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INTRODUCTION

Since the publication of H. Lewy's paper [12] the question of local holomor-
phic extension of CR functions defined on submanifolds of Cm has been
studied by a number of mathematicians (to name a few: Andreotti and Hill [1],
Hill and Taiani [9], Hunt and Wells [11], Wells [17]).

In Baouendi & Treves [2] (and in [3]; for a systematic and updated
description see Treves [16]) it has been shown that such a question is actually
relevant for all solutions of a system of equations

(*) Ljh = 0, j= 1,•••,/!,
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where (L,, ,Ln) is a locally integrable system of C°° complex vector fields in
some manifold Ω. If we assume that the dimension of Ω is equal to m + «, the
latter means that in the neighborhood of each point there are m C°° solutions
Z1,- ,Z m of (*) such that dZ\- ,dZm are linearly independent. One of the
basic facts established in [2] is that any continuous solution of (*) is of the
form h — h°Z near the point under consideration, where h is a function on
the range oiZ — (Z1,- ,Z m ). Even when that range is not a submanifold of
Cm, the push-forward h can be regarded as a CR function—in the sense that it
is (locally) the limit of a sequence of polynomials in z1,* ,zm, a fact also
established in [2]. For distributions similar properties can be deduced from an
adapted representation formula (see [16, Chap. II, Theorem 3.1]).

If one intends to regard the holomorphic extendability of the push-forward h
as a property of the solution A°Zof (*) one has no choice but to take the
"pushing" maps Z = (Z1,- ,Z m ) as the basic objects—rather than the
system of vector fields L,, 9Ln. Holomorphic substitutions of the ZJ 's are of
course permitted—but not substitution by arbitrary sets of independent C°°
solutions of (*). This viewpoint leads to structures which are very similar to the
(real) analytic ones. They are analytic structures when the ZJ 's are all real and
n = 0. Otherwise they are somewhat "poorer", and we call them hypo-analytic,
A solution h of (*) is hypo-analytic at a point ω of its domain of definition if it
is the pull-back, via an admissible map Z, of a holomorphic function in a
neighborhood of Z(ω) in Cm. This concept is introduced and rapidly studied
in Chapter I of the present article (among other things, hypo-analytic functions
admit an infinite "Taylor expansion" of a special kind, and cannot vanish to
infinite order at a point unless they vanish identically in a full neighborhood of
that point). But the main point of Chapter I is the formulation and the proof
(in §4) of a necessary and sufficient condition of hypo-analyticity based on the
Fourier transform in the version of Bros-Iagolnitzer [7]. Certain modifications
are forced upon us by the nature of the "first integrals" ZJ—which are neither
real nor analytic (in general). An additional integration introduced by Sjόstrand
[15] helps us out of the technical difficulties (basically, those of dealing with
"complex phase functions" whose imaginary parts must be controlled).

A serious drawback of the necessary and sufficient condition of hypo-
analyticity established in Chapter I is that it relies on one and the same set of
Z y 's in a full neighborhood of the central point—regardless of the value of £,
the variable on the Fourier transform side. In order to break away from such a
limitation one microlocalizes. This is the purpose of Chapter II and the main
reason for the present article. We adopt (and adapt) the definition of Sato [13]
and show, afterwards, that it is equivalent to the one derived from the
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Fourier-Bros-Iagolnitzer transform.1 At first this is only done in the case in
which n = 0 (when there are no vector fields!), and then applied to the traces
of solutions of (*) on the submanifolds which we call maximally real: these are
the ra-dimensional C°° submanifolds of Ω on which the pull-backs of the
differentials dZ\- -,dZm remain independent. A fortunate occurrence is that
the definition of the hypo-analytic wave-front set of a solution h arrived at in
this manner does not depend on the maximally real submanifold on which the
trace of h is taken (Chapter II, Theorem 4.1).

Under favorable circumstances (Chapter II, Theorem 2.3) circumscribing the
hypo-analytic wave-front set yields the holomorphic extension of the push-
forward functions h to certain conoids. Therein lies the main difference
between our approach, linking the extension to conoids to the exponential
decay of the Fourier-Bros-Iagolnitzer transform, and that of most other papers
dealing with holomorphic extension of CR functions, which use the technique
of families of analytic discs.

The last two sections of Chapter II describe an application of the machinery.
The application is to the first cases one encounters, when the available
information is provided by the Levi form or, if one prefers, by the first
brackets [Lj9 Lk] (1 <j\ k ^ n). It is shown that if the Levi form, associated
with a given characteristic covector, has at least one negative eigenvalue, then
the covector in question does not belong to the hypo-analytic wave-front set of
any solution. This is the microlocal version of the classical result of H. Lewy
about hypersurfaces in C2. Our proof requires that the first integrals Zj be
very precisely chosen so as to reflect the existence of a negative eigenvalue of
the Levi form at the characteristic covector under consideration, thus justifying
microlocalization. It should be mentioned that, through all this, the "CR set"
in complex space (i.e., the image of Ω under the map Z) is not necessarily a
manifold and its codimension is arbitrary. Under the additional assumption
that the "CR set" is a manifold, Boggess and Polking [5] have recently
obtained a local version of the same result, using analytic discs techniques
together with the approximation theorem of [2]. The last result of the present
paper is that if the Levi form at a characteristic covector is positive definite,
the covector belongs to the hypo-analytic wave-front set of at least one
solution.

We believe that the microlocal approach proposed here will be helpful in
untangling more sophisticated situations, some of those where higher commu-
tation brackets determine the outcome. This is definitely suggested by the

1 See Bony [6] and Sjόstrand [15]. We have not been able to adapt the concept of analytic wave

front set as defined in Hόrmander [10].
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results in the "tube" situation in Baouendi and Treves [4], and by those in a

forthcoming paper by Chang [8].

I. HYPO-ANALYTIC STRUCTURES

1. Hypo-analytic structures. Definitions

Throughout this chapter Ω will denote an iV-dimensional manifold of class
Cq, countable at infinity. We suppose N>1 and 2 < q < + oo. The integer q
measures the regularity of the structures which we shall be dealing with.

Definition 1.1. By a hypo-analytic structure on Ω we mean the data of an
open covering {Uj}JBJ of Ω and, for each j E /, of m complex-valued Cq

functions Zyί, ,Zy

m in Uj9 with m>\ independent of j , satisfying the
following requirements:

. v dZ}, ',dZjm are linearly independent at each point of Uj
^ ' ' (and therefore we must have m < N);

if Uj:Π Uk Φ 0 , there are an open neighborhood 6. of
(1.2) ZJ(UJ Π Uk) in Cm and a holomorphic map F{ of 6y into Cm

such that

We have used the notation Zj, = (Zy, -9Zf): Uj,-> Cm. Henceforth we
suppose that Ω is equipped with a hypo-analytic structure as defined in
Definition 1.1 we refer to Ω as a hypo-analytic manifold. The integer n — N — m
will be called the codimension of the hypo-analytic structure of Ω.

Let/?0 be an arbitrary point of Ω, and/a complex-valued function defined in
some neighborhood of p0.

Definition 1.2. We say that / is hypo-analytic at the point p0 if, for some
(or, equivalently, for every) index j such that/?0 E UJ9 there is a holomorphic
function jf in an open neighborhood of Zj(p0) in Cm such that/ = fj ° Zy in a
neighborhood of p0.

We shall say that a function defined in a subset S of Ω is hypo-analytic in S if
it is hypo-analytic at every point of 5; clearly it then extends as a hypo-
analytic function in an open neighborhood of S.

Note that any hypo-analytic function in an open subset of Ω is of class Cq in
that subset, and also that if the function in question does not vanish, its
reciprocal is hypo-analytic there. The hypo-analytic functions in an open
subset of Ω form an algebra over the complex numbers.

All the standard definitions in the analytic category extend routinely to the
hypo-analytic one. Let us mention a few.
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Let Ω' be another hypo-analytic manifold. A mapping F: Ω -> Ω' is hypo-
analytic if, given any open subset U' of Ω' and any hypo-analytic function
/: U' -> C, the compose/© FΊs a hypo-analytic function in F~ι(U').

A hypo-analytic local chart in Ω will be an (m + l)-tuple (£/, Z\ ,Z m )
consisting of an open subset U of Ω and of m hypo-analytic functions
Z1,- ,Z m whose differentials are linearly independent at every point of U.
We shall write

Z = ( Z 1 , , Z m ) : t / ^ C m ;

in general, the mapping Z is 710/ a diffeomorphism, not even a local embedding
(see Example 1.5 below).

Example 1.1. Suppose that Ω is a real-analytic manifold, and that N =
d i m Ω ^ w . The real-analytic structure of Ω is defined by local charts
(U, Z1,- ,Z W ) where the ZJ are real-valued and real-analytic coordinates in
U\ it is a hypo-analytic structure.

Example 1.2. Let Z be a complex Cq function in R1 such that dZ φ 0 at
every point. The single local chart (R1, Z) defines a hypo-analytic structure on
R1. Suppose that Z(R]) is not a real-analytic submanifold of the complex plane.
Then it is clear that there will not be a covering of open intervals in each one
of which there is defined a ra*/-valued hypo-analytic function whose differen-
tial is nowhere zero, and thus the structure defined by Z is not a real-analytic
structure.

Example 1.3. Suppose N = 2m, and Ω to be a complex analytic manifold.
The complex structure of Ω is then a hypo-analytic structure, defined by local
charts (£/, Z1, ,Z m ) where the Zj are complex coordinates in U.

Example 1.4. Let Ω be a complex analytic manifold of dimension d, and
assume that Ω is a Cq submanifold of Ω. Thus N < 2d. Assume that the
following holds:

Given any complex analytic local chart (t/, z\- -,zd) in Ω,
the pull-backs to U = U Π Ω of the differentials dz\--9dzd

(1.3) span an m-dimensional subspace of the complex cotangent
space to U at every point of the latter set (with m independent
of the local chart).

When (1.3) holds, Ω is called a CR submanifold of Ω; Ω carries a natural
hypo-analytic structure; basic hypo-analytic charts (ί/, Z1,- ,Z m ) consist of
sets U like the one in (1.3) and of the restrictions to U of m independent
holomorphic functions in an open subset ϋ of Ω such that U = ϋ Π Ω. A
hypo-analytic manifold such as Ω is called an embedded CR manifold.
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Example 1.5. The function z — x + iy2/2 defines a hypo-analytic structure
on R2, called the Mizohata structure. Pre-images of points in C via Z are of the
ϊorm{(x9y)}U{(x9-y)}.

Since the manifold structure of Ω is of class Cq with q possibly finite, we
cannot in general deal with the distributions on Ω. But we shall do so when
q— +00. Otherwise we shall mostly limit ourselves to dealing with C1

functions (recalling that q ̂  2). Another concept (and notation) we shall
borrow from the analytic theory is the following.

Definition 1.3. Let u be a function (or a distribution when q — + oo) in an
open subset Ω' of Ω. The complement in Ω' of the open set of points at which u
is hypo-analytic will be called the hypo-analytic singular support of u and
denoted by sing suppΛfl u.

Suppose that Ω is a real-analytic manifold. A hypo-analytic structure on Ω
will then be called real analytic (or, in short, analytic) if every hypo-analytic
function, for this structure, is real analytic. Note that in order that the
real-analytic hypo-analytic structure of Ω be identical to the real-analytic structure

of Ω, it is necessary and sufficient that its codimension be zero.

2. The structure bundle and the solutions

The hypo-analytic structure of Ω defines another structure on Ω, which we
shall now briefly describe.

