meromorphic with respect to the holomorphic
structure on V given by the above proposition of Koszul and Malgrange, in the
case when the immersion F: M2 -» R4 is minimal. We may obtain meromor-
phic sections of V (whose fibres are spanned by e3 + ie4 and which is equipped
with the holomorphic structure given by the proposition of Koszul and
Malgrange) by noticing that if s is a meromorphic section of V9 then, s/\ s |2 is a
meromorphic section of V. This can be seen as follows: outside the zeros and
poles of 5, Dzs = fs for some complex valued function/. To compute/in terms
of s we note that dz(s s) = f(s s) and therefore,/ = 9Z log| s |2. Thus

The zeros and poles of s can be easily handled by the reader and we regard the
observation as proved. For future reference we record here the results of this
section:

(4.7) s = J
1/2

e3 - ie4)

is a meromorphic section of V where (e3 — ie4) is given by (4.3),

\s\ =•

l + | ω 2 f

is a meromorphic section of V9

s

\*\2



68 MARIO J. MICALLEF

5. The main results
Throughout this section M will denote an oriented surface (two-real dimen-

sional manifold) with a metric. The complex structure on M shall always be
that defined by the orientation and isothermal parameters for the metric. Thus,
if z is a local complex coordinate, z — x + iy, where (x, y) are oriented
isothermal parameters for the metric. We recall that a Riemann surface is said
to be parabolic if it does not admit positive nonconstant superharmonic
functions.

Theorem I. Let F: M2 -> R4 be an isometric stable minimal immersion of a
complete oriented parabolic surface into Euclidean 4-space. Then F is holomor-
phic with respect to some orthogonal complex structure on R4.

Before giving the proof of Theorem I we point out some corollaries and
make some remarks. In these comments we economize on words by referring to
an immersion which is holomorphic with respect to some orthogonal complex
structure on R4 simply as being holomorphic.

Corollary 5.1. A complete stable minimal surface in R4 which is an entire
graph is holomorphic.

Proof. A corollary to a theorem of Osserman [24, pp. 37-40] states that a
minimal surface in Euclidean space which is an entire graph is conformally
equivalent to the complex plane. In particular, it is parabolic and Corollary 5.1
is an immediate consequence of Theorem I.

Remark. The assumption of stability cannot be dropped from Corollary
5.1. Osserman [24, pp. 40-42] has constructed examples of entire two-dimen-
sional minimal graphs in R4 which are not holomorphic with respect to any
orthogonal complex structure on R4. These graphs are therefore unstable by
Corollary 5.1.

Corollary 5.2. A complete oriented stable minimal surface in R4 which is of
finite total curvature is holomorphic.

Proof. A theorem of Chern and Osserman [9] states that a minimal surface
of finite total curvature in Euclidean space is conformally equivalent to a
compact Riemann surface with finitely many punctures. In particular, such
surfaces are parabolic and this corollary is again an immediate consequence of
Theorem 1.

Corollary 5.3. A complete stable oriented minimal surface in R4 which has
quadratic area growth is holomorphic.

Proof. A complete surface of quadratic area growth is parabolic by a
theorem of Cheng and Yau [7].

We now prove some lemmas that will be needed for the proof of Theorem I.
We recall an observation made in the paragraph following the proof of
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Theorem A in §3: for an immersion F: M2 -> R4, NCM = V θ V. If v is any

vector in C 4 , let vh° and υ 0 1 denote the orthogonal projection of v onto V and

F respectively. We let D denote covariant differentiation in NCM and z — x -\-

iy will be a local complex coordinate. Finally, if v = (t>,, ,vn) and w —

(wj, ,wπ) are two vectors in C", then t> w = ΣJVJWJ.

Lemma 5.1. For a minimal immersion F: M1 -> R4, ( f^ z ) l ϊ 0 ® (rfz)2 w a

holomorphic quadratic differential with values in V and (FZZ)
OΛ <8> (dz)2 is a

holomorphic quadratic differential with values in V. (Here, holomorphic is meant

with respect to the holomorphic structure given by the proposition of Koszul and

Malgrange mentioned in §4.)

Proof. Since D preserves Vand V, all we have to check is that D£F2Z)
N = 0.

Keeping in mind that Fz Fz = 0 by definition of isothermal parameters and

therefore that Fz Fzz — 0 we compute:

(FZZ)
N = Fzz - (Fzz)

τ

^FZZ FZ)FZ - -±-(Fzz FΞ)FZ

= F — (F - F-)F

\FΛ
Therefore

by minimality. The proof of the lemma is complete.

Corollary 5.4. For a minimal immersion F: M2 -* R4, each of\(Fzz)
λ'°\ and

I (FZZ)
OΛ I either vanishes identically or only at isolated points.

Note that the statement of Corollary 5.4 is independent of the choice of the

local complex coordinate z.

