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THE FILLING RADIUS
OF TWO-POINT HOMOGENEOUS SPACES

MIKHAIL KATZ

Let X be a closed connected manifold of dimension n, and let dist =

dist(x, xf) be a Riemannian metric on X. The function dx on X given by

dx(x') = dist(x, x') lies in the space L°°(X) of all bounded functions on X

with the sup-norm || ||. The canonical inclusion

is an isometric imbedding, as dist(;c, x') — \\dx — dx,\\ (the triangle inequality).

Consider the inclusion homomorphism aε: Hn(X) -* Hn(UεX% where UεX C

L^iX) is the ε-neighborhood of X, and the coefficients are in Z 2 . Following

M. Gromov [3], we introduce a new metric invariant of X.

Definition. The filling radius of X, denoted Fill Rad X, is the infimum of

those ε > 0 for which aε([ X]) = 0, where [X] is the fundamental class of X.

We prove the following theorems.

Theorem 1. The filling radius of the real projectiυe space RPn of constant

curvature + 1 equals one third of its diameter:

Fill Rad RPn = ^diamRP = ^ .

Theorem 2. The filling radius of the sphere Sn of constant curvature + 1

equals one half of the spherical distance between two vertices of an inscribed

regular (n + \ysimplex:

jFill Rad Sn = \ arc cos
2

ί - —
\ n

\ arc cosί j r
2 \ n + 1 /

We also obtain partial results for the projective spaces over the complex

numbers, the quaternions, and the Cayley numbers (see Propositions 1-3). Our

estimates from below for the filling radius of two-point homogeneous spaces

depend on a version of Jung's theorem (see Lemma 2) and the Alexandrov-

Toponogov comparison theorem (see Lemma 3).
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and for his much-needed guidance throughout the work on this article.
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1. Estimates from above

Lemma 1. Suppose a manifold X contains a closed subset Y such that, for
some R > 0, the following two conditions are satisfied:

(i)diamy<2iί,
(ii) dist(x, Y) < 2R for every point J C E I

ThenFillRadX^R.

Proof We will extend the canonical imbedding X -» L°°( X\ x \-+ dx to a
mapping of the cone over X. The function / G L°°(X) given by f(x) =
dist(jc, Y) + R in view of condition (i) satisfies

( ϋ i ) | | / - d , | | = Λforall.ye Y.
We join dx with / by a path {dx} C L°°(X) defined for t > 0 as follows. The
value of dx at a given point z E X moves toward /(z) with unit speed, and
having reached it, stops and changes no more, or analytically

d'ί Λ = ίmax(/(z),^(z)-0 iΐdx(z)>f(z),
ΛX) \rmn(f(z),dx(z) + t) if dx(z) <f(z).

Properties (ii) and (iii) imply d^R = /for t = 3R. In other words, the functions
dx, where x G X, t G [0,3#], form a topological cone (imbedded in L°°(X)
with possible self-intersections) which retracts X C U°{X) to the point / E

To prove the lemma, it suffices to show that for each function dx there exists
a point xf G X such that \\dx - dx\\ < Λ. We have \d*x - dx\\ ̂  R for ί < R,
by definition of έ/̂ . We will show that \\dx - dy\\ = RforR<t^3R, iΐy G Y
and dist(;c, y) < 2R.

Let t = R. Then we show that
(iv) ||4? - dy\\ = Riί dist(x, j ) < 2R.

Indeed, if \dx(z) — f(z)\< R for some point z G X, then 4?(z) =/(z) and
hence \d$(z) - dy(z)\< R by (iii). If \dx(z) - f(z)\> R, then in view of (iii)
the number dx(z) does not lie between dy(z) and/(z). Since | dx(z) — dy{z) |<
2R, the definition of dx implies that | d*(z) - dy(z) |< R.

Finally, condition (ii) gives a pointy G y with dist(x, y) < 2Λ, and proper-
ties (iii) and (iv) show that ||έ/£ - dy\\ <RίoτR<t^3R.