Indeed, if ((/, Z\ ,Z m ) is a hypo-analytic local chart in Ω, the differ-
entials dZ\ ,dZm span a complex vector subbundle of the complex cotan-
gent bundle of Ω over U9 Tυ (by virtue of (1.1)). And it follows from (1.2) that
if (U\ Z'\- ,Z'm) is another chart, Tυ and Tυ, are equal on the intersection
U Π U'. In other words, the hypo-analytic structure of Ω defines a complex
vector subbundle T of CΓ*Ω (the complex cotangent bundle of Ω) whose fiber
dimension is equal to m. Bundles of this kind were called locally integrable
RC-structures in [16]. As T is unambiguously defined, we shall refer to it as the
'''structure bundle ". Note however that the same structure bundle might corre-
spond to different hypo-analytic structures: take for instance the case where
m = N(= dimΩ). Then T = CΓ*Ω. But the choice of the hypo-analytic
structure, i.e., of the local hypo-analytic functions Zy, might vary greatly, as
shown in Examples 1.1, 1.2.

We shall recall some of the terminology of [16]: TfJL will denote the
orthogonal of T for the duality between tangent and cotangent vectors; thus
TfJ~ is a complex vector subbundle of CΓΩ, the complex tangent bundle of Ω,
and its fiber dimension is equal to n = N — m, the codimension of the
hypo-analytic structure of Ω.
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The intersection

T°=Γ Π Γ*Ω

is not, in general, a vector bundle, but it is nevertheless an important object: it

is the subset of the real cotangent bundle Γ*Ω on which all the symbols of the

sections of Tf± vanish. In the terminology of partial differential equations it is

the characteristic set of the differential operators defined by those sections. The

structure is said to be elliptic when T° = 0, and essentially real when T =

Γ°<8>RC.

There is a class of submanifolds of Ω which will play a crucial role in the

sequel. Let X be a Cq submanifold of Ω, and CN*X its complex conormal

bundle. Consider the quotient map

(2.1) πx: CΓ*Ω \x -> CΓ*Ω \X/CN*X = CT*X.

Definition 2.1. A Cq submanifold of Ω will be said to be maximally real if

the quotient map πx induces a bijection of V \x onto CΓ*X

If X is maximally real, then

(2.2) CT*Ω \x = ( r \x) θ CN*X ( θ : direct sum).

By duality, this is equivalent to

(2.3) CΓΩ \x = (Tf±\x) θ CTX.

We see that the dimension of any maximally real submanifold is exactly equal

torn.

If X is maximally real, and (I/, Z1,- , Z W ) is an arbitrary hypo-analytic

local chart in Ω such that U Π X^= 0 , then the pull-backs to U Π X of

dZ\- - -,dZm make up a basis of each complex cotangent space to U Π X.

Let (£/, Z\- , Z W ) be a hypo-analytic local chart in Ω. Possibly after

contracting Uabout one of its points,/?0, we can find n Cq functions M1,- ,wn

in U such that dZ\- -,dZm, du\'-,dun span the whole cotangent space

C71*Ω at every point /? of U. Actually we may select, if we so wish, the

functions u* to be real-valued. We may then define N complex vector fields in

U with Cq~λ coefficients Lλ9-',Ln9 Ml9--9Mm by the "orthonormality"

conditions

L:Zk = 0, L,w' = δ/,
(2.4) J ' J \

Mi = 09 MιZ
k = δlc

9 ι , y = l , , / i ; f c , / = l , ,yw.

Since ^ 2 w e have the right to consider the commutation brackets of the

L's and of the M 's. We derive at once from (2.4), for the same indices,

(2.5) [Li9 Lj] =[Lj, Mk] = [Mk9 Mt] = 0.
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When the functions u* are selected to be real-valued, we usually call them/
(sometimes t'). It is immediate that the submanifolds of U defined by the
equations >> = const, are maximally real. Conversely, if Xis any maximally real
submanifold of Ω (of class Cq) passing through a point pθ9 then Cq functionsyι

can be defined in an open neighborhood U of p0, as well as hypo-analytic
functions Z1, , Zm, so that the preceding description applies.

Notice that besides the functions yι we can also select m real-valued
functions xj in U, so that (JC\ ,xm, y\- -,yn) is a system of local coordi-
nates in the open neighborhood U of p0 (possibly contracted). Denote the
Jacobian matrix of the Zk9s with respect to the xj9s by dZ/dx or Zx. Possibly
after contraction of £/, we may assume that

(2.6) Zx is nonsingular at every point of U.

We shall customarily take the hypo-analytic functions Zk and the local
coordinates xJ, yi to vanish at the "central" pointp0. Note then that

(2.7) Zx(090)'xZ = x+ W(x, y)9 W(090) = 0, dxW(090) = 0.

If we put «' = yι in (2.4), we derive from those relations:

dyJ k=λ dxk

(2.9) M,= Σμk(x,y)^-k9 / = l , ,m.
k=\ ό x

In (2.9) the matrix (μ>k)\^k,ι^m is the inverse of the Jacobian matrix Zx. There
are various expressions for the coefficients λk; for instance the one we could
derive from the obvious equation

(2.io) LJ = τ-j~ 2 ψj{χ:y)Mk.
dyJ

 k=ι dyJ

We shall be concerned with the C1 functions (or with the distributions, when
q = 4- oo) in some open subset of Ω whose differential is a section (a distribu-
tion section) of T over that subset. We shall refer to them as "the solutions".
(In [16] they are called RC-functions or RC-distributions.) In a hypo-analytic
local chart (I/, Z1,- ,Z m ) like the one above, they are the solutions of the
homogeneous equations

(2.11) Ljh = 09 j=l9. 9 n .

We recall the main properties of solutions, as stated and proved in [16,
Chap. II]. Let (U,Z\- ,Zm) be a hypo-analytic local chart of the kind
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described above. Then U contains an open neighborhood Uo oίp0 such that the
following are true, whatever the C1 solution h in U:

h is the limit, in C\U0), of a sequence of polynomials with

complex coefficients in Z1,- , Z m (when q = +00 and differ-
ent classes of solutions are considered, the convergence takes

(2.12) place in the "natural" distribution spaces, e.g., in the
distribution sense when dealing with distribution solutions, in
the Ck sense when dealing with Ck solutions, 0 < k < +00,
etc.).

,- - ~x There is a continuous function h on Z(ί/0) such that h = h © Z
{ 2 Λ 3 ) inU0.

Let now X be a maximally real Cq submanifold of Ω.
resίr^c^on of h to X Π U vanishes identically, then h = 0

^ ' in an open neighborhood of X Π U.

When q = + oo more can be said about distribution solutions of (2.11). We
recall the representation theorem of [2] ([16, Theorem 3.1, Chap. II]):

Now h is a distribution solution of (2.11) in U; Uo is a suitable open
neighborhood of p0 contained in U. Then there are an integer v> 0 and a C1

solution hx of (2.11) in Uo such that, in Uo,

(2.15)

The vector fields Mj are the same as before (see (2.9)).
Still in the case q — + oo, we note the following two results in [16, Chap. II,

Theorem 2.3]:

If X is a maximally real C°° submanifold of Ω, and h a

(2.16) distribution solution in an open neighborhood of X, then the

following hold:

(Ί \Ί\ ^ *s a ^°° fmcti°n transversally to X valued in the space of
^ ' distributions with respect to the variables tangential to X;

If the trace ofhonX vanishes identically, then h itself vanishes

^ ' identically in an open neighborhood of X.

3. Local properties of hypo-analytic functions

Same notation as in the previous two sections. In particular, Ω is a hypo-
analytic manifold of class Cq (2<q< +00) and dimension N>\. It is
obvious that any hypo-analytic function in an open set is a function of class Cq
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there, and is also a solution. The following result characterizes hypo-analytic

functions among solutions, and sheds some light on the meaning of hypo-ana-

lyticity. We reason in a hypo-analytic local chart (U, Z ι , , Z m ) of the kind

described in §2.

Theorem 3.1. In order that a function (resp., a distribution, when q — + oo)

h in U be hypo-analytic in U it is necessary and sufficient that h be a Cq solution

(0/(2.11)) in U and that every point p* in U have an open neighborhood V^ C U

such that, uniformly absolutely in F+,

(3.1) * = Σ Ca{p.)[z-Z{pm)]a

9

where the ca( p^) are uniquely determined complex numbers, depending on p^.

Proof. The sufficiency is evident since (3.1) tells us that h — h © Z where h

is the holomorphic function in an open neighborhood of Z(p^) defined by the

property that

(3.2) cβ(/>,)=[(θ/3*)"Λ"](z(/>,))/<*!, a e Z? .

Conversely suppose h is hypo-analytic in U, and h is a holomorphic function

in an open neighborhood of Z(p^) = z^ such that h = h © Z in a neighbor-

hood of p*. The series

converges absolutely uniformly in some open neighborhood θ of (p

in U X Cm . By way of consequence it defines a continuous function H(p, z+)

in 0, holomorphic with respect to z*. Direct computation shows that the

differential of H(p, z j with respect to z# is identically equal to zero, hence

H(p, Z,) = H(p, Z(p)) = h{Z{p)) = h(p).

This proves that (3.1) holds.

Remark 3.1. Let M} be the vector fields defined by the orthonormality

relations (2.4). In general, when q < + oo, the monomials

Ma = M^-"M^, α = (α,,- , α J e Z ϊ ,

are not necessarily well-defined. However, as differential operators acting on

hypo-analytic functions, although these are only of class Cq, the Ma are

well-defined. It suffices to observe that if h is a holomorphic function in some

open neighborhood of Z(p^) (p^ E U), we have

(3.3) MJ(hoZ)=^]oZ.
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Then, of course,

(3.4) Ma(h o Z) = (d/dz)ah ° Z, a G Z™ .

Note that if h is any hypo-analytic function in U, we have:

, c\ t0 everΎ compact subset K of U there is a constant Cκ > 0 such
^ ' ' that

Max|M α Λ|< C^ l + 1α!, Vα E Z™ .
AT

In a sense (rigorously when # = + oo) one may say that the hypo-analytic

functions in U are those solutions which are analytic vectors for the Mj. Also

note that formula (3.2), in conjunction with (3.4), reads

(3.6) ca = Mah/a\9 α e Z ; ,

which shows, among other things, that the coefficients ca in the "Taylor

expansion" (3.1) are themselves hypo-analytic functions (of /?*) in the whole of

U, a fact which is not immediately obvious in the proof of Theorem 3.1.

A function/in Uis flat at a point p^ of ί/ if to every integer v ^ 0 there is a

constant Cv > 0 such that, for all points p in some neighborhood of p* in U

(independent of v),

\f(p)-f{p*) |<C_[dist(p,

where the distance is defined by any reasonably smooth Riemannian metric on

U. This means that / — f(p+) vanishes to infinite order at /?*, when q — + oo

and the function/itself is C 0 0.

Corollary 3.1. If a hypo-analytic function h in U is flat at a point p^ of U, it is

constant in some neighborhood ofp*.

Proof. By virtue of the "Taylor expansion" (3.1) in order that h be flat at

p^ it is necessary that ca(p^) = 0 for all α ^ O , whence the assertion by virtue

of Theorem 3.1.

Theorem 3.2. Let pQ be any point of the hypo-analytic manifold Ω, and X any

maximally real Cq submanifoldof'Ωpassing throughp0. In order that a solution h

in an open set containing X be hypo-analytic at p0 it is necessary and sufficient

that the trace hxofh on X be hypo-analytic at p0 (for the hypo-analytic structure

on X induced by Ω).

