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EMBEDDED HYPERSPHERES
WITH PRESCRIBED MEAN CURVATURE

ANDREJS E. TREIBERGS & S. WALTER WEI

In [10] Yau raises the nonlinear global problem: is there an embedding

Y: Sn -» R w + ! of the ^-dimensional sphere into Euclidean (n + l)-space, whose

mean curvature is a preassigned sufficiently smooth function H defined on

R n + 1 ? A theorem of Bakelman and Kan tor [4] asserts the existence of such

hypersurfaces assuming only natural conditions that H decay faster than the

mean curvature of concentric spheres. It is the purpose of this paper to give a

new simple geometric treatment of the required a priori estimates and a

complete presentation of the existence and uniqueness proof of this result.

A condition that a function H decays in a domain ί/CR"+ 1-{0} from an

arbitrary point, say zero, faster than \X\~\ where | X\ is the Euclidean length of

X, is given by

0<H G C\Ό),

(I) R
V ' ^-pH(pX) < 0, for all pX G U.

dp

Theorem, (a) Suppose that the function H satisfies condition (I) in the annular

region U = {X G Rw + 1 : rλ < | X\< r2} where 0<rl<\^r2and that

H(x)>\X\~ι for\X\=rl9

H{X)<\X\-χ for\X\=r2.

Then for some 0 < a < 1 there exists an embedded hyper sphere Y G C2a(Sn)

with mean curvature ^Y — H{Y) which is a radial graph over the unit sphere

such that r] < | Y\< r2.

(b) Let Y be a sphere about zero with tyίlY = H(Y). If there is a second

embedded C2 hypersurface Z about zero that satisfies 91LZ — H(Z\ and the

function H satisfies condition (1) in the domain between Y and Z, then the

hypersurfaces are homothetic, i.e.,

Z = (1 + to)Y, for some t0 > - 1 ,
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and all intermediate homotheties satisfy the equation

9IL((1 + θto)Y) = H((l +θto)Y) forallO<θ< 1.

We construct these embeddings, which are radial projections of the standard
sphere, by solving the quasilinear elliptic partial differential equation for
prescribed mean curvature on the sphere. In the first section we derive the
equation by pulling the expression for the mean curvature back from the
hypersurface by a homogeneity argument.

We obtain explicit a priori gradient bounds for a class of equations includ-
ing the mean curvature equation in the second section. We derive the estimates
intrinsically, utilizing the maximum principle in much the same way that it is
used by Yau in, e.g., [9], but by applying an operator more suited to the mean
curvature equation than the Laplacian. The estimate [3, Theorem 4] is more
complicated but gives a gradient bound for the mean curvature equation in a
general Riemannian space.

In the third section we assemble the a priori estimates and prove the
existence of solutions by applying the Leray-Schauder fixed point theorem.
Uniqueness up to homothety follows from the maximum principle. In much
the same way, Aeppli [1] and A. D. Aleksandrov [2] have shown uniqueness up
to homothety for this problem in case H is homogeneous of degree minus one.

Oliker [6] has obtained an analogous result for prescribed Gauss curvature.
Related Dirichlet problems for hypersurfaces with prescribed or zero mean
curvature, which project centrally to convex domains of the hemisphere, but
using different parameterizations, have been considered from the point of view
of Schauder theory by Serrin [7] and the direct method by Tausch [8].

We thank Professors S. T. Yau and R. Schoen for their encouragement and
comments, and the University of California at San Diego for our pleasant visit
while completing this work.

1. Derivation of the equation

We derive an expression for the mean curvature of the radial graph of a
function on the unit sphere. We use moving frames and adapt the convention
that lower case indices are summed from 1 to n and capitals from 1 to n + 1.

Let {el9 ,eΛ+1} be a local orthonormal frame field defined on Rw+1 such
that en+] is in the outward radial direction. Let {ωB} denote the dual coframe
field. The connection forms are defined as the skew symmetric matrix {ωf}
such that

dωA = ωB Λ ω£.
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Covariant differentiation or R"+1 is given by

(3) deA = ω»eB.

For hyperspheres Sn(r) of constant radius r, the position vector is

(4) X=ren+X.

[βj) provide an orthonormal frame on X so we have dX = ω'e, , and by
substituting (4) and (3),

(5) ω' = ™;,+ 1

The graph Y is conveniently represented by Y=euen+ι, where u is a
function on the unit sphere. If u is extended to RM+1 — {0} as a constant along
radii, the gradient and Hessian of w, given by

du — u^\ uABω
B — duA — uBωA,

are homogeneous of degrees -1 and -2, respectively. Restricting to Y and
using (5) give the Hessian formula

(6) uuω
j = dut - Uj.ωf + e~uu^n+1.