Corollary. The filling radius of every Riemannian manifold is less than or
equal to one third of its diameter.

Proof. The ball of radius \ diam X centered at any point of the manifold X
satisfies the conditions of Lemma 1 with R = \ diam X.

Proof of Theorem 1. Apply the preceding corollary together with [3, Lemma
1.2.B].
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Remarks. 1. If an arbitrary metric space X contains a subset Y satisfying
both conditions of Lemma 1, then the cone defined by (+) retracts X to a
point in the closed ^-neighborhood of X C L°°(X).

2. One can define Riemannian metrics g on R P 2 close to the constant
curvature metric, for which FillRadίRP2, g) = y diam g. In such case, every
point of (RP 2, g) lies on some closed geodesic of length 2 diam g. In general,
as it will be shown elsewhere, every Riemannian manifold X satisfying the
extremal equality Fill Rad X — \ diam Xhas a geodesic loop of length 2 diam X
at every point.

2. Jung's theorem and the filling radius of spheres

Let Sn be the unit sphere in Rπ + 1 with distance between two points
measured along a shortest spherical arc joining them, and SnE the unit sphere
with the Euclidean metric defined by the length of the line interval in RΛ+1

joining two points of the sphere. Let L(Sn) (respectively, L{SnE)) be the
spherical (respectively, Euclidean) distance between two vertices of a regular
(n + l)-simplex inscribed in the unit sphere. We also denote by l(Sn) and
l(SnE) the respective distances between the point of the sphere representing
the center of some «-face of the simplex, and any vertex of this «-face. We have

l(rt + 1)), L(SnE) = /2 + 2/ (n

l(Sn) = arccos(l/ (#i + 1)) = ir - L(Sn),

l(SnE) = ̂ 2 -

Lemma 2 (Jung's theorem). Every subset of Sn of diameter < L(Sn) either
coincides with the set of vertices of some inscribed regular (n + 1)-simplex, or is
contained in some ball of radius l(Sn). The same assertion is true with Sn, L(Sn%
l(Sn) replaced by SnE, L{SnE\ l(SnE\ respectively.

A subset of the unit sphere has spherical diameter < L(Sn) if and only if it
has Euclidean diameter < L(S"E\ while a ball in Sn of radius l(S") corre-
sponds to a ball in SnE of radius l(SnE). Therefore it suffices to prove Jung's
theorem in the Euclidean case. For a proof, see [2, p. 200].

Proof of Theorem 2. The set of vertices of a regular (n + l)-simplex
inscribed in Sn satisfies the conditions of Lemma 1 with 2R = L(Sn), hence
Fill Rad S" < ^L(Sn). To prove the opposite inequality, suppose that the
fundamental class of Sn vanishes in the open ^L(5"I)-neighborhood of Sn C
L°°(Sn). This means (cf. [3, §1.2.C]) that <x*([Sn]) = 0, where a : Sn -» Γis the
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inclusion of Sn in some polyhedron T contained in this neighborhood. We will
retract T to Sn and thus prove the desired inequality.

We map the 0-skeleton of T to Sn by sending each vertex to a nearest point
of Sn. We may assume that T is triangulated into sufficiently small simplices so
that the endpoints of each edge of T are sent to points of Sn with distance <
L(Sn). By Jung's theorem, the set of vertices of every given simplex is sent to
some open hemisphere of S" and hence spans a canonical geodesic simplex in
S". We map each simplex of T to the corresponding geodesic simplex. This
defines a retraction of T and proves the inequality Fill Rad Sn > ^L(Sn).

Remarks. 1. The filling radius being defined for manifolds with an arbi-
trary metric (Riemannian or not), the same argument using Jung's theorem in
the Euclidean case and Remark 1 following the proof of Theorem 1 shows that
Fill Rad SnE = \L{SnE) = ^2 + 2/(n + 1) .