Proof. The necessity is obvious. Let us prove the sufficiency. For this

assume there is a holomorphic function tix in some open neighborhood of

Z(p0) in C m (using a hypo-analytic local chart (C/, Z1,- , Z m ) whose domain

U contains p0) such that hx — hx^Z on U Π X. But clearly hx © Z is a

hypo-analytic solution in an open neighborhood of p0 in U. By the uniqueness

result (2.14) (or (2.18) when q = + oo), h — hx^Z'm such a neighborhood.
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Corollary 3.2. Suppose that the manifold Ω is real-analytic and that so is the
given hypo-analytic structure of Ω. Then in order that a distribution h in some
open subset of Ω be hypo-analytic it is necessary and sufficient that it be an
analytic solution in that open subset.

Proof. The necessity follows trivially from the definition of a real-analytic
hypo-analytic structure. Let us prove the sufficiency. Suppose h is an analytic
solution in an open subset U of Ω containing a point p0. Select arbitrarily a
real-analytic maximally real submanifold X of Ω passing through p0. The trace
A^ of A on I is a real-analytic function in X, and therefore certainly
hypo-analytic on X. It suffices then to apply Theorem 3.2.

4. A Fourier transform criterion of hypo-analyticity

In most of the present section we deal solely with a C 9 manifold X equipped
with a hypo-analytic structure of codimension zero (as before, 2 < q < + oo).
The structure bundle of X is the whole complex cotangent bundle CΓ*X The
only maximally real (Definition 2.1) submanifold of X is X itself. We shall not
talk of "solutions" in X in the sense of §2: as there are no vector fields Ly (see
(2.4)) all C1 functions, in fact all continuous (or even locally integrable)
functions (and all distributions, when q = + oo) are solutions.

For the sake of exposition we shall slightly strengthen the meaning of
hypo-analytic local chart (ί/, Z1,- ,Z m ) : we shall require that the mapping
Z = (Z1,- , Z m ) : £/-> Cm be a diffeomorphism (of class Cq) of U onto
Z(JJ\ and also that U be the domain of local coordinates xJ (1 <j < m) all
vanishing at a "central point", to which we shall systematically refer as the
origin, and which shall be denoted by 0. We shall also suppose Z(0) = 0. As
before we denote by Zx the Jacobian matrix of the ZJ with respect to the xk.
We shall always reason under the hypothesis

(4.1) Vx, y G U,\lm(Z(x) - Z(jO)|<|Re(Z(x) " Z(y))\/2.

Note that substitution of Zx(0)~lZ(x) for Z(x) and contraction of U about the
origin can always bring us into a situation in which (4.1) is valid. We shall also
assume that all derivatives of Z of order < q + 1 are bounded in U.

Definition 4.1. Let u be a compactly supported continuous function (distri-
bution when q— + oo) in £/, and K a number > 0. We shall write

Fκ(u; z 9 ζ ) f

where z G C™, ξ G Cm, |Imf |<|Ref |, (ξ)= (tf + *' * +Ox/\ and [z]2 =
2
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Note that by introducing the function ύ = u o Z"1 on Z(ί/), we have

(4.2) F«(κ; z,S) =
JZ{U)

When u is a distribution, the integral defining Fκ must be understood as a
duality bracket. As a matter of fact, let us take a closer look at the case where u
is a compactly supported distribution (q = + oo). Let Mj(j = 1, ,ra) be the
vector fields in (2.4) and in (2.9) (keeping in mind that there are neither w"s
nor yι 's). Of course we may write

(4.3) u = 2 MX,

where wα E Cc°(ί/). In the present situation, for any distribution/in £/,
m

(4.4) df=Σ Mj
7 = 1

If then u e S'(t/), φ G C°°(ί/),

A ΛJZm = (-l^^έ/ίφiiέ/Z 1 Λ ΛrfZ> Λ ΛdZm)

-ud(φdZι Λ ΛrfZ> Λ ΛdZm)]9

where the hatted factor must be omitted. In this manner we obtain the formula
for integration by parts

(4.5) f φMfu dZ=-ί uM:φ dZ.
Ju Ju

Lemma 4.1. Assume ^ + O O , K > 0 , M G S'(tf). Whatever z G C m , f G

(4.6) (a/8z)V* *F"(ιι; z, f)) = e«'zFκ(M«u; z, f).

/. In (4.5) put

φ = φ(z, y, ξ) = exp{if [z - Z(j)] " "(Ob ~ Z(y)]2}.

Then 3φ/θzy = -Λίyφ with My acting in the variables y. This yields exactly
(4.6) for | α | = 1. Repeated use of the formula (4.6) when |αc |= 1 yields it for
arbitrary a.

Corollary 4.1. Same hypotheses as in Lemma 4.1. Then, for all x G C/,

(4.7) M"(e't'z™F*(u; Z(x)9 £)) = eiζ'z^

Follows at once from (3.3) (or (3.4)) and (4.6).
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Remark 4.1. When q < + 00, Formulas (4.6) and (4.7) can be applied to
u E Cc

k(U)and\a\^k^q.
Corollary 4.2. Let u be given by (4.3). Then

(4.8) e«"F (u; z,ξ)= 2 (9/9z)a{e«"F*(ua; z, ζ)}.

Lemma 4.2. Suppose that (4.1) Wife. For any «i« Cc

0(ϊ/) we Λαυe, uniformly

irtU,

(4.9) «(*)= lim
V-* + 0 0

Proof. Put in the integrals at the right in (4.9), y — x + t/vλ/1. By availing
ourselves of (4.1) we can easily show that the (uniform) limit of those integrals,
as v -> 4- oo, is equal to M(X) multiplied by

(4.10)

where S ==/ZJC(x)Z;c(x). Observe that the integral (4.10) is a holomorphic
function of S in the region defined by (4.1). Since it is equal to one when all
eigenvalues of S are strictly positive, it is equal to one everywhere.

Corollary 4.3. Same hypotheses as in Lemma 4.2. We have

(4.11) I I (JC)= lim (2τ7)"m if ei**z™-zW]-'#u(y) dZ{y) dξ.

Proof. It suffices to observe that, if ε = 1/4P,

e-v[Z(x)-Z(y)}2 - (e/^)" 1 7 2 f eit [Zix)-Z(y))-tf Jξ

Corollary 4.4. Same hypotheses as in Lemma 4.2. Let K be any number > 0.
We have, uniformly in U,

(4.12) u(x) = (κ/4π3)m/2 lim ί eiimZ^-
ε-+0^ERm

Proof. Apply Definition 4.1 and the fact that

Then (4.11) and (4.12) are seen to be the same formula.
Corollary 4.5. Suppose q = +oo, and that (4.1) holds. Then (4.12) is valid

for any u E &'(U) with the limit in the sense of distributions.
Proof. It suffices to apply (4.6) (with z — T) and use the fact that the action

on exp(/| [Z(x) — T]) of 3/3τJ is the same as that of -Afy.
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Remark 4.2. For any q< + 00, Formulas (4.9), (4.11), (4.12) can be

applied to u G C*(I/), with k < q. The limits are then valid in Ck(JJ). This

follows at once from (4.5) and Remark 4.1.

Remark 4.3. We have only extended Formula (4.12) to compactly sup-

ported distributions (when q + 00) but it is evident by the formula (4.5) for

integration by parts that (4.9) and (4.11) also routinely extend (with the limits

in the distribution sense).

We shall be interested in the following property of « G Cc°(ί/) (u e S'(ί/)

when q = 00):

There are an open neighborhood Vc of the origin in Cm, an

(4.13)κ open cone Γ in C m \{0} containing Rm\{0} and numbers R,

C > 0 such that

\Fκ(u; z9 ξ) | < Ce W*9 \fz eVc,ξe Γ.

Theorem 4.1. Suppose that u G C?(U) (u G &\U) when q - 00) is hypo-

analytic at the origin. Then, to every K > 0 there is c > 0 such that if

(4.14) VxG ί/,|ImZ(x)|<c|ReZ(x)|+/c|ReZ(x)|2/4,

then Condition (4.13)κ is satisfied.

Proof. We only give the proof when q — 00 and u G &'(U), the case

2 < q < 00 and u G Cc°(ί/) will then be obvious. Note that the defintion of F*

does not depend on the choice of the local coordinates in U. It is convenient to

avail ourselves of (4.1) and take the Re ZJ {j = 1, , m) as coordinates. Then

(4.15) ZJ = χJ+fAΦ'(x)9 j = l , ,m,

(4.16) Vx, ye U,\Φ(x)-Φ(y)\^\χ-y\/2.

Let g G Cc°°(ί/) have its support in an open neighborhood of the origin in

which u is a hypo-analytic function. Assume furthermore that 0 < g < 1

everywhere, and that g = 1 in a neighborhood of the origin. We may use a

representation of the kind (4.3) for (1 — g)u, and thus write

u = gu+ 2

where every va G Cc°(ί/) vanishes identically in an open neighborhood of the

origin. We see that gu and the va all satisfy the hypotheses of Theorem 4.1. If

we prove it$ conclusion when each of these replaces u we derive the same result

for u itself by linearity and Corollary 4.2 (and the Cauchy's inequalities). In

other words we may, and shall, assume that u is a compactly supported

continuous function. We shall write u = ύ © Z with ύ G Cc°(Z(ί/)).
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In the integral (4.2) we deform the domain of integration from Z(U) to the
image of Z(U) under the mapping

(4.17) z'H>w = z ' - i ί g ( ; y K / | £ | .

where y is defined by the fact that z' = Z(y), and δ is a small number > 0
chosen below, at any rate small enough that w remains in an open neighbor-
hood of the origin in Cm to which ύ extends holomorphically, and that the
same is true of all the positive numbers < δ, so that the deformation (4.17) is
permitted.

We focus on the quantity

Q = Re{tf w + ιc(f )[z - wf}/\ξ\ ,

but actually only when z = 0 and ξ - £ E Rw\{0}, in which case we call it Qo.
Writing I = ξ/| 11 we observe that

β0 = -4 Φ ω + *g(y) + *{\y? ~ \φ(y) ~ Sg(y)k\2}

> -\*(y)\+*g(y) + «{\y\2~2|Φ(J)I2-282

g(y)
2}

> -*\y\ + l\
by the hypothesis (4.14), and by (4.15), (4.16). We first require

(4.18) 4ιcδ<l,

whence

(4.19) Go>fb'P + f*ϋ')-'b'l

Let d> 0 be such that \y\< d implies g(y) = 1. Then Qo > ±δ - cd for
\y |< d. We shall therefore require

(4.20) 4c < δ/d.

On the other hand, for \y |> d, Qo > (%d — c)d9 and we require

(4.21) 4c < Kd.

We reach the conclusion that whatever y E U, I E Rm\{0}, we have <20 ^
2/Λ > 0. But then we shall also have Q > \/R for all z in Vc and ξ in Γ, if
Vc is chosen small enough, and the cone Γ "thin" enough. From this the
inequality in (4.13)κ follows easily, q.e.d.

We prove now a partial converse to Theorem 4.1. It will require that we
strengthen our requirements on the map Z.

Theorem 4.2. Suppose that there is a constant B > 0 such that

(4.22) \fx E £/, I Im Z(x) |< B \ Re Z(x) |2.
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Then any function u G C?(U) (u G &'{U) when q = oo) that satisfies (4.13)κ

for some κ> 4B is hypo-analytic at the origin.
Proof. As in Theorem 4.1 we give the proof only when q = oo and

u G &\U). We shall once again assume that the ZJ9s are given by (4.15), with
(4.16) being valid. Then (4.22) reads | Φ(x) |< B \ x \2. The proof of Theorem 4.2
is based on Corollary 4.4.