By exterior differentiating the position vector 7, using (5),

where Ei — ei + euuien+ι forms a basis to the tangent space at Y. The induced
metric is ds2 — g^ω1 ® ωj where the coefficients are obtained by taking the
Euclidean inner product

Hence the inverse matrix is given by g/7 = δ/y —/2^2Mw,wy, where / =
(1 + elu\ Vw|2)~1/2. The unit normal vector to Y is N=f(en+] - euuiei).
Finally the mean curvature 9IL of the hypersurface Y with respect to the inner
normal is given by

We find using (6),

e"uiUj -

+fuiω
ien+i+Ndlogf.

Hence (dN(Ek), Em) = fe-(gkm - eluukm), so that

«9R,= -/V"(* 2"(l + e2"\ Vu\2)ukk - e4uukukmum - n{\ + elu\
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By the homogeneity of the derivatives of w, we can equate their values on Y

and Sn(\). Pulling back, we conclude that on £"(1),

{{\+\Vu\2)8km-ukum)ukm

= #i(l + I Vw|2) - neu{\ + | Vw|2)3/2(31L,

or in divergence form,

(8) div((l + I Vwf)~1/2Vw) = Λ(1 + I Vw| 2) ' 1 / 2 - neuG$L.

2. A gradient estimate for equations of prescribed mean curvature

We prove a gradient estimate for a class of equations, which includes the

equation of prescribed mean curvature.

Lemma. Let u E C2(Sn) be a solution to

(9) β % = φ , « , | V « P ) , •

where

(10) ^ = ( l + )

and b — b(x, w, v) G C\Sn X R X R). Suppose there are nonnegatiυe constants

Ai such that

t>)3 / 2, bu>-A2(l+υ),

3v)b - 2(1 + v)υbD > -A3(l + v)3/2.

Assume that s u p | « | < M . Then there exist constants C,(«, A\, A2, A^) and

C2(AU A2) so that

(12) ec^\Vu{x)\2^Cxe
c>M.

Proof. Assuming initially that u G C3, we consider the function φ = e2Cu

where C is a constant to be chosen later, and v = | V«|2. Computing at the

point x0 where φ attains its maximum,

(13) 0 = V φ ( * 0 ) >

(14) 0 > a%j(x0).

(13) becomes

( 1 5 ) 0 = U j U j ^ C v U i , ι = l , • • • , / ! ,

which implies

(16) uiuijuj= -Cv2,
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(17) uiuijujkuk = C V .

We may choose a coordinate frame at x0 satisfying 8uv
ι/2 = wz. Either

v(χo) = 0 in which case (12) holds or in these coordinates we have from (15),

(18) u n = -Cv,

(19) « ( Λ>CV.

From (9) it follows

(1 +υ)uii-vuu =b.

We solve for the Laplacian using (18),

(20) uu = -Cv+ C+(b- C)( l + v)~\

We also differentiate the equation,

(21) (2umumAj ~ uikuj ~ UjkUi)Uij + aiJuijk = bk.

Since the Ricci curvature on the standard sphere is Rtj — (n — 1)5,--, the Ricci

formula (e.g., [9]) becomes

(22) u i u i j J = uiuJjii + ( n - \ ) v .

Contracting (21) with uk and using (16), (17), (20) and (22) we obtain

(1 +v)uiuiJj-uiUjUkuiJk

= (Λ - l)v(\ + v) + 2CV + 2C(b - C)v2(\ + t;)"1 + 6 Λ

We differentiate the right member of (9) and obtain from (16),

At the maximum point, (14) is

0 > a^Uifυ + ICU^JUJ + (1 4- ϋ)κ l 7ιι l 7

(24)
-UiUijUjkUk

Thus we may substitute in (9), (16), (17), (19) and (23), multiply by (1 + u),

and group terms involving b to obtain

(25) ° > C V ( t > ~ 1 } + ( " ~ 1 ) ϋ ( ϋ + 1 ) 2 + {V

+ Co((l+3o)ft-2ftotj(t3+1)).

Applying the structure hypotheses (11), estimating the binomials and multiply-

ing by exp(6Cι/) we arrive at

0 > (C 2 + n - 1 - 3(Λ, + v42))φ3 - 2 C ^ 3 e c V / 2

- (C 2 - 2« + 2 ) e 2 C V - (2A2 + 2CA3 - n + \)e4Cuφ
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By setting C 2 = 3(A{ + A2) and comparing each term to the first, we have at

x0

(n - l)φ3 < 4max{2C4 3 e c y/ 2 , (C 2 - In + 2)e2Cuφ\

(2A2 + 2G4 3 - n + l)e 4 C l ty, 3Axe
5Cuφx/2}.

By neglecting terms which are negative for small C and interpolating, we find

that there is a constant k depending only on n such that

ψ(x)<ke2CMmax{(Aι+A2)(\ +Λ2),Λ2/5}.

Hence we have found explicitly Cx and C2 which tend toward zero as Ax + A2

does.