2. Suppose S" is imbedded in a metric space T which is not triangulable, and
let R = jL(Sn). If T is contained in the open ^-neighborhood of Sn C Γ, the
retraction may be constructed as follows. Given a point x E Γ, consider the
center of mass in RM+1 of the set { J E S " | dist(x, s) < R} weighted by the
function R — distO, s). By Jung's theorem, the center of mass is not the origin
in Rn+1. Then its radial projection to Sn gives the image of x G T under the
retraction.

3 . Alexandrov-Toponogov theorem and estimates f or CP n, H P n, Ca P 2

Suppose a Riemannian manifold X has sectional curvature bounded above
by +1 and injectivity radius at least π.

Lemma 3. Let bed be a triangle in X with sides of length < L, where
π/2 < L < 27r/3, and let u be a point on the side cd. Then dist(fe, u) is less than
the height of the equilateral spherical triangle with side L in S2.

Proof. The perimeter of each of the triangles cub and dub is less than 2π,
and therefore the triangles lie within the injectivity radius of the point u.
Choose points B, C, D, U in S2 so that triangles CUB and DUB have sides
equal to the corresponding sides of cub and dub, and so that C and D are
separated by the great circle containing B and U. The Alexandrov-Toponogov
comparison theorem (see [4, Theorem 2.7.6, p. 219]) asserts that the angles of
CUB and DUB are no less than the corresponding angles of cub and dub. In
particular, /.CUB + LDUB > TΓ. Extend the arc BU beyond U until it reaches
at point U' the shortest arc joining C and D. Then we show that

dist(£, U') = dist(£, U) + dist(J7, U').
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Suppose that the extended arc does not realize the distance between B and U\
and let B' be the point of the sphere opposite B. Then B' lies on UU' and in
the interior of the triangle CUD, and therefore

', C) + dist(£', D) < dist(f/, C) + dist(ί/, D)<L.

This means that the length of the closed curve consisting of the arcs B'C, CB,
BD, DB' is < 3L < 2*π which is impossible. The contradiction shows that
dist(Z>, u) < dist(i?, £/'), and the proof is reduced to the trivial case X = S2.

Remark. In fact we proved that if βyδ is a triangle in S2 with sides equal to
the corresponding sides of bed, then there is a point on γδ with distance from β
greater than or equal to dist(Z>, u).

Corollary. Let a, b, c, d be four points in X with pairwise distances less than

the spherical distance between two vertices of a regular tetrahedron inscribed in

S2. Let u be a point on cd, and υ, a point on bu. Then dist(α, v) < m, so that a

and v are joined by a unique shortest arc.

Proof. Apply Lemma 3 and the obvious correlation L + 2H = 2ττ, where
L is the distance between vertices, and H the height of a 2-face of the
tetrahedron.

Let CPn be the ̂ -dimensional complex projective space with its canonical
metric, such that every complex projective line CPι C CPn is a sphere S2 of
curvature + 1 . We have Fill Rad CP1 = ^arccos(- y) (Theorem 2).

Proposition 1. The filling radius of CPn is greater than or equal to that of

CPι:

FillRadCP" > FillRadCP1 = iarccos(-j).

Proof. Recall that the sectional curvature K of CPn satisfies \ < K < 1 [1,
p. 73], and that Inj Rad CPn = π.

Every ordered 4-tuple of points (α, b, c, d) in CPn with pairwise distances
< arccos(- j) spans a standard 3-simplex in CP", constructed as follows. We
join b with all points of the edge cd9 producing the face bed, and then join a
with all points of bed by shortest arcs. The simplex is well defined by the
preceding corollary.

To prove the proposition, it suffices to retract to CP" every given poly-
hedron T of real dimension In + 1, contained in the open neighborhood of
Qpn c L°O(CP") of radius ^arccos(- j) (see the proof of Theorem 2). We
send each vertex of T to a nearest point of CP". By taking a sufficiently fine
triangulation of T we may assume that the endpoints of every edge of T are
sent to points with distance < arccos(- j). We choose a fixed ordering of the
vertices of T. This induces an ordering on the collection of vertices of each
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simplex of T. We retract each 3-simplex to the corresponding standard simplex

in CP". Since the homotopy groups ^ ( C P " ) , i = 3,.. . ,2«, are trivial (use the

exact sequence of the Hopf fibration), the retraction extends to the entire

polyhedron.