Lemma 5.2. IfF: M2 -> R4 is an isometric minimal immersion and a E C 4 is

a fixed vector then

(5.1)

\Fzt
Proof Let {e3, e4) be a local oriented orthonormal frame for NCM and let

ε = (e3 - ie

(5.2)
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Therefore

(5.3) Dza
i0 = (α (3z-ε)Γ}ε + {a • (-/ω 3 4 (3 f )ε)}ε + (a • ε-)/<o34(θf)ε

= {α (3z-έ)Γ}ε,

where De3 = ω3 4 ® e4 and therefore Z>ε = iω34 ® ε. We now make two ob-
servations which are proved immediately after they are stated:

(5.4) ( 9 i i ) T = ^

(5.4') (9zi)
T =-j^(e • Fzz)Fίt

(5-5)
| F Z | 2

In the proof of (5.4) and (5.5) we will be using the Leibniz rule, the fact that ε
is a normal section and therefore that ε Fz — ε F f = 0 and also the minimal-
ity of F, that is, FzI = 0. We now compute

(3z-ε)Γ = j^p ((%* ) Fife + j^p ((%*) • /^)Ff

The proof of (5.4') is identical to that of (5.4). We prove (5.5) by showing that
{3Z(FZ/| Fz f)f = 0. This is done by establishing that

both of which are easy and therefore left to the reader. Using (5.4) we may
rewrite (5.3) as

From the above expression we compute DzDΞa
h° and on using (5.4') and (5.5)

we obtain

(5.6) DΣDia
λ»=-\a

(5.1) is now established by writing (FZZ)
N = (Fzz)

ι'° + (FZZ)
OΛ and using ex-

pressions similar to (5.2) for (F z z ) ' °, (Fz z)° ' and (F^-)1'0. q.e.d.
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We now let s = fa in the stability inequality (2.2) where / is a smooth real
valued function with compact support and σ is a complex valued normal
section which need not have compact support. / has to be real valued because
of the following computation:

( 5 * 7 ) + / /Λ(σ Dp) dxdy+i f2(Dzσ Dp) dx dy.

On rewriting^ as l / 2 ( / 2 ) f andffz as l /2(/ 2 ) z and integrating by parts the
second and third terms of the right-hand side of (5.7), we obtain

f f2\(dzσ)T\2dxdy<( \M2\of \(z)\ \
(5*8) - ί /2Re(σ DzDp) dx dy.

JM

By a computation identical to that used in proving (5.4) we may show that

Let λ = 21 Fz |
2. Then dA, the element of area on M, is locally given by λ dx dy.

Moreover, since/is real,

Therefore (5.8) may be rewritten as:

^\df\2\a\2dA.

We can now give the
Proof of Theorem I. Fix a unit vector a G C 4 and let σ = ah° in (5.9). Then,

using (5.1), we obtain

(5.10) f f2qdA<[ \df\2\aι*\2dA<[ \df\2 dA,
JM JM JM

the last inequality being true because | ah01<| a |= 1. In (5.10)

(5.11) q=-
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A theorem of D. Fischer-Colbrie and R. Schoen [12, Theorem 1, p. 201] says
that, since (5.10) holds for all smooth functions / with compact support, then
there exists a smooth function u > 0 satisfying the equation

(5.12) Δu + qu = 0.

Following Fischer-Colbrie and Schoen we let w = log w. Then w satisfies the
equation

(5.13) Δw= -q-\dw\2.

Multiplying (5.13) by / 2 , where / is a smooth real valued function with
compact support and integrating over M we obtain

(5.14) if f{df-dw)dA = f f2qdA + f f2\dw\2 dA,

where we have integrated JMf2ΔwdA by parts. Using the inequality
2\f(df ώv)\< Θf2\dw\2 + Idf\2/θ for any θ > 0 in (5.14) yields

(5.15) \ f \df\2 d A > f f 2 q d A + ( I - θ ) f f 2 \ d w \ 2 d A .

We now let a run over an orthonormal basis {al9 α2, α3, aΛ] of C 4 and we let
qj stand for the expression in (5.11) with a = αy . The solution of (5.12) with
q — qj is denoted by Uj and w = logttj. Summing up over E {1,2,3,4} the
inequality (5.15) with q = q} and w = Wj we obtain

(5.16) 8/ \df\2dA>(
JM JM
/ \\ f(Σqj) /
JM JM \ j JI JM

where we have set θ = 1/2. But from (5.11) we see that

because b c = 0 when b and c are of the same type. Therefore (5.16) becomes

(5.17) / W\2dΛ>[ f2rdA,
JM JM
JM JM

where

(5.18) ' = ^ Σ
j

Since (5.17) holds for all smooth functions/of compact support, the theorem
of Fischer-Colbrie and Schoen gives us the existence of v > 0 with Δt> + rv = 0.
But since r > 0, υ is superharmonic and therefore the parabolicity of M implies
that υ is constant. It follows from the equation for v that r vanishes identically.
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From (5.18) we then deduce that Wj is constant for each j and therefore so is w .
From (5.12) with u — uj and q = qj we conclude that qj = 0 for each j .