We shall deform the domain of ί-integration. For this we extend the map Z,
which is to say, the map Φ, to the whole space Rm, so that it continues to
satisfy the hypotheses, namely (4.16) and (4.22) (this might require a slight
shrinking of U)\ we shall take in fact Φ compactly supported in an arbitrary
neighborhood of the closure of U. We shall then go from integration with
respect to / over Rm to integration over the image of Rm via the map t\-+Z{t).
Then (4.12) reads

{4τr3/κ)m/2u(x)

(4.23) = l i m

Notice that if K > ΛB, Property (4.22) implies (4.14) for c = 0. Let then
g G CC°°(C/), g = 1 in some open neighborhood Uo C U of the origin. Theorem
4.1 tells us that (1 — g)u also satisfies (4.13)κ. We have therefore the right to
replace u by gu. In other words we have the right to assume that supp u is
contained in as small an open neighborhood Uλ of the origin as we wish.

We shall first look at the integral

(4.24) iy{z) = f e* z~<®2F*(u; Z(t)9 ξ)\ϊ\m/2 dZ(t) dξ,

where d > 0 is at first arbitrarily chosen. We shall apply the following.
Lemma 4.3. // the neighborhood Uλ containing supp u is small enough, the

following is true, whatever K > 0.

To every d > 0 there is an open neighborhood Vκ

c

d of the origin

(4.25) in Cm such that, as ε -> +0, the entire functions iγ converge

uniformly in V£d.

Proof of Lemma 4.3. We deform the domain of ^-integration in (4.24), from

Rm to the image of Rm under the map

(4.26) €•->£ = « + 4 i B | ί | [ z - Z O O ] ,

where y varies in Ux and z in V£d. Our first requirement on these two
neighborhoods is that they be small enough that, for ξ φ 0,

(4.27) VyeUx,zGVκ% | I m f | < | R e £ | / 3 .
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This is what enables us to perform the deformation (4.26). Furthermore it
insures that

(4.28) Re(f>>2|{ |/3, |Im ( f) |< Re (f>/3.

We have

(4.29) iy{z)

We look at the quantity

Q = -Re{iξ [z - Z(y)] - κ(ξ)[Z(t) - Z(y)]2}/\ξ\ .

Actually we study it only when z = 0, in which case we call it Qo. With the
notation ξ = ξ/\ ξ | , we have

-y\2 -

>-\Φ(y)\+lB\y\2+^κ\t-y\2.

We have availed ourselves of (4.28) and (4.16). Using then (4.22) yields

But since K > 0, the quantity at the right is bounded away from zero as | Z(t) |
remains > d. Therefore, if the neighborhood V£d is small enough, there are
positive constants c, c' such that

(4 30) Q

This implies easily what we want. Suppose first that u is a continuous
function. Then

for some constant C > 0, whence the uniform convergence of the 7^ε in 1̂ °̂ .
When u is an arbitrary distribution, belonging to &{UX\ use a representa-

tion (4.3) with ua E C?(UX) for every α, and apply the preceding result to each
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ua. Then Corollary 4.2 in conjuction with the Cauchy's inequalities yields the
desired convergence.

End of proof of Theorem 4.2. We select d > 0 so that the ball | z |< d in Cm

is contained in the neighborhood Vc of (4.13),,. From the inequality in (4.13)κ

we derive that the integrals J^ε(z), defined like I%'e(z) except that the
integration with respect to / is carried out on the ball \Z(t)\<d, satisfy an
inequality analogous to (4.31), and therefore converge in J^—perhaps after
the latter neighborhood has been contracted about the origin. We conclude
that the entire functions iy + J^ε converge uniformly in Vκ

c

d9 to a holomor-
phic function ύ whose restriction to Z(U) Π Vκ

c

d must be, by (4.23), equal to

{4π3/κ)m/2uoZ-1. q.e.d.

The criteria provided by Theorems 4.1, 4.2 apply to distributions that are
not necessarily compactly supported, after multiplication by cut-off functions
which are equal to one in some neighborhood of the origin.

In dealing with a hypo-analytic manifold Ω whose structure has codimension
> 1 one may apply the criteria provided by Theorems 4.1, 4.2 to the traces of
distribution solutions on maximally real submanifolds passing through the
"central point" p0. After this one can apply Theorem 3.2 to conclude that the
distribution solution under study is hypo-analytic in a full neighborhood of p0

in Ω.

II. MICROLOCAL HYPO-ANALYTICITY

1. Hypo-analytic wave-front set in hypo-analytic structures

of codimension zero

In the whole Chapter II we shall assume that q = oo. In the present section
as well as the next one, we deal solely with a C°° hypo-analytic manifold X
whose hypo-analytic structure has codimension zero. We assume that the local
chart (U, Z\ ,Z m ) and the local coordinates x\- ,;cm satisfy the assump-
tions of §4, Chapter I. We also assume that U is convex in the xj coordinates
which will make the use of the remainder formula in the Taylor expansion
easy.

We shall make use of the coordinates xj to identify the portion of the
tangent bundle TX\υ of X which lies over ί/, to U 4- /Rm C C m . Thus a
tangent vector v to X at x G U is identified to the purely imaginary m-vector
iv, and the pair (x, v) to x + iv.

We shall deal with almost-analytic extensions of the map Z. Such an
extension is a C°° mapping Z # : U + /Rm -» Cm such that Z#(x) = Z(x) for
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every x in U9 and

(1.1)
(d/dzJ)Z# vanishes to infinite order at Im z = 0 for all

j\k= l, ,m.

It is seen at once that if Z # , Z # # are two almost-analytic extensions of Z the
difference Z # — Z # # vanishes to infinite order at Im z — 0.

In the forthcoming we deal with an acute and open (but never empty!) cone
Γ in Rm\{0} (a cone is a subset which is invariant under all dilations v ι-> pv,
p > 0; it is acute if it is contained in a strictly convex cone).

Let then A be any open subset of U, © any open subset in U 4- iRm which
contains A. We shall use the following notation:

9Lβ(i4,Γ)= {Z#(jc + fo) 6 Γ ; x e ^ ϋ 6 Γ U {0},x + /ϋGΘ},

where Z # is a given almost-analytic extension of Z. Of course %e(A, Γ)
depends on the choice of Z # and the notation might have to be modified to
indicate this fact if there is any risk of confusion. We shall denote by

%U,r)
the interior of the set %e(A9 Γ). We shall sometimes refer to sets like
(%e(A, Γ), %(A, Γ) as conoids.

In the sequel we shall assume that all derivatives of the Zj with respect to
the xk (of any order) are bounded in U. In particular, there is a constant B >0
such that

(1.2) VJC, x* G U9\Zx(x)'ι[Z(x) - Z(x*)] - (x - x*)\< B\x - x * | 2 .

It will then be convenient to hypothesize

(1.3) V CJC* G U,B\χ-χ*\<\/2,

Lemma 1.1. Let Z # be an almost-analytic extension of Z to U + iRm whose
derivatives of any order are uniformly bounded in U + /Rm. There is an open
neighborhood U# of U in U + ιRm which is mapped diffeomorphically by Z # onto

Proof Write Z#(x + iv) = f(x, v) + ig(x, v). Then, modulo | v |°°, we have
fx — gv = fυ + gx = 0, and therefore the Jacobian matrix of (/, g) with respect
to (x, v) is congruent to (ίx

gxf*) Notice that the latter annihilates a 2m-vector
(α, b) if and only if (fx H- ig^Xέi - /i) = 0, and thus is nonsingular if and
only if the complex m X m matrix fx + igx is nonsingular. But the latter is
congruent mod|t>|°° to Zx, which is nonsingular by hypothesis. We reach the
conclusion that we may select U# close enough to U that Z # has an injective
differential at every point. We must show that ί/# can be selected so that Z #

itself be injective.
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Let p be an upper bound for |Im z\ in t/#. Suppose there are two points
x + ι'ϋ, x* + iv* in ί/# such that

Z#(x + fo) = Z#(x* + iv*).

We take a Taylor expansion of order two, about x and x* respectively, of the
two sides:

Z(x) + iZx(x)v + R(x9 Ό)VV = Z(X*) + iZx(x*)v* + i?(x*, ϋ*)υ* u*,

where Λ is a matrix-valued C00 function in £/ + ι'Rm. Because the derivatives of
Z # are bounded there is a constant C > 0 such that

\Zx(xYl[Z(x)-Z(x*)]+i(v-v*)\

= i[zx(x)'ιZx(x*) -l]v*- Zx(Xy
ι[R(x, v)v v- R(x*9 v*)v* • v*]\

< Cp(\x - x*\+\v - v*\).

At this point we avail ourselves of (1.2) and (1.3). We get

\x - x* + ι(ϋ - v*) |< Cp(|x - JC* I + |v - v* I) + \\x - x* \ ,

and it suffices to take p < 1/4C to conclude that x = x*9 v = ϋ*.
Corollary 1.1. Let Z # fte α̂  in Lemma 1.1. Ĵ υery o/?e« subset A of U has an

open neighborhood 0 in U + ι'Rm 5wcΛ ίΛα/ Z # w α diffeomorphism of (A + iT)
Π θ owίo 9Le(A9 Γ).

Corollary 1.2. Ler Z # 6e α̂  I/I Lemma 1.1. Le/ A be a relatively compact
open subset of U, and 0 an o/?en neighborhood of A in U + ;Rm 5 MCΛ ί/*af Z # w a

diffeomorphism of (A + ίΓ) Π 0 <?n/o 9Lβ(i4, Γ). ΓΛen /Λere is a constant C> 0

dist[Z#(x + it?), Z(A)] <C\v\

for all x H- w //i (^ + iT) Π 0.
Henceforth we assume that all the derivatives of any order of Z # are

bounded in U + /Rw. Note, in passing, that the properties of Z # far away
from U do not really matter; Z # might as well be supposed to vanish
identically when | Im z \ is "large".

Lemma 1.2. Let Z # # be another almost-analytic extension of Z whose
derivatives are all bounded in U + i'Rm. Let A be an open subset of t/, and 0 an
open neighborhood of A in the open set l/# of Lemma 1.1. Let A' be any relatively
compact open subset of A, and Γ' any nonempty open cone in Rw\{0} whose
closure is contained in Γ. Then there is an open neighborhood 0' of A' in U + /Rm

such that
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The subscripts # , # # indicate which almost-analytic extension of Z, Z # or
Z # # , is used in the definition of the conoid.

Proof. First we take Θ' so small that Z # # is a diffeomorphism on S' Π (Λ
+ iΓ). By the same reason as in the first part of the proof of Lemma 1.1 we
can apply the implicit function theorem to get

such that

(1.4) Z (x(x\ t/) + iv(x'9 t/)) — Z {x' + it/)

for xf + it/ Gθ'Π (4 ' + Ϊ Γ ) .

To complete the proof we observe that the differential of (1.4) with respect
to t/ at t/ = 0 is

(1.5) Z x(x,0) | !^:(;c,0) + /( !^( ;c,0) - / ) ] = 0 (mod11?|°°).

It follows that

PJ(X,0)=I (mod|ϋ|°°).

So if 0' is small enough the assertion will hold, q.e.d.

A similar argument will enable the reader to prove
Lemma 1.3. Let A, 0, A', Γ' be as in Lemma 1.2. Then there is an open

neighborhoodΌ' of A' in U + iRm such that

<9Le.(A'9 Γ ) C {Z(jc) + iZx(x)v; x + iv E (A + ίΓ) Π 0},

(Z(x) + iZ^jc)©; J c i / ϋ G (A' + iΓ) Π 0'} C %e(A, Γ).

Henceforth, and otherwise specified, we make sole use of the extension Z # .
We deal with the triplet (A9 Γ, 0) dealt with so far.

Definition 1.1. We denote by B$(A, Γ) the space of holomorphic functions
/in ύie(A, Γ) which have the following property:

To every compact subset K of %e(A9 Γ) there are an integer
k X) and a constant C > 0 such that

(1.6) | / (z) |

for all z in K Π 9lβ(Λ, Γ).

It is an easy consequence of Cauchy's inequalities that the partial derivatives
d/dzJ (j= 1, ,m) define linear maps of B$(A, Γ) into itself.