By manipulating all expressions involving third derivatives in weak form, it

is possible to use the Ricci formula and the differential equation to eliminate

third derivatives from aiJφjJ first, then use (13)—(18) as before and show that

(25) and (12) hold assuming only that u e C 2 .

3. Proof of the Theorem

Let the radial graph be given by

(26) y = e«O0en+1,

where u is an unknown function of the unit vector x G Sn. We show that the

equation of the prescribed mean curvature derived in §1,

( 2 7 ) (( l

= Λ(1 + I Vw|2) - neuH(eux)(\

can be solved by using the Leray-Schauder fixed point theroem [5, Theorem

10.6]. For simplicity we extend the definition ofHtoU= R"+ 1 - {0} so that

it equals the original on the annulus rλ <*\X\< r2 and so that (1) holds. Hence

(2) holds with equalities replaced by \X\^ rλ or \X\> r2. We will show that a

solution for the extended problem lies in the original annulus and so solves the

original problem. Let B be the Banach space Cha(Sn). For the parameter

0 < t < 1, we construct a family of solution operators Tt on B given by sending

w E B to the solution ut of

Lίvvjw, = divl (1 + I VH>Γ) VUΛ — ut

= t\n{\ + I Vw| 2 )" 1 / 2 - newH(ewx) - w\.
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This is well defined since L[w] is a selfadjoint linear elliptic operator on
L2(S") with trivial kernel. If L[w]u = 0, then

0 = ( uL(u)du=-[ ί(l +|Vw|2)~1/2|Vw|2 + u2]
Jsn JSnl J

implies u — 0. By the Fredholm alternative and elliptic regularity, (28) can be
solved by ut G C2 α(S"1), hence Tt is a compact operator on B. Also Tow = 0
for all w £ 5 . Since a solution of (27) is a fixed point of Tx by the
Leray-Schauder theorem, it suffices to find an a priori estimated \\u\\B < M for
any u G B such that Γ,M = w and any 0 < t < 1.

Supremum estimates follow from the maximum principle and assumption
(2). To obtain an upper bound, let u E B satisfy Ttu — u. Let xx be the point
where u{xλ) = sup5«(w), and w the constant function M = !/(.*!). If ϊ/>
l°g r 2 ( > 0), by assumptions (1) and (2) we then have

L[u]u{xλ) = t(n - neuH - u) \X=X] > -tu{xλ) > -u(xλ) = L[ΰ]ΰ9

which is a contradiction. The lower bound u > log r, is similar.
A fixed point of Tt satisfies

fl'% = ft, = /Λ(1 + | V M | 2 )

+ [-/wM/f(e l lx) + (1 - r)iί](l + I Vw|2)3 / 2,

where α/y is given by (10). By differentiating bt we find first that conditions (11)

of the Lemma are satisfied for all 0 < t < 1 by taking

Ax= sup \X\2\VTH(X)\,

^ 3 = « sup
r,<|λ|<r2

M = max{log r2, -log r,},

where the radial projection v Γ is the Euclidean gradient minus the radial

derivative. Applying the lemma to solutions of (29) gives that there are con-

stants C, = C,(/i, η, r 2 ,sup |^ | , sup| VTH\) and C2 = C2(η, r2, sup| V Γ

such that for all 0 ^ / < 1,

I Vw| 2 < C,expC 2 [supw- infuj < Cλ{r2/rλ)
C\

where the C, are functions which go to zero as sup | V TH | does.
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That there exist an 0 < a < 1 depending only on n and sup | Vw | , and M
depending on n, sup w, sup | Vw|, sup | H\, which in turn depends only on n,
r,, r2, sup\H\, sup| VΓ//|, but not on t, such that

follows from [5, Theorem 12.6], partitioning and the compactness of Sn. This
completes the proof of the existence theorem.

To obtain the uniqueness result, consider the case where there are points of
Z outside Y. The case where there are points of Z inside Y is handled similarly.
Let Y and the outer surfaces of Z be given locally by the functions w and z,
respectively, which satisfy (8) written Pu — Q for short. Consider the surface
w = w + C, which is a homothetic dilation of w by (26), where C > 0 is the
constant for which ύ(x) > z(x) for all x while ύ(x2) = z(x2) at some x2.
Using assumption (1) and definition (8) we see that

Pύ(x2) = Pu(x2) = Q(x2, ii, Vw)

< β(x 2 , w, vw) = Q(x2, z, Vz) = Pz(x2).

By the strong maximum principle, z = w, hence by (1),

P(u + C')(x) = Pu{x) = ρ(x, w, Vw) - Q(x, u + C , v(w + C')),

for 0 ^ C < C and all JC. Thus we have shown that the only way several
solutions of the equation occur is as an interval of dilations of one another.

We remark that in case the function H is radially symmetric, then V TH = 0,
and the solutions are also radially symmetric. Although this follows from the
uniqueness statement, it can also be derived from the fact that the gradient
bound obtained here tends to zero as sup | V TH \ vanishes.
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