Now at an arbitrary point p of M, either (Fzz)
N(p) — 0 or else we can let

a\ = (Fzz)N(P)/\(Fzz)N(P)\- I n t h e l a t t e r c a s e > ίi = 0 implies, by (5.11), that
\(Fzz)l'0(P)\\(Fzz)0Λ(P)\=Q' τ h i s last equality obviously still holds if
(Fzz)

N(p) = 0. Therefore, from Corollary 5.4, we deduce that at least one of
(Fzz)

uo or (FZZ)
OΛ vanishes identically. We now note that we can change the

notion of type (1,0) to that of type (0,1) simply by changing the complex
structure on NM to be rotation by 90° clockwise as opposed to counterclock-
wise. Therefore, without loss of generality, we may assume that (FZZ)

OΛ

vanishes identically. But then, if s is a local nonzero section of V (the
subbundle of type (1,0) of NCM), we have, by the Leibniz rule and minimality
(see the proof of (5.4)), that

where the last equality follows from 0 = (Fzzf
Λ = (Fzz s)s/\s\2. By the

discussion following the proof of Theorem A in §3, the hypotheses for
Theorem A are now all fulfilled and Theorem I is proved.

Professor R. Schoen has pointed out that the proof of Theorem I can be
modified slightly to prove

Theorem Γ. Let F: M2 -* T4 be an isometric stable minimal immersion of a
compact oriented surface M without boundary into the flat torus T4 = R 4/Z 4.
Then F is holomorphic with respect to some orthogonal complex structure on T4.

Outline of Proof. The constant vector field a on R4 descends as a global
parallel vector field on T4 which we still denote by a. The normal bundle of M,
being oriented and two-real dimensional, still has a complex structure defined
on it, namely, rotation by 90°. Thus 01'0 can be defined and formula (5.1) is
still valid as long as by Fz we mean F+(dz) and by (FZZ)

N we mean 2?(θz, 9Z),
where B: TCM ® TCM -> NCM is the second fundamental form of M (simi-
larly for FΞ and (FH)N); Fzz of course means VF^Z){FJ@Z)\ where V is
covariant differentiation in the tangent bundle of T4 by means of the flat
Levi-Civita (Riemannian) connection. Inequality (5.10) is therefore still valid
for all smooth real valued functions / on M. This means that the lowest
eigenvalue \λ of — Δ — q on M is nonnegative. Therefore, if u > 0 is the
eigenfunction of — Δ — q corresponding to λj, then Δw + qu < 0. Setting
w — log M yields ΔH> ̂  — q — | dw |2 from which we may again derive (5.15) and
therefore (5.16) and (5.17). Taking/to be identically 1 in (5.17) yields r = 0
and therefore qj = 0 for each j e {1,2,3,4}. Therefore, as in the proof of
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Theorem I, we conclude that at least one of (F22)
lt° and (FZZ)

OΛ must vanish
identically. The remark and discussion following the proof of Theorem A
finish the proof of Theorem Γ.

Theorem II. Let F: M2 -» R4 be an isometric stable minimal immersion of a
complete oriented surface M into Euclidean 4-space. Suppose that one of the
projections of the Gauss map for F onto the factors of S2 X S2 omits an open set.
Then F is holomorphic with respect to some orthogonal complex structure on R4.

Remarks, (i) The Gauss map for a holomorphic immersion F: M -> C2 has
the property that one of its projections onto the factors of S2 X S2 is constant
(see, for example, [14] or [19]).

(ii) There exist many examples (see, for instance, Hoffman, Osserman,
Schoen [16, §4]) of minimal immersions of the unit disk (in C) with a complete
metric into R4 and whose Gauss map possesses the property stated in Theorem
II. In these examples, the projection of the Gauss map which omits an open set
from the relevant factor of S2 X S2 is nonconstant and therefore Theorem II
and Remark (i) imply that all these examples are unstable.

(iii) If both projections of the Gauss map for a minimal immersion F:
M -> R4 omit an open set, then F(M) is a plane, even without the assumption
of stability on F. This was proved by Chern [8] and also by Osserman [23].