In the sequel we make sole use of open neighborhoods 0 of A such that Z #

maps diffeomorphically (A + iΓ) Π © onto %e(A9 Γ). Let/belong to BQ(A, Γ)
and write/ = /° Z # . Then the following hold.
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(i) / is almost-analytic in (A + /T) Π 0. Explicitly, this means that if
A' CCA, if the closure of the cone Γ' is contained in Γ, and if |Imz|-> 0
while z remains in A' + iT', then (3//3z)(z) tends to zero faster than any
power of I Im z I. This is a direct consequence of the holomorphy of /, the
almost-analyticity of Z # , and Property (1.6).

(ii) If K is a compact set as in (1.6), and we write K = Z#{K\ then, for a
suitablek G Z + and C> 0,

(1.7) |/(x + fo)|<c|ϋ[Λ vx + fo e A:, t> =?*o.

This is a direct consequence of (1.6) and Corollary 1.2.
The preceding two properties enable us to define the boundary value (or

trace) of /on A. We now describe how this is done.
Below, A' and Γ' are as in Property (i) above. Let 8 > 0 be such that

j c e / , ϋ G Γ", \v\<δ^x + iv GΘ.

We denote by χ an arbitrary C°° function compactly supported in A'. Let then
σ denote any measurable subset of the intersection of Γ' with the unit sphere
£#1.-1 c R m . We define

=\o\~λ fff(x + itv)χ(x) dxdύ,

where dv is the measure on Sm ] induced by the Lebesgue measure on Rw, and
I a I is the measure of the set σ.

Lemma 1.4. The function Fσ defines a C°° function of t in the closed interval
[0,8].

Proof. We have, for t > 0,

We take into account the almost-analyticity of/:

where = means congruent modulo functions vanishing to infinite order at t = 0.
We obtain

// + »W)(« Dxχ(x)) dxdv
σ

by integration by parts, and

e z+ ,
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by iteration. Applying (1.7) gives

\FoU)(t)\<Cjrk, 7 = 0,l, •-,<)<*<«.

If we integrate successively (k + 1) times from t to 8 for every derivative F}J\
j ^ k+ 1, we reach easily the desired conclusion.

Lemma 1.5. The value Fσ{ + ϋ) does not depend on the measurable set σ, nor
on the almost-analytic extension Z # ofZ.

Proof. If T is any other measurable subset of Γ' Π Sm~ \ we may write

Fa(ί) - Fτ(t) = (|σ||τ|)-'///[/(* + itύ) - f(x + itw)]χ(x) dxdύ dw.
aτ

But we also have

f(x + itύ) -f(x + itw) = t(v - w) C^-(x + it[θv + (1 - θ)w]) dθ,
Jo ay

which is congruent to

-t(v -w)Dx Γf(x + iY[βt; + (1 - θ)w]) dθ,

modulo C°° functions of / vanishing to infinite order at t = 0. Thus

(1-8) Fσ(t)-Fτ(t)EEt[]Gστ(t9θ)dθ,

where

At this point we take advantage of the hypothesis that Γ is acute. It implies
that there is cf > 0 such that

|0ϋ + (l -Θ)w\>c', Vv,wGΓ ΠSm-\0^θ< 1.

But then exactly the same argument used in the proof of Lemma 1.4 works
here, to show that Gστ is a C00 function of (t, θ) in [0, 8] X [0,1]. Thus (1.8)
implies that Fσ( + 0) = Fτ(+0).

Next let Z # # be another almost-analytic extension of Z in ί/+ /Rw. By
applying Lemma 1.2 we see that if v E Γ' Π S"1"1 and 0 < ί ^ δ' with δ' > 0
small enough, then Z # # (x + itύ) will remain in a compact subset of %e(A9 T)#
whatever x in A'. If Fσ# stands for what has been denoted Fσ so far, and .F σ # #

for the analogue when Z # # replaces Z # , we see that

F0#{t) - Fa##{t) =|σ|-' / / [f(Z#(x + itύ)) -f(Z##(x + itύ))]χ(x) dxdύ.
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It suffices to apply the mean value theorem and to take advantage of the
property that Z # — Z # # vanishes to infinite order at Im z — 0, in order to
reach the conclusion that Fσ#( + 0) = Fσ##( + 0). q.e.d.

Thus we may define the boundary value bf of /on A by the formula

(1.9) tbf(x)φ(x)dZ(x) = lim |σ|-! ίί f(x + itύ)φ(x) dZ(x) dv,

where φ is an arbitrary element of Cc°°(̂ 4), and σ is a relatively compact
measurable subset of Γ Π Sm~λ (apply what precedes to an open set A' C C A
containing supp φ°, to a cone Γ' containing σ and whose closure is contained
in Γ, and to χ = φdet Zx).

Note however that / depends on the choice of Z # whereas / does not, and
that we shall be interested in holomorphic extensions to conoids in C m of the
transfer of bf to Z(A) via Z. Because of this for us the more important concept
is the boundary value bf = bf of /on A. Note that A is not a subset of the space
in which /is defined; bf is really the pull-back via Z of the boundary value of/
on Z(A). But the terminology will be somewhat simplified if we make this
small abuse of language.

The boundary value/ -> bf defines a linear map from BfcA, Γ) into tf)'(A).
Remark 1.1. Observe that in (1.9) we may let σ range over the net of open

neighborhoods of a fixed unit vector v. Actually, the requirement that v be a
unit vector is irrelevant, and we may deal with any vector v in Γ. We obtain

(1.10) fbf(x)φ(x)dZ(x)= lim //(Z#(JC + itv))φ(x) dZ(x).

Actually, by combining (1.10) with the argument used in the first part of the
proof of Lemma 1.5, one could also show that / bfφdZ is the limit of the
integrals

x + iv))Ψ(x)dZ(x)

as v ranges over any net in Γ, which converges to 0 in such a way that x + iv
remains in a compact subset of (A + iT) Π Θ when x remains in supp φ.

Lemma 1.6. Let ύ be any unit vector in Γ, and φ any element of C™(A). Then

(1.11) fbfψdZ= Urn j f(Z(x) + itZx(x)v)φ{x) dZ(x).

Proof. Introduce the complex m-vector

Δ(x, t) = Z(x) + itZx{x)v - Z#(x + itv).

If x belongs to supp φ and 0 < t < S with 8 suitably small, we have | Δ(x, t) |<
const, t2. If δ is small enough, the polydisk centered at Z#(x + itv) with radii
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\ΔJ(x9t)\(j= l9—'9m) will be contained in a fixed compact subset of

%e(A, Γ), and the distance from any point in that polydisk to Z(A) will be of

the order of t. We use a finite Taylor expansion

f(Z(x) + itZx(x)ύ)

< L 1 2 ) = 2 Δ(*. t)a[(d/dz)af\(Z#(x + M))/al+9ij(x91).

From (1.6) it follows that

(1.13) |[(3/3z) β /|(Z # (jc +

We may take an expansion of Δ(*, t)/t2 in powers of t, to order / + k. In this

manner we get easily, for 0 < | a \< /,

Ί j+k

(1.14) ^ Δ ( x , t)a = t7* 2 C/(jc)^" + 0 ( / / + * + 3 ) .

Putting this into (1.12) yields easily

f[f(Z(x) + itZx{x)i) -f(Z#(x + itv))]φ(x)dZ(x)

(1.15) = Σ
7 = 0

We also use the classical expression of the remainder in the Taylor series and

the inequality similar to (1.13) when Z#(x + itv) is replaced by any point in

the polydisk centered at Z#(x -I- itv) with radii | Δ7(Λ:, t) \. We obtain at once

that

t. t2J^k+J+x\

We select / ^ k -f- 2. In this manner we see that the left-hand side in (1.15)

differs from the double sum (on a andy) on the right-hand side by a quantity

whose absolute value is bounded by constant X t. Lastly, we apply formula

(1.9) to each term in the sum in question, we replace / by / ( α ) and take

χ = Cj*φ det Zx. Thus we conclude that each integral

j~f(a\Z#{x + itv))C;(x)ψ(x)dZ(x)

converges as / goes to zero. But since it is multiplied in (1.15) by / raised to a

power no less than two, we see that the right-hand side in (1.15) converges

entirely to zero. Formula (1.11) hence follows from this fact and (1.9).
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Corollary 1.3. Let xv^ v(x) be a C°° map of A into Γ. Then, whatever

φ £ C?(A),

(1.16) fbfψdZ = lim ίf(Z(x) + itZx(x)v(x))φ(x)dZ(x).

Proof. It suffices to prove (1.16) when suppφ is contained in an open set

V C A as small as we wish, for then we may patch up the various limit

formulas by means of a partition of unity. If V is small enough we may select a

diffeomorphism x h-> x — x(x) of an open subset V of Rm onto V such that

v = (dx/dx)~]v is constant in V. Set Z(x) = Z(x(x)); we have Zxv = Zφ,

and there obviously is an open cone f containing v such that/is holomorphic

in the conoid [z 6 C m ; z = Z(x) + iZ^(x)v, x G V, ύ E f, \ϋ\ small). By

changing variables from x to x in the integral in (1.16), and applying (1.11)

with Z and x hatted we obtain at once (1.16). q.e.d.

Formula (1.16) may be viewed as the stepping stone to a completely

invariant definition of the boundary values of holomorphic functions in certain

conoids (functions which satisfy inequalities such as the one in (1.6)). First of

all, instead of dealing with a "constant" cone Γ, we should deal with a variable

cone Γ(x). More accurately we should replace A X Γ by a conic open subset f

of TX\0 h whose base projection is equal to A. We define then 9Le(f) as the

image of f via the mapping

(1.17) TX{4 3 (JC, v) H> Z(x) + iZx(x)v E Cm,

where Θ would be regarded as an open neighborhood of the zero section in

TX^. The definition of BQ(T) would be entirely similar to Definition (1.1), and

formula (1.16) would still be valid if we take v(x) to be a smooth section of f

over A. We leave the details to the reader.

Definition 1.2. Let u be a distribution in U, and (x, ξ) a point in U X

(Rw\{0)). We say that u is hypo-analytic at (x, ξ) if there are an open

neighborhood V C U of x, an open neighborhood 6 of V in C m and a finite

collection of nonempty acute open cones I\ in Rw\{0} (k — 1, -,?), such

that the following hold:

for every k— 1, , v and every t)GΓ f c ,

° 1 8 ) (ζ,v)<0;
, . for each A: = 1, ,v, there is fk £ 5£(F, Γ*) (Def. 1.1) such

* ' that in F

The consideration which precedes Definition 1.2 should make it quite clear

that O, I) (in Definition 1.2) is a point in the cotangent bundle T*X, and that
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if (x, ξ) is thus interpreted, Definition 1.2 is independent of the local coordi-
nates jcι, ,xm used.

Suppose now that we change the basic hypo-analytic functions Z\ ,Z m ,
i.e., that we make use of a holomorphism z ι-> H{z) of an open neighborhood
of Z(U) in Cm onto an open subset of Cm. We may then avail ourselves of the
limit formula (1.10), and replace Z # , / and <ρ(x) respectively by H ° Z # ,

This actually shows that the boundary value bf is independent of the choice of
the Zk 's, when regarded as a distribution in an open subset of U.

Remark 1.2. In all this we are regarding distributions as currents of degree
zero (see [14, Chapter IX]) on the manifold X. They are functionals on the
space of compactly supported C°° m-forms, which can always be put in the
form φ dZ.

The independence of Definition 1.2 from the choice of the local coordinates
and the hypo-analytic functions Z1,* ,Z W allows us to "globalize" Definition
1.2. Thus given an arbitrary distribution u in an open subset Y of X, we may
consider the set of points (x, ξ) in 7*^X0 | y at which u is hypo-analytic. This
in turn allows us to introduce the following defintion.