Proposition 2. Let HP" be the quaternionk projectiυe space, and CaP2 the

Cay ley plane. Then

FfflRadHP">±aiccos(-j),

FillRad CaP2>

Proof. Define the real numbers i/z > 0, / = 0,1,2,3, recursively as follows.

Set Ho = L(S4) = arccos(- j ) . Consider the isosceles triangle in S2 with base

of length Ho and sides Ht. Define Hi+λ to be the length of the perpendicular

dropped from one of the vertices of the base to the opposite side of the

triangle. Then the correlation

is equivalent to the following description of the regular inscribed 5-simplex in

S4.

Fix a 3-face of the simplex. Let A and B be the two remaining vertices, and

let C be the center of the fixed 3-face. Then A, B, and C lie on a common great

circle. The point C is the farthest from B among all the points of the fixed

3-face.

Every ordered 6-tuple {a0,... ,α5} of points in HP" with pairwise distances

less than Ho spans a standard 5-simplex constructed by joining at with every

point of the (i — l)-face a0 - Λf _ j , where i runs from 1 to 5. That the simplex

is well defined is immediate from (Ή-) and the remark following Lemma 3.

Let T C L°°(HPn) be a polyhedron with sufficiently small simplices con-

tained in the (^//^-neighborhood of HPn. We send each vertex of T to a

nearest point of HP", and then construct the retraction r\T5 -* HP" of the

5-skeleton Γ 5 C T by sending each 5-simplex to the corresponding standard

simplex in H P " .

Let / : H P " -> K(Z294) be a map into the Eilenberg-MacLane space such

that the induced homomorphism on 4-dimensional cohomology with coeffi-

cients in Z 2 sends the generator a of the group H4(K(Z2,4)) ^ Z 2 to the

generator b of the group H4(HP") - Z2J*(a) = b.

The composition/ ° r : Γ 5 ^ K(Z2,4) extends to a mapping g : T -» K(Z2,4).

We will show that g*([HPn]) Φ 0, where [HP"] is the fundamental homology

class of H P " .

Since g — f on the 4-skeleton, we have g*(a) = f*(a) = b. Recall that the

fundamental cohomology class of H P " equals the cup product power bn of b.
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Using a natural pairing, we write

and therefore g*([HP"]) φ 0.
The case of Ca P 2 is treated similarly.
Proposition 3. The filling radius of every simply connected two-point homo-

geneous space {namely, Sn, CPn, HP", or Ca P2) is strictly less than one third of
its diameter.

Proof. The above assertion is true for the spheres (Theorem 2). We will
exhibit a number εn > 0 such that FillRadCP" < ττ/(3 + ε j ; the other two
cases are treated similarly.

Consider the Hopf fibration of the unit (2n — l)-sphere in Cn. One may
construct a closed subset Zn of this sphere out of a sufficient number of small
balls, such that Zn contains no antipodal points and meets every semicircle of
every fiber. Define εn by (1 + εn)diam Zn = 2, where diam is the Euclidean
diameter. We identify Cn with the tangent space to CPn at a fixed point x, and
define the subset YnCCPn by

Since CPn is positively curved, we have diam 3̂  < 2ττ/(3 + εn). Take an
arbitrary point x' E CP", x' Φ x, and let CP] be the unique complex projec-
tive line passing through x and xr. Our assumption on Zn implies that
dist(jc', Yn Π CP1) < 2ττ/(3 + εn). Hence Yn satisfies the conditions of Lemma
1 with R = 7r/(3 -f εn).

References

[1] J. Cheeger & D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland,
Amsterdam, 1975.

[2] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
[3] M. Gromov, Filling Riemannian manifolds, J. Differential Geometry 18 (1983) 1-147.
[4] W. Klingenberg, Riemannian geometry, de Gruyter, Berlin, 1982.

UNivERSiTέ PARIS VI, PARIS