Proof of Theorem II. Throughout this proof we will be using the notation
in §4. Suppose that ω, omits the open set Ω. Then for any fixed ω0 E Ω,
ω i / ( ω i ~~ ωo) i s bounded; here we are identifying S2 with C U {oo} via
stereographic projection. Thus M admits a bounded holomorphic function,
which, by Remark (i), may be assumed to be nonconstant. If M is planar, then,
from the classification theory of Riemann surfaces, we know that M admits a
nonconstant harmonic function with finite Dirichlet integral (see, for example,
[1, Theorem 7E, p. 208]). If M is not planar, then (by definition) there exists a
closed curve on M which does not separate M, which, in turn, implies the
existence of a nonzero real harmonic differential which is square integrable
(see, for example, [27, Theorem 8-1 and the preceding discussion on page 208]).
In either case, we obtain the existence of a nontrivial real harmonic differential
a on M which is square integrable. Therefore, β — a + / * a is a square
integrable holomorphic differential, where * is the Hodge operator. Define σ
by

σ =

(5.19)

J 1 + | ω |2 1/2
β e3- ie4

r> (ω, - ω 0 )

f ^ . .
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where (e3 — ie4) and s are defined by (4.3) and (4.7) respectively. We recall
from (4.7) that s is a meromorphic section of V and therefore so is σ because
β/(dF P)(ω{ — ω0)

2 is a meromorphic function. We claim that σ is a square
integrable section of V. To verify this claim, we compute: by (4.7) and (4.1),

, , 2 . \β\2 1 1 + l ω J 2

\dF'P\2\ω,-ωof 1 + | < O 2 | 2

(5 2 0 ) 2/ 1 + κ ι M 2

where C is a constant depending only on the lower bound for \ω{ — ω o | .
Therefore σ is square integrable because β is. The above calculation is, strictly
speaking, valid only when Fz P Φ 0, that is, when both ω, and ω2 are finite.
However, by making the change of variables ξx = l/ω{ or ξ2 = l/ω2 or both,
it is a simple matter to check that the final inequality in (5.20) always holds.

We now let s — fσ in the stability inequality (2.2) where σ is given by (5.19)
and / is real valued and with compact support. Keeping in mind that 0 = Dft
= (3^)^, (2.2) becomes the following inequality:

(5.21) 2 / / 2 | ( 3 σ ) Ί 2 < / \df\2\o\\
JM JM

For any R > 0, let/Λ be a smooth function which is identically 1 on BR(p), the
geodesic ball of radius R with centre at p in M, zero outside B2R(p) and
\dfR\< C'/R everywhere on M, where C is a constant independent of R.
Letting f — fR in (5.21) and letting R -> oo we see that, since / M |σ | 2 < oo, we
have to have (θσ)Γ = 0. But σ is a section of V with isolated zeros and
therefore, by Corollary 5.4 and the discussion following the proof of Theorem
A in §3, the hypotheses for Theorem A are now all satisfied. Theorem II is thus
proved under the assumption that ω, omits an open set. If ω2 omits an open set
Ω and ω0 E Ω, then we let

β
(dF'P){ω2-ω0)

2\sf

where s/\ s |2 is given by (4.7). We again have Dp — 0 and that σ is square
integrable. Therefore, the same argument as above shows that (dσ)τ = 0. But σ
is now a section of V. As in the proof of Theorem I, we switch the roles of V
and V simply by reversing the complex structure on NM. The proof of
Theorem II is therefore complete.

Remark. The above proof runs on lines similar to the proof of Theorem 2
in [12]. There, D. Fischer-Colbrie and R. Schoen use the existence of real
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harmonic square integrable differentials on the unit disk in C to show that
there do not exist positive solutions of the equation Δw — aKu = 0 for a > 1,
where K is the Gauss curvature of a complete metric on the unit disk in C.

Theorem IΓ. Let F: M -» R4 be an isometric stable minimal immersion of a

complete simply connected oriented surface M. Suppose that one of the projections

of the Gauss map for F onto the factors of S2 X S2 omits a set of positive

logarithmic capacity. Then F is holomorphic with respect to some orthogonal

complex structure on R4.

Proof of Theorem IΓ. From the proof of Theorem II, it is clear that all we
have to do is show the existence of a square integrable holomorphic section of
V (or V). Without loss of generality we assume that it is ωx which omits a set Ω
of positive logarithmic capacity and also that oo E Ω. Then, by one of the
characterizations of sets of positive logarithmic capacity (see, for example, [24,
Lemma 8.6 on p. 70]), there exists a harmonic function h on Qc — S2\Q such
that ft(coj) > log(l + I ωλ |

2) for all ωι E Ωc. Since ωx: M -* Ωc is holomorphic,
ftoϋ, is harmonic on M. But M is simply connected and therefore h ° ωx =
Reφ for some holomorphic function φ on M. Moreover, M has a global
coordinate z defined on it (indeed M is conformally equivalent to the unit disk
in C because M is simply connected and ωx is a holomorphic function on M
which omits more than 2 points of S2). Thus we may define the required
section σ of Fby

_ s

where s is given by (4.7). We compute

|σ|2 = 1 1 + K f

f 1 f

|Fz i > p ( l + | ω 2 f ) ( l + | ω i p )

= I = 2\dx\\

where λ = 21 Fz |
2 and x = Re z. Since we are identifying M with the unit disk,

fM\dx\2 = π and therefore σ is square integrable. The rest of the proof now
proceeds as that for Theorem II and we regard the proof of Theorem IΓ as
complete.