Definition 1.3. The complement in T*X\0 \γ of the set of points at which
the distribution u in Y is hypo-analytic will be called the hypo-analytic
wave-front set of u and denoted by WFha(u).

Since by Definition 1.2 the set of points (x, ξ) E 7*^X0^ at which a
distribution u in Y is hypo-analytic is evidently open and conic, WFha{u) is a
closed conic subset of T*X\Q \γ.

The hypo-analytic wave-front set is invariant under hypo-analytic isomor-
phism (this is a hypo-analytic map which is a diffeomorphism, and whose
inverse is hypo-analytic).

It is evident that the base projection of the hypo-analytic wave-front set of a
distribution is contained in its hypo-analytic singular support (Def. 1.3, Chap.
I). Actually, as we are going to see soon, that projection is identical to the
hypo-analytic singular support of the distribution.

2. A Fourier transform criterion of microlocal hypo-analyticity

in hypo-analytic structures of codimension zero

Our aim in the present section is to establish the microlocal analogues of the
results of §4 of Chapter I. We shall make use of the concepts and notation
introduced there, and primarily of the "Fourier integral" Fκ (Def. 4.1, loc cit.)
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We carry out the analysis in a hypo-analytic local chart (t/, Z\ ,Z m ) of
the manifold X satisfying all the conditions in §4, loc. cit., in particular (4.1).
We begin by stating the microlocal version of Property (4.13)κ, ibid. Below,
and until otherwise specified, u is an element of &'(U). By £° we denote a
nonzero real w-vector, i.e., £° G Rm\{0}. The reader may think of ξ° as a
cotangent vector to X at the origin (the central point of U). Thus the property
we are interested in reads:

There exist an open neighborhood Vc of the origin in Cm, an
{2Λ)K open cone β° in Cw\{0} containing £°, and numbers R, C> 0

such that

\Fκ(u;z,ζ)\<Ce-^R, Vz G F c , f G S°.

The microlocal version of Theorem 4.1 of Chapter I is
Theorem 2.1. Suppose that (0, £°) G 7 ^ X 0 does not belong to the hypo-

analytic wave-front set ofu£z&'(U). Then to every κ> 0 there is c > 0 such that
if the following holds with ξ° = £°/l | ° | :

(2.2) VΛ G ί/, i°-ImZ(A:)<c|ReZ(x)|+/c|ReZ(jc)|2/4,

then Condition (2.1)κ is satisfied.

Proof. Since F* does not depend on the choice of local coordinates, we
take these to be the functions ReZJ (j = 1, ,m), as we may thank to (4.1)
of Chapter I. Then (4.15), (4.16), ibid., hold.

Let V, Tk9fk9 be as in Definition 1.2. Select g G CC°°(F) equal to one in an
open neighborhood Vo C V of the origin. It will then suffice to prove the
estimate in (2.1)^ when each bfk is substituted for u. We shall therefore omit the
subscript k and assume that u — gbh for some h G B$(V, Γ), where Γ is a
nonempty strictly convex cone in Rm\{0} such that ξ° v < 0 for every t)GΓ.
For the sake of simplicity we write

/(z ) = e - ^ * - " < ^ - ^ 2 Λ ( z * )

Note that

(2.3)

We shall make use of the following immediate consequence of (1.11):

ίbfgdZ = lim ίf[Z(x) + itZx(x)v]g(x) d[Z(x) + itZx(x)v],

where v is an arbitrary vector in Γ, kept fixed in the sequel. For any t > 0 call
@ t the image of V under the map

;cι->z* = Z(x) + itZx(x)v.
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Let A be a relatively compact open subset of V containing supp g. There is
δ > 0 such that if (x, /) varies in A X [0, δ], z* remains in a compact subset of
9lθ(K, Γ). Furthermore, if t stays fixed, 0 < / < δ, the image of A under the
map x ι-» z* is a totally real m-dimensional (i.e., a maximally real) C°°
submanifold of Φie(A9 Γ). Let us write g(z*, t) = g(x). Then the above
formula reads

(2.4) fbfgdZ= lim ί f(z*)g(z*,t)dz*.

We shall now further deform the domain of integration with respect to z*.
We select a function g0 E C™(V0), gQ = 1 in an open ball {x\\x\< d},
0 < g0 < 1 everywhere. We restrict the variation of / to an interval 0 < t < δ'
< δ and select a number s > 0 such that s + δ' < δ; s will be more precisely
determined below. Then we deform the domain of integration in the integral at
the right in (2.4), from @, to the image of V under the map

(2.5) x h* z* - Z(x) 4- i[t + sgo(x)] Zx(x)v.

Since the deformation occurs in the region where/(z*)g(z*, t) is equal to/(z*)
and is holomorphic, Stokes' theorem yields

= f/[Z(x) +.i(/ + sgo(x))Zx(x)v]g(x)d[Z(x) 4- i(ί 4- sgo(x))Zx(x)v].

By duplicating the proof of Lemma 1.4, from the above equation one can
derive

(-jYj f(z*)g(z*,t)dZ*
(2.6) U / 4

f sgo(x))Zx(x)υ]Pj(t, x, Dx)g(x) dz*(x)

where Pj(t, x, Dx) is a linear partial differential operator with respect to x, of
order <y, whose coefficients are C°° functions of (/, x) in [0, δ'] X V. Indeed,
and provided δ is small enough, the Jacobian matrix of the map (2.5) with
respect to the xj is nonsingular and, as a consequence, there is a complex
vector field L(t, x, Dx) with C00 coefficients such that

j[z{) + i(t + sgQ(x))Zx(x)υ]

= L(t, x, Dx)j[Z(x) + /(/ + sgo(x))Zx(x)υ].

Integration by parts and iteration then yields (2.6).
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Suppose now that there are an integer k > 0 and a constant K > 0 such that,
for a suitable choice of s9 0 < s < δ — δ',

our

(2.7) L/ΐz(*) + '( ' + *So(*))z*(*H \< Krk

for all Λ: in F, and / in [0, δ']. The exponent k in (2.7) is determined by
hypothesis that, for all (x9 t)GAX [0, δ'], and all s9 0 < s ^ δ - δ',

|Λ~[Z(x) + /(/ + sgo(x))Zx(x)v] \< const. /"*.

Putting (2.7) into (2.6) implies that, for some Cy > 0 and all / in [0, δ'], we have

f(z*)g(z*9t)dz* cκ rk

We take j = k + 2 and integrate k + 2 times the left-hand side in (2.6) from δ'
to t. We get, with a suitable C > 0,

and

(2.8) |F"( W ;z , f ) l

after letting ί go to zero, and taking (2.3) and (2.4) into account. We must
therefore determine a bound K in (2.7), which will yield the inequality in (2.1)κ.

Keeping in mind what is the expression of / it is obvious that the nature of
the bound K is determined by a lower bound for the quantity

β = Re{tf z* +

when z* is given by (2.5) (and x E supp g).
By hypothesis there is c0 > 0 such that

(2.9) R e ( f , υ ) < - c 0 ,

when ξ = ξ°. Our first requirement on the cone β° will be that (2.9) must hold
for all ξ in β°. This said we begin by looking at Q when z = 0, ξ = £° in which
case we write Qo rather than Q. For the sake of simplicity we take £° and v to
be unit covectors. Putting z* as given by (2.5), and recalling that Z(x) = x +
iΦ(x), we get

+ κ{\x - (t + sgo(x))Φx(x)v\2 - \Φ(x) + (t + sgo(x))v\2}

-c\x\-κ\x\2/4 + c0(t
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We have taken advantage of (2.2), (2.9) and (4.16) of Chapter I.
By (4.16) of Chapter I, we know that | Φ(x) \<\x |/2. We then select δ' and s

in such a way as to have

We obtain

Qo > -c\x\ +/c|x|2/4 4- co(t + sgo(x))/2

>κ\x\2/4-c\x\+cosgo(x)/2.

We shall then put the following conditions on the number c in (2.2):

(2.10) 0 < c < Min(/c<//8, κs2/d).

We recall that d is the positive number such that | x | < d implies go(x) = 1. If
Ix |> d, we have Qo > (κd/4 - c)d > κd2/S. If | x |< d, then Qo > cQs/2 -
cd > 3κs2 — cd> 2κs2.

This yields a lower bound Q > 2/R > 0 for all x in supp g when z — 0 and
I = |°. But the estimate (? ̂  1/Λ will then hold if we allow z and £/|£| to
vary in complex neighborhoods of the origin and ξ° respectively. In this
manner we conclude that (2.7) does indeed hold with

K= const. exp(Hf|/Λ),

and thus (2.8) is shown to be the same as the inequality in (2.1)^. q.e.d.
Next we prove the microlocal version of Theorem 4.2 of Chapter I.
Theorem 2.2. Suppose that

(2.11) ImZx(0) = 0.

Then there is a number κ# > 0 such that, given any cotangent vector ξ° φ 0 to X
at the origin and any compactly supported distribution u in U, if(2Λ)k holds for
some K > κ*9 then (0, f °) <2 WFha(u).

Proof. Hypothesis (2.11) allows us to require, first of all,

/c s | t >4sup{ |ImZ(x) |/ |ReZ(x) | 2 },
xEU

which insures that if /c > K*, then Condition (4.14) of Chapter I is satisfied
whatever c > 0. We select g G Cc°°(ί/), g = 1 in a neighborhood of the origin
and apply Theorem 4.1., loc cit., to (1 — g)u. We conclude that (1 — g)u
satisfies (2.1)K. Assuming that u also does, the same is true of gu. In other
words we may assume that suppw is contained in an open neighborhood
Ux C U of the origin as small as we wish.

We shall assume, once again, that Z(x) = x + /^TΦ( c), with all the
hypotheses in Theorem 4.1, ibid., fulfilled. As we did in the proof of Theorem
4.2 of Chapter I, we extend Φ, and therefore Z, to the whole of Rm in such a
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way that our basic hypotheses be satisfied. Our starting point will then be the
limit formula (4.23), ibid., and we shall avail ourselves of Lemma 4.3 ibid. The
number d > 0 will be chosen so that the closed ball {z E Cm; | z \
< d] be contained in the open neighborhood Vc in (2.1)κ. We reach thus the
conclusion that, modulo a holomorphic function in some open neighborhood
of the origin in C w , we have

(2.12) u=(κ/4τr3)m/2 Urn J^\
ε-> + 0

where ύ is the transfer of u via Z from U to Z(U)9 and

/;.«(z) = fff ei^
\Z()\d

In the remainder of the proof we assume that \Z(x)\< d implies x E U and
that I x \< { for all x in U. We deform the domain of ^-integration from Rw to
the image of Rm under the map

(2.13) ί H> ξ ='Zx(tyιξ + 4ι2>'|€|[z " Z(ί)],

where 5 ' is a positive number such that

(2.14)

(2.15)

That iΓ exists is a consequence of (2.11).
We strengthen our requirements on d and on the neighborhood Vc of the

origin in which z is allowed to vary. We shall require that they be small enough
that if z G Vc and \Z(t)\^d9 then the complex vector ξ in (2.13) satisfy the
following:

(2.16) V£GRm\{0},

(Ί M\ ^ ^ stays in an acute and open cone C° C Rw\{0} containing
^ ' £°, then f remains in the cone 6° of (2.1)..

We then select a finite collection of acute and open cones C' (j = 1, -,*>)
in Rm\{0} endowed with the following properties:

/ 2 1ox C ' Π C * = 0 if y^fc, y,A: = O,l, ^ ;

RW\(C° U C ' UC") has measure zero;

(2.19) 7/*7 = 1, , v, the closed convex hull of CJ does not contain ξ°.