Remark. This proof is based on Osserman's proof in [22] of the theorem
which says that the Gauss map of a complete nonplanar minimal surface in R3

cannot omit a set of positive logarithmic capacity.
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Theorem III. Let F: M -» R4 be an isometric stable minimal immersion of a
complete oriented surface M. If the Gauss map for F is at least 1/3 degenerate
(that is, there exists a nonzero fixed vector A G C 4 such that \A A \> $ \A |2

and A Fz = 0) then the image of F is a plane.
Proof Throughout this proof we will be using the notation of the proof of

Theorem I. We will be using the version of the stability inequality given by
(5.9) with σ = Ah0 — Auo. We make the following claims which are proved
after the proof of Theorem III is completed:

Claim (i). s = A1*0 is a nowhere vanishing holomorphic section of V.
Claim (ii). σ D2Dp =|s|2(log|*|2) z- z.
Claim (iii). |σ Fzz\

2 =\sf\F2f(-K) + Re(A - A)\(Fzz)
h0\2, where K is the

Gauss curvature of M.

Claim (iv).

' - Ί 2 / , , , 2 ,,2 \A A\

Therefore, by Claims (ϋ) and (iii) and the fact that | σ |2 = 21 s |2, (5.9) becomes

V " { ^ |,|2 \Fzf \Ffy B

I | H
M

Since 5 vanishes nowhere (by Claim (i)) we can let / = g/\ s \ in the above
inequality and integrate by parts on the right to obtain

(5.22) / g2{(-K) + q}<f \dg\\
JM JM

where

Re(Λ • A) \(Fj"f , 1 , , 2IH-,

•= - U P — W i ϊ F ( l 0 i l " } " ΰiiϊ
But by Claim (iv),
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Moreover, we can choose Λ so that Re(Λ A) =\A A \. Therefore

where we have used \A - A\^ ^\A\2 to obtain the last inequality. Since (5.22)
holds for all real valued functions g of compact support, the theorem of D.
Fischer-Colbrie and R. Schoen [12, Theorem 1, p. 201] gives the existence of
u > 0 satisfying Δw + {(—K) + q)u = 0. The lift of u to the universal cover
of M satisfies the same equation as u. By (5.23), q > 0 and therefore another
theorem of D. Fischer-Colbrie and R. Schoen [12, Theorem 2, pp. 203-205]
shows that the unit disk in C cannot be the universal cover of M, which must
therefore be the complex plane. But then the lift of u would be a positive
superharmonic function on C because — K>0 for a minimal surface in
Euclidean space. Therefore u must be constant and it follows from the
equation for u that q = 0 and K = 0. M must therefore be a plane.

Proof of Claim (i). A Fz = 0 and therefore by (5.3) and (5.4)

^rh^Fz)(eFH)e 0,
\Fz\

where ε = (e2 — ieΛ)/ y/2 as in Lemma 5.2. Thus s is holomorphic. Moreover,

(5.24) A = -j^(A FZ-)F2 + (A ε)ε + (A ε)ε.

Therefore

(5.25) A A = 2(A ε)(A ε) .

Thus, 0 < \ \Af <\A - A\= 2\A ε\\A ε | . In particular, A ε never
vanishes, that is, s never vanishes.

Proof of Claim (ii). Since s is a holomorphic section of F, Dzs — (θ z log | s | 2 ) ^
(see the proof that s/\ s |2 is a holomorphic section of F towards the end of §4).
Therefore,

D* = 2)2Z)f(s - s) = - D z (

σ Z)zZ)z-σ = - (s - s) ( log | jp)- 2 ί =\s\2{log\s?)-2.
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Proof of Claim (iii).

(5.26) =\s Fj +|ί FJ2 - 2 R φ - Fzz){s

ε)(ε F2Z)(A ε)(ε FH).

From the Gauss equation, it follows that \(FZZ)
N\2 =\Fzf(-K).Ψe also have

that A Fz = 0 and therefore that Λ F z z = 0. But

and so, ̂  (FZZ)
N = 0, that is

(5.27) (Λ ε")(ε F z z) + (A e)(ε - Fzz) = 0.

Claim (iii) is now proved by using (5.27), (5.25) and the Gauss equation in the
last line of (5.26).

Proof of Claim (iv). We first note that | s |2 = A s and therefore, (| s |2)z- = A
• dfs = A (θ f5)Γ because ( θ ^ ) ^ = D-^ = 0 (from Claim (i)). Using the com-
plex conjugate of (5.4') in this expression for (\s\2)z we see that

(5.28)

From (5.24) and (5.25) we also have

(5.29) lAfJ

Claim (iv) now follows easily from (5.28) and (5.29). The proof of Theorem III
is complete.

Theorem ΓV. Let F: M2 -> Rw be an isometric stable minimal immersion of a
complete oriented surface M of finite total curvature and genus zero into
Euclidean n-space. Then F(M) lies in an even dimensional affine subspace ofR"
and is holomorphic with respect to some orthogonal complex structure on this even
dimensional affine subspace.

Remark. Theorem IV is in some sense similar to the theorem of Calabi [5]
about minimal immersions from S 2 into S"\ although the proof is quite
different.

Before proving Theorem IV we prove the following
Lemma 5.3. Let F: M -*Rn be an isometric stable minimal immersion of a

complete oriented parabolic surface M into Euclidean n-space. If σ is a bounded
holomorphic section of NCM (that is, \ σ |< C for some constant C and Dp = 0)
then (3σ)Γ = 0.
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Proof. Letting s = /σ in the stability inequality (2.2), with / a C°° real
valued function of compact support, yields

(5.30) / / | ( ) 1 ^ / W\\f^f

Since (5.30) holds for all C00 real valued functions of compact support, the
theorem of D. Fischer-Colbrie and R. Schoen [12, Theorem 1, p. 201] asserts
the existence of u > 0 satisfying

But then u is a positive superharmonic function and therefore, since M is
parabolic, u must be constant. The equation for u then implies that (9σ)Γ = 0.
q.e.d.

We now make some remarks about complete minimal surfaces of finite total
curvature in Euclidean space. By a theorem of Chern and Osserman [9], such
surfaces are conformally equivalent to a compact Riemann surface with finitely
many punctures. Moreover, the Gauss map extends to the compactified surface
as a holomorphic map.

We now recall that over Gln we have the tautological 2-plane bundle γ2 n

whose fibre over a point Π consists of the vectors in R" which lie in Π. We also
have the (n — 2) plane bundle y£n which is the orthogonal complement of yln

in Gln X R". The tangent and normal bundles of a surface immersed in Rn are
isomorphic (geometrically) to G*(γ2,π) and G*(γ^π) respectively, where G is
the Gauss map of the immersion. Thus, in the case of a complete minimal
surface M of finite total curvature in R", the tangent and normal bundles of M
extend (with all their geometric structure) to some vector bundles on the
compactified surface M\ these vector bundles are, of course, G*(y2yn) and
(j*(γ^π) respectively, where G is the extension of G to M. We let η = <7*(γ^π)
andτjc = η ® R C .

We now give the
Proof of Theorem IV. We first recall that v w is the scalar product of

t>, w E Cn which is complex linear in both arguments. However, whenever we
say that a vector v is orthogonal to a vector w, we mean that υ is orthogonal to
w in the standard Hermitian inner product o n C ; thus v is orthogonal to w if
and only if υ w = 0.

Since the surface is assumed to be of genus zero, the compactified surface M
must be the two-sphere S2. Moreover, by the proposition of Koszul and
Malgrange mentioned in §4, ηc can be made into a holomorphic vector bundle.
Therefore, by a theorem of Grothendieck [13], ηc splits as the direct sum of
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holomorphic line bundles L, θ ®LM_2. Let L,, -9Lp be the positive line
bundles, Lp+l9- ,Lr be the topologically trivial ones and LΓ+1, - ,Ln_2 be
all negative. By the Riemann Roch theorem we know that each of
L,, -,1^, Lp+j,- ,Lr admits a holomorphic section sy, y G (1, ,r}. Sim-
ply by restricting the domain of Sj to M, we obtain r linearly independent
bounded holomorphic sections of NCM. (Throughout this proof, linear in-
dependence of sections is meant over the continuous functions, not pointwise.)
We know that c,(τyc) = 0 because ηc is the complexification of a real vector
bundle (c, denotes first Chern class). But c{(ηc) = cλ{Lλ) + +c,(Lπ_ 2).
Therefore only the following two cases arise.

Case (i). L1, ,L/I_2 are all trivial. In this case Lemma 5.3 says that
(dsj)τ = 0 for ally E {1, ,n — 2}. But the Sj may be chosen to have no zeros
and then sl9 —9sn-2

 s P a n NCM. Therefore (ds)τ = 0 f or all sections s of NCM.
Thus, for any section s of iVcM, (<fc)Γ = (ds)τ + (3?)Γ = 0. This means that
Λί is totally geodesic and therefore a plane. In particular, Theorem IV holds.

Case (ii). p > 1 and r < n — 2. From now on we adopt the following range
of indices:

1 <y, k < r, /? + 1 < Λ < n - 2.