Regarding f in (2.13) as a function of ξ G Rm we set
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Observe that

We may therefore take advantage of (2.1)^, where we put z — Z(t) and ξ is
given by (2.13) with £ G C°. We conclude at once that when ε -* +0, J%ξ
converges uniformly in a neighborhood of the origin in Cm. This shows that
(2.12) can be reduced to

(2.20) u=(κ/4π3)m/22 lim jy f.

y=i«-+ 0

Thus we must look at J£* for arbitrary j , 1 <y < v. We shall take

z = Z(x) + iZx(x)v, x£ί/,

where v is a vector which will vary in a certain strictly convex open cone
Γy C Rm\{0} chosen below. With this choice of z we look at the quantity

Q = -Re{/Γ[z - Z(y)] - κ(ξ)[Z(t) - Z(y)]2}/\ξ\ .

We have, by (2.13),

Q = k- lm{Zx(tyι[Z(x) - Z(y) + Zx(x)v]}

) - Z(t) + iZx(x)υ] -[Z(x) - Z(y) + iZx(x)v]}

In the first two terms we write

Z(x) - Z(y)=[Z(x) - Z(t)]

First we make use of (2.14) and (2.15):

ξ • Im Zx(tyι[Z(x) - Z(y) + iZx(x)v]

>'ξ v - B'{\x - t\2 + \y- t\2 + \x- t\\v\)

^ξ-v-B'{2\x-t\2 + \y-t\2 + \v\2).

This yields a lower bound for the first term in the above expression of Q. In
order to obtain one for the second term we use the fact that Z(x) — x + iΦ(x)
and I Φ(x) — Φ(y) \<\ x — y |/2. One can check easily that

Re{[Z(x) - Z(t) + iZx(x)v] -[Z(x) - Z(t) - Z(y) + Z(t) + iZx(x)v]}

>{\x-t\2- lθ\y-t\2- 10|t?|2.



MICROLOCAL HYPO-ANALYTICITY 365

Last, by using (2.16), we get

Gathering all of these we obtain

Q ^ ξ - v + (κ/8 - ΛlB')\y - t\2 - 4\B'\υ\2.

We require /c > /c* with

(2.21) κ+ > 3285',

and reach the conclusion that

At this point we make our choice of the cone Γy. We avail ourselves of (2.19).
This enables us to select Γy so that

(2.22) V'£0<OforallvinTj'9

there is a constant c0 > 0 such that

vξ>co\v\\ξ\ forallv<=Tj,ξeCJ.

We then require

(2.24) M<c o /(82i? ') ,

so that

(2.25) Q>±co\v\ 9x E U9y E Ul9\Z(t)\<d9 vETJ9ξEC''.

We take then for V any open neighborhood of 0 whose closure is compact
and contained in \j. We apply Lemma 1.3 after choosing the neighborhood θ
of Fin U + /Rm so as to take (2.24) into account. We conclude that, as ε goes
to zero, the entire functions J£J converge uniformly on compact subsets of
ύle(V, Γy), and thus have there a limit which is a holomorphic function J^jm

If u is a compactly supported continuous function in Ul9 we have

(2.26) \Jlj[Z(x) + iZx(x)v]\< const.MΛ

with /x = 3m/2, as one sees by looking at the integrals Jfij. When u is a
compactly supported distribution in Ul9 we can use a representation of the
kind (4.3), Chapter I, and integrate by parts. We find that one can take
μ = k + 3m/2. In all cases this proves that /Jy. G BfcV9 Γy) (Def. 1.1) and
therefore, by virtue of (2.20), that (0, ξ°) £ WFha(u) (see Def. 1.2).

Remark 2.1. It is worthwhile to underline the fact that κ# is submitted to
conditions (2.21) and K* > 4B with B given in (4.22), Chapter I. The factor
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328, needless to say, has no particular significance. The important fact is that

K^ is proportional to the constant Bf satisfying conditions (2.14), (2.15) (with a

factor that is large compared to one). Now, if all second derivatives of Φy,

j = 1, ,m, vanish at the origin, by suitably contracting U about 0 we can

obtain that B' be as small as we wish. This is important in forthcoming

applications of the criteria provided by Theorems 2.1, 2.2.

Note that we may always select the functions Zj so that all the derivatives of

order two of the ΦJ vanish at the origin. If this is not already so (but assuming

that Φ and dΦ vanish at the origin) it suffices to replace ZJ by

(2.27) Z'-{ 2 ^ ( ° ) Z * Z '
2 k,ι=\ 9**3*'

Remark 2.2. If a distribution u in U is not compactly supported one can

apply Theorems 2.1, 2.2 to gu where g E Cc°°(ί/) is equal to one in a

neighborhood of the origin.

Inspection of the proof of Theorem 2.2 shows that the conclusion can be

made more precise. In fact, combining the argument there with Theorem 2.1

enables us to generalize a result of [6]:

Theorem 2.3. Let Yx,- ,TV be acute and open cones in R m \{0). For any

distribution u in U the following two properties are equivalent:

(2.28) T*XΠWFha(u)C LJΓ/;

7 = 1

Given, for each j — 1, ,v, a nonempty open cone Tj whose

, v closure is contained in TJ9 there are an open neighborhood

V C U of the origin, an open neighborhood 6 of V in U + z'Rm

and functions fj E 5g(K, Γ}) (1 <j ^ v) such that, in V,

(2.30) a = &/, + .-•+&/,.

We have used the following notation, for any acute and open cone T(φ 0)

inRm\{0}:

Γ° is called the polar of Γ. Note that Γ° is a strictly convex and closed cone,

and is identical to the set of covectors £ such that £ v > 0 for all v E Γ.

Proof. (2.28) implies (2.29). Let Z = ( Z \ ,Z m ) satisfy (2.11). Therefore

if K > κ^9 the number in Theorem 2.2 (see Remark 2.1), the hypothesis (2.2)

will also be satisfied, whatever £° E Rw\{°} L e t S E C?(U) be equal to one
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in a neighborhood of the origin. By virtue of Theorem 2.1 Property (2.28) has

the following implication:

Given any closed cone Γ' C RW\(Γ,° U UΓ,0) there are an

, . open neighborhood of the origin Vc in C w , a conic open

^ ' >κ neighborhood & of Γ in Cw\{0} and constants C,R>0 such

that

\Fκ(gu;z9S)\<CeW*9 Vz G F c , ? G β'.

The proof that (2.31)^ entails (2.29) follows from inspection of the proof of

Theorem 2.2, where it is shown that (2.30) holds not exactly but modulo a

hypo-analytic function at the origin, if we take

Call Kj the intersection of the closure of fy with the unit sphere Sm~\ and Kj

the intersection of Γy° with Sm_v The function v ξ is everywhere > 0 in

Kj X Kj, hence there is c0 > 0 such that v ξ > 2c0 for all v G KJ9 £ G Kj.

Define

V = [i G R m \ { 0 } Vt? G CltJ9 v ξ > co\v\\ξ\).

The complement in Rm\{0} of C1 U U Cv is a closed cone C° contained in

R^MΓf U Ui; 0 ). For eachy = 1, ,v9 define Cj C Cj in such a way that

(2.18) and (2.19) are true. We see at once that (2.23) holds if we substitute f\

for Γy, and by the same argument as at the end of the proof of Theorem 2.2 we

conclude that/jfy G BfcV9 Γ}).

(2.29) implies (2.28). If ξ° does not belong to Γ,° U UΓ,0, then for each;

there is Vj G Γ, such that ξ° ΌJ < 0, and therefore there is a strictly convex

open cone tj containing Vj such that ξ° v < 0 for all v GΓ ; , Hence it suffices

to apply (2.29) and Definition 1.2. q.e.d.

It is sometimes useful to know when u can be represented (in a neighbor-

hood of a point) as the boundary value of a single holomorphic function. This

is related to the possibility of extending holomorphically the transfer u of u via

Z. The following immediate corollary of Theorem 2.3 yields a criterion.

Corollary 3.2. Let Γ be a nonempty acute and open cone in Rm\{0}. For any

u E ty'iU) the following two properties are equivalent:

(2.32) T0*XnWFha(u)cΓ°;

given any nonempty open cone Γ^ whose closure is contained in

Γ, there are an open neighborhood V C U of the origin, an open

( 2 3 3 ^ neighborhood β of V in U + iRm and a function f G B'e(V, Γ J

such that u = bf in V.
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Remark 2.3. The neighborhood V in (2.33) will generally depend on the
cone Γ .̂ We may take V decreasing as Γ* increases and fills Γ. The holomor-
phic functions /, each defined in the corresponding conoid %e(V, Γ*), are
necessarily equal on overlaps, by the " uniqueness" of the extension (a property
we have not established), and thus define a holomorphic function in the union
of these conoids.

We conclude this section with the following consequence of Theorem 2.1.
Theorem 2.4. Assume that the hypo-analytic structure of X has codimension

zero. Then, given any distribution u in an open subset of X, the base projection of
WFha(u) is equal to the hypo-analytic singular support of u {Definition 1.3,
Chapter I).

Proof. As noted at the end of §1 it suffices to prove that the base
projection of the hypo-analytic wave-front set contains the hypo-analytic
singular support. We may reason in a hypo-analytic local chart (£/, Z1, , Zm)
in which Hypothesis (2.11) is satisfied. Let u be a distribution in U whose
hypo-analytic wave-front set does not intersect TξX. Then we want to show
that 0 £ sing suppΛfl u. Neither the hypothesis nor the conclusion is modified if
we replace u by gu with g E Cc°°(ί/), g = 1 in some neighborhood of 0. We
may therefore suppose that suppw CCί/ . If then we apply Theorem 2.1
provided K > 45 we reach the conclusion that Property (4.13)κ, Chapter I, is
satisfied. But then Theorem 4.2, Chapter I, implies that u is hypo-analytic at
the origin.

3. Hypo-analytic structures of arbitrary codimension: characteristic points
and traces of distribution solutions on maximally real submanif olds

In the present section we return to a hypo-analytic manifold Ω whose
hypo-analytic structure has codimension n. As before we write dimΩ — N —
m + n. We shall reason in a hypo-analytic local chart (£/, Z1, , Z w ) , centered
at a point which we continue to call the origin. We assume that U is the
domain of local coordinates x\ ,x m , y\ ,yn, all vanishing at the origin. It
will be convenient to take U in the form of a product,

jj = v x jy9

where V (resp., W) is an open ball in x-space Rm (resp., in >>-space R"),
centered at the origin. The dual coordinates will be denoted by ξx, - -,ξm,
ηl9 - - ,τjw, and Γ*Ω 1̂  will be identified to U X R w + π .
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We shall also suppose that the functions Zy all vanish at the origin.
Furthermore we shall assume that

|Im [Z(x9 y) - Z(x , y)] |<|Re[Z(x, y) - Z(x , y)] |/2,
v ' ; v*,** e F J E w.
We shall also assume that the mapping (x, y) \-+ (Z(x, y), y) is a diffeomor-
phism of U onto a C°° submanifold Σ of Cm X R". This is equivalent to saying
that, for each y in W, the map x H> Z(X, J>) is a diffeomorphism of V onto a
maximally real submanifold of Cw, which we denote by Σy. Of course
Σy={zG C"; (z, j ) E Σ}.

Remark 3.1. As indicated in §2 of Chapter I, if X is any maximally real
submanifold of Ω passing through a point /?0, the local chart
(£/, x\ ,xm, /,• •,;>") can be "adapted" to X in the sense that X Π U is
defined by the equation y = 0, and that the coordinates x\ yk and the
hypo-analytic functions Zι retain all the properties described above (relative to
p0 as the origin).

In what follows, although our concern is basically with arbitrary distribution
solutions, mostly we shall restrict our attention to C1 solutions. All the
reasoning and conclusions will extend routinely by exploiting representation
formulas of the kind (4.3), Chapter I.

Let / be an arbitrary point in W. We shall call Xt the maximally real
submanifold of U defined by y — ί, and ht the trace on Xt of an arbitrary
distribution solution h in U (§2, Chapter I). Notice that Σ, is the image of Xt

under the map x\-*Z{x,i).
Let g G Q°°(F). We define (cf. Definition 4.1, Chapter I)

Ft

K(gh; z, f) = ίe-* z<* f>- | t«>l'-z^^2g(jc)A(jc, t)dZ(x, t).
Jy

Suppose, for the sake of simplicity, that h is a C1 solution. Possibly after
contracting U we may write h — h ° Z with h a continuous function on Z(U)
((2.13), Chapter I). Since the w-form hdZ (dZ = dZx Λ Λ</Zm) is closed in
U, its push-forward via the diffeomorphism (x, y) ι-> (Z(x, y\ y) is a closed
w-form h dz on Σ. Actually we shall associate with h the following closed
w-form on Σ:

(3.2) H = Hκ(z*; z, ξ) = e - ' θ * -«<Oί*-* ] 2

A( z ) rfz*.

The integration variable is now denoted by z* to distinguish it from the
parameter z as it enters in Ft

κ(gh; z, ξ). If then we write g(z*, y) = g(x) when
z* = Z(x, y\ we obtain

(3.3) F,«(gΛ; z, ?) = / | ( z , /)#"(*•; ^ f )•
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As already pointed out all this continues to make sense when h is a distribution
solution.

Lemma 3.1. Let K, d be numbers > 0. Assume that Kd = {x E V;

I Re Z(x, 0) | < d} is a compact subset of V. There are open neighborhoods of the

origin, W C W, Vc C Cm and a number ε > 0 such that the following is true:

Let ξ ¥= 0 be any vector in Rm such that with ξ = ξ/\ ξ \

(3.4) VJC6F, |έ ImZ(jc,0)|<J|ReZ(jc,0)|(|ReZ(jc,0)|+έ/),

and call Q the cone in C w \{0} definedby\ξ - ξ\< ε.

Given any distribution solution h in U and any function g E CC°°(F) equal to

one in Kd, there is C > 0 such that

\Ft

k(gh; z, 0 - F*(gh; z, ζ) \

Proof. It is based on (3.3). Let l(t) denote the straight-line segment in W
which joins 0 to t, and call c(t) the (m + l)-chain on Σ, which is the image of
V X l(t) under the map (x, y) ι-» (Z(x, y)9 y). Notice that supp g intersects
the boundary of c(/) only on its "horizontal faces", Σ o and Σr Therefore by
Stokes' theorem we have

(3.6) f gH- f gH= ί dgΛH.
JΣt

 JΣ0 . ^ ( 0

We must then look at the quantity

where z* = Z(JC, 0), x E supp dg. We apply (3.1) with x* = 0, y = 0, and (3.4)
to obtain

since g = 1 when | Re Z(x, 0) |< d. But then, if W and Vc are small enough,
and the cone β " thin" enough, we shall have

Re{ιί z* + κ(ξ >[z - z*f}/\ζ\> κd2/8,

Vί e w, z e F c , z* e c(;) n suppdg,ξee .

Putting this into the right-hand side of (3.6) yields what we wanted.
Corollary 3.1. Let K and d be as in Lemma 3.1. Suppose that we have

(3.7) VxG F, |ImZ(;c,0) |<£ |ReZ(x,0) | ( |ReZ(jc,0) |+ί/) .
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Then there are open neighborhoods of the origin, W C W, Vc C Cm, and an
open cone & in Cm\{0} containing Rm\{0} such that, given any distribution
solution h in U and any function g €Ξ C™(V) equal to one in Kd, there is C> 0
such that (3.5) holds for all t in W\ z in Vc and all ξ in &.

Proof. It suffices to observe that the "sizes" of F c , W, βin Lemma 3.1 are
solely determined by K and d, and are independent of ξ.

Remark 3.2. If in addition to (3.1) we make the hypothesis

(3.8) VxG F, | ImZ(;c,0) |^£ |ReZ(; t ,0) | 2 ,

Condition (3.7) is satisfied whatever d > 0, as soon as K >• 4B.
Let X be any maximally real submanifold of Ω. Let us denote by πx the

natural quotient map Γ*Ω \x -* T*X, and by πx the analogue for the com-
plexified cotangent bundles. By definition of "maximally real" (Definition 2.1,
Chapter I) πx induces a bijection of Y\x onto CT*X. As a consequence πx

induces an injection of T° = T Π Γ*Ω into T*X. We recall that JΓO\O is the
characteristic set of all the sections of Tf± .

Definition 3.1. We say that a point of T*X\Q is characteristic if it belongs
to ττχ{T° \x), noncharacteristic otherwise.

When the codimension of the hypo-analytic structure of Ω is zero, we have
T° = τ*Ω, and all points off the zero section are characteristic.

In order to obtain a handy description of characteristic, and noncharacteris-
tic points, we shall reason in a hypo-analytic local chart of the kind introduced
at the beginning of the present section, now adapted to the maximally real
submanifold X (Remark 3.1). Actually we shall somewhat strengthen our
hypotheses on the hypo-analytic functions ZJ, and assume that we have, in U,

p y \ j= 1,•••,/•,
(3.9) Γ _

ZJ = xj+f-ΪΦj(x9y)9 j = r+ l, ,m,

where the ΦJ are real-valued, and

(3.10) Φ'"(0,0) = 0, dΦJ(090) = 0,y = T + 1, ,m.

As we have done earlier we write Xt for the submanifold y — t of U; thus
Xo — X Π U. We shall systematically identify the cotangent bundle of Xt to
VXRm and <nXt to the coordinate projection U X Rm+n -> V X Rm. A point
(x, y, ξ, η) G U X Rm+n belongs to T° if there are m complex numbers c} such
that

m n m

(3.11) 2 ijdxJ + 2 Vkdyk = Σ CjdZJ.
j=\ k=\ j=\
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From (3.9)—(3.10) we get, at the origin,

( 3 1 )

dZj = dxJ, j = r+ l, ,m.

Then (3.11) demands cy = £y- for ally, and

£j = QifJ = l, , r ; η Λ = 0,fc= l, ,π.

It is then convenient to use the notation x' — (x\ ,x r), x" = (xr+ \

t' = (t\ X\Γ - ( ί r + 1 , ••,/"). In this notation we see that

( 3 1 3 )

Theorem 3.1. Lei Λ be an arbitrary distribution solution in some open subset

of Ω containing the maximally real submanifold X. Then the hypo-analytic

wave-front set of the trace of h on X is entirely contained in the set of

characteristic points of T*X.

Proof. Of course we assume that h is defined in the open set U where the

preceding description applies. Note that if r = 0, then all points in T£X\Q are

characteristic, and it is obvious that

(3.14) WFha(h)nTΪXCπx(T0

0).

Our purpose is to prove that (3.14) holds even when r > 0. For this we go back

to the integral Ft\gh\ z, {), and look at the quantity

Q = Re{ίf Z(x, 0 + κ(ξ)[z - Z(x, t)]2}/\ξ\ ,

where however we take ξ — ξ G Rm\{0}, z = 0, in which case we call it Qo.

We have

Qo = -£' f - Γ Φ"(χ, 0 + φ f - IΠ2 - |Φ"(*> 012]>

where Φ" = ( Φ r + ι , ,Φ m ), and(^, Γ ) = ξ/\ζ\.

We make now the assumption that (0, ξ) is noncharacteristic. According to

(3.13) this means that £' φ 0. We can therefore select t so that

(3.15) £' ί ' < - c o | ί |

for some c0 > 0. Note that (3.15) remains true if we replace t by pt with p > 0

arbitrary.

By (3.10) we know that there is B > 0 such that

(3.16) \*"(x,y)\<B(\xf
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whence

Qo > co\t\ -B(\x\2 + \ t \ 2 ) + κ\x\2 - κB2(\x\2 + \ t \ 2 ) 2 - κ\t\2

> (c0- κ\t\-B\t\-2κB2\t\3)\t\+ {K - B - 2B2κ\x\2)\x\2.

Using Remark 2.1 we may assume that lmZx(0,0) — 0. Let us now take

K > K ,̂ the number in Theorem 2.2, and κ> 4B with B the number in (3.16).

Notice that (3.16) implies (3.8) and that as a consequence Remark 3.2 applies.

Define F C F b y the requirement that for x E V, 2B\x\< 1. If \t\ is small

enough, we shall have Qo > c0 \ 11/2 and consequently there will be an open

neighborhood Vc of the origin in C m and an open cone β in C m \{0}

containing ξ such that

(3.17) β>co|*|/4, Vχev\zevc,ξee.

We then select g E CC°°(F') equal to one in some neighborhood of the origin.

From (3.17) we derive that, for suitable constants C, R > 0,

(3.18) \Ft*(gh'9z9ζ)\<CeW*9 VzGF c , fee.

We apply the version of Lemma 3.1 expounded in Remark 3.2 (it is clear that

we may take t in W'\ Thus we obtain an inequality similar to (3.18) but for

t = 0. The sought conclusion follows then from Theorem 2.2.

Theorem 3.2. Let h be a distribution solution in U such that (0, ξ°) does not

belong to the hypo-analytic wave-front set of the trace h0ofh on Xo. Then there is

an open neighborhood Wo C W of the origin such that (0, ξ°) does not belong to

the hypo-analytic wave-front set of the trace htofh on Xt whatever t in Wo.

Proof. We continue to use the functions ZJ of (3.9)—(3.10). Possibly after

contracting Fand Wwe may assume that

\lm{Zx(0,tyl[Z(x>y)-Z(x*,y)]}\

(3.20) < i | R e ( Z Λ ( 0 , t)-χ[Z{x, y ) - Z(x*, y)]}\

for all x, JC* in V, j>, t in W.

Also, for a suitable B > 0,

(3.21) \Zx(09 ty
][Z(x, t) - Z(0, /)] - x\< B\x\2, Vx e V.

This will allow us at the end of the ongoing argument to apply Theorem 2.2

with X = Xn u = ght and

(3.22) Z(x) = Z,(0, tyX[Z(x, t) - Z(0, /)].

According to Remark 2.1 the number /c* can be chosen independently of

t E W. Let d > 0 be such that {x; \ Re(Zx(0, tyxZ(x, t)) | < d) is contained in

a fixed compact subset of V for all / E W. Then we assume κ> K^ and
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K > 4B, the constant in (3.21). Notice that if we put t = 0 in (3.21), then we
obtain (3.8) and thus, by Remark 3.2, that Condition (3.7) is satisfied. This
remains true if we replace Z(x,0) by Zx(0, t)~xZ(x,0) provided t remains in a
sufficiently small open neighborhood Wo C W of the origin. We may then
apply Corollary 3.1 with Zx(0, t)~ιZ(x9 y) in the place of Z(JC, y).

We want to combine the information provided by (3.5) in the present set-up
with that provided by our hypothesis, namely that (0, £°) £ WFha(h0). We
apply Theorem 2.1 with X= Xθ9 Z(x) = Zx(09 t)'lZ(x90) and u = gΛ0, and
select the number c > 0 as required in the proof of Theorem 2.1. Note that the
upper bound on c in (2.10) only depends on fc, d and the number s. The latter
in turn depends on /c, δ', and the constant c0 in (2.9). It follows that we may
choose c independent of t E W. Recalling that K > 45 we see that Condition
(2.2) is certainly satisfied for Z(x) = Zx(0, t)-χZ(x90) when t = 0, and there-
fore also when t remains in JV0 provided Wo is small enough.

We conclude that (2.1)κ holds