We note that s j y = 0. The reason is that

dz-(sμ - Sj) = (AΛ) * SJ + s, ' (DΪSJ) = °

Therefore sμ Sj is constant (holomorphic functions on compact manifolds are
constant). But since Lμ is positive, sμ must vanish somewhere and therefore
s Sj = 0 as claimed. This means that the sμ lie in the space orthogonal to the
span of {LX9 ,Lr} which is n — 2 — r dimensional. Therefore/? < n — 2 — r.
We also know that each of Lr+λ9- ',Ln_2 admits a meromorphic section sa9

flG{r+l, ,/i-2}, which has only poles. Therefore sa sA is a meromor-
phic function which either vanishes identically or else has only poles. The latter
is impossible and therefore we conclude that the sa lie in the space orthogonal
to the span of {Lp+l9- -,Ln_2} which is /^-dimensional. Therefore n — 2 — r
< p and combining this with the previous reversed inequality we conclude that
p — n — 2 — r and that the space orthogonal to the span of {Ll9- ,Lr} is
spanned by Ll9- -,Lp.

We now claim that (dzSj - sk) dz is a holomorphic differential. To prove this
claim all we have to check is that d£dzSj - sk) = 0. But

*z(9zsj ' Sk) = 9Af/ ' Sk + 9zsj ' 9 Λ

= dz(dΞSj sk) - dzSj dzsk + dzSj - dzsk.
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Since the Sj are holomorphic, dΞSj has only a tangential component and, by
Lemma 5.3, dzSj has only a normal component. Therefore, all three terms in the
last equality above are zero and our claim is proved. But by the Riemann-Roch
theorem, there are no nonzero holomorphic differentials on S2. Therefore
dzSj sk = 0 for all j9 k. From the argument in the previous paragraph we
deduce that dzSj lies in the span of {Ll9 ,Lp).

Let £ = Lx Θ ®Lp Θ Lp+X Θ ΘLr Θ (TcM)ι*>. (Recall that the fibres
of (Γ C M) 1 0 are spanned by F2.) We claim that d: Γ(£) -> T(ξ ® Γ*M), that is,
d preserves £. The above discussion shows that dsj sk = 0 for all j , k.
Therefore, all that remains to be checked is that (dFz) Fz = 0 and (dFz) Sj =
0. The former is obvious and the latter follows from minimality, the Leibniz
rule and the fact that (d2Sj)τ = 0 (from Lemma 5.3). The claim is proved.

A consequence of this claim is that | , the fibre of £ over the point q in M, is
a fixed subspace of C" (that is, ξq gives the same subspace of C" for all q in
M); here we are projecting the fibres of F*(TcR

n) = M X Cn onto Cn in the
obvious way. To see this, let ϋ be a vector in ξqo for some fixed q0 in Λf. Let
Vξ(q) and υf (q) be the orthogonal projections of v onto ξ and the orthogonal
complement of ξq respectively. Then 0 = dv = dvξ + dυf. But since d pre-
serves I, it also preserves the orthogonal complement of £. Therefore dv^ = dυf
— 0. But υf (q0) = 0 and therefore v£ (q) = 0 for all ^. Since v was any
vector in ξqo, we conclude, as desired, that ξq is the same subspace of Cn for all
q. Thus £ = M X Λ where Λ is a subspace of Cn of dimension r + 1.

Now let Γ = Λ Π Λ. Note that, since the space orthogonal to the span of
{Lj, ,Lr} is spanned by {Lj,- -,1^}, we have that span{Λ, Λ} = C". But
dim sp{Λ, Λ} = dim Λ + dim Λ — dim T and so, n — 2r + 2 — t, where t =
dim T. Thus t — r — p (since/? -\- r — n — 2 from above).

If Γ is empty, t = 0, r = /? and all we have to do to prove Theorem IV is to
apply Theorem A with E = (ΓcAf ) l ί 0 and V= Lx Θ ΘZ^. If Γ is non-
empty, then since T is preserved by complex conjugation, T = P^ 0 R C , where
fΓ is a subspace of Rw of real dimension t equal to r — p. Now note that
(Γ C M) 1 0 is not preserved by complex conjugation and so, M X W is a
subbundle of NM which is parallel in F*(TRn). This means that F(M) lies in
an affine subspace of R" orthogonal to W\ the dimension of this affine
subspace is n — t = 2p + 2. It also means that NCM splits as the Whitney sum
NCM = MXT®(MX Γ)-1, where (Λf X Γ)-1 is the orthogonal comple-
ment of M X T in iVcΛf; (M X T)1- is the complexified normal bundle of M
when M is viewed as a surface immersed in the affine subspace orthogonal to
W. Now let v be a vector in T. Since t> G Λ, v = Σ£= 1 ΛΛJΛ + fl/^. Therefore
t) sμ = 0 for all μ G {1, •,/?}. Similarly, since υ E Λ, v sμ = 0 for all
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| i 6 { l , •,/?}. Thus T is orthogonal to the fibres of Lλ Θ ®Lp Θ Lx

θ ΘLp over any point # in M, that is, L, θ ΘZ^ Θ L , Θ ΘL^ C

(Af X 7 7 ) ± . But the linear independence of {sX9'-9sp} and the fact that

sμ- sv = 0 for all /ι, ? E {1, •,/?} imply that $„• -,sp9 ί,, , ^ are Unearly

independent. Moreover, dim(M X 71)-1 = 2/? and therefore

Lx ® - ΘLp ® Lx ® - ΘLp = (M X T^ .

Theorem IV is now proved by applying Theorem A with E = (TCM)10 and

V=LX ® >®Lp.

References

[1] L. V. Ahlfors & L. Sario, Riemann surfaces, Princeton University Press, Princeton, 1960.
[2] Ju. A. Aminov, On the problem of stability of a minimal surface in a Riemannian space of

positive curvature, Soviet Math. Dokl. 16(1975) 1278-1281.
[3] J. L. Barbosa & M. doCarmo, On the size of a stable minimal surf ace in R3, Amer. J. Math. 98

(1976)515-528.
[4] S. Bernstein, Sur un theoreme de geometrie et ses applications aux equations aux dέrivέes

partielles du type elliptique, Comm. Soc. Math. Kharkov 15 (1915-1917) 38-45.
[5] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1

(1967)111-125.
[6] M. doCarmo & C. K. Peng, Stable minimal surfaces in R3 are planes, Bull. Amer. Math. Soc.

(N.S.) 1(1979) 903-906.
[7] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and their geometric

applications, Comm. Pure Appl. Math. 28 (1975) 333-354.
[8] S. S. Chern, Minimal surfaces in an Euclidean space of N dimensions, Differential and

Combinational Topology, A symposium in honor of Marston Morse, Princeton Univer-
sity Press, Princeton, 1965, 187-198.

[9] S. S. Chern & R. Osserman, Complete minimal surfaces in Euclidean n-space, J. Analyse
Math. 19(1967)15-34.

[10] S. S. Chern & E. Spanier, A theorem on orientable surfaces in four-dimensional space,
Comment Math. Helv. 25 (1951) 205-209.

[11] H. Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965) 43-67.
[12] D. Fischer-Colbrie & R. M. Schoen, The structure of complete stable minimal surfaces in

3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. 33 (1980) 199-211.
[13] A. Grothendieck, Sur la classification des fibrees holomorphes sur la sphere de Riemann, Amer.

J. Math. 79(1957) 121-138.
[14] D. A. Hoffman & R. Osserman, The geometry of the generalized Gauss map, Mem. Amer.

Math. Soc. vol. 28, No. 236, 1980.
[ 15] , The Gauss map of surfaces in R", preprint.
[16] D. A. Hoffman, R. Osserman & R. M. Schoen, On the Gauss map of complete surfaces of

constant mean curvature in R3 and R4, Comment Math. Helv., to appear.
[17] J. L. Koszul & B. Malgrange, Sur certaines fibrees complexes, Arch. Math. 9 (1958) 102-109.
[18] H. B. Lawson, Jr., Lectures on minimal submanifolds, Vol. I, Publish or Perish, Berkeley,

1980.
[19] M. J. Micallef, Stable minimal surfaces in Euclidean space, Ph.D. thesis, New York Univer-

sity, October 1982.
[20] F. Morgan, On the singular structure of two-dimensional area minimizing surfaces in R",

preprint.



84 MARIO J. MICALLEF

[21] R. Osserman, Proof of a conjecture of Nirenberg, Comm. Pure Appl. Math. 12 (1959)
229-232.

[22] , On complete minimal surfaces, Arch. Rational Mech. Anal. 13 (1963) 392-404.
[23] , Global properties of minimal surfaces in E3 and En, Ann. of Math. (2) 80 (1964)

340-364.

[24] , A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969.
[25] R. M. Schoen, L. Simon & S. T. Yau, Curvature estimates for minimal hypersurfaces, Acta

Math. 134(1975)275-288.
[26] Y. T. Siu & S. T. Yau, Compact Kάhler manifolds of positive bisectional curvature, Invent.

Math. 59 (1980) 189-204.
[27] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957.
[28] A. N. Wang, Contributions to differential geometry, Ph.D. thesis, University of California,

Berkeley, 1981.
[29] W. Wirtinger, Eine determinantenidentitάt und ihre anwendung auf analytische gebilde und

Hermitesche massbestimmung, Monatsh. Math. Physik 44 (1936) 343-365.
[30] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 1 points on the

sphere, Ann. of Math. 113 (1981) 211-214.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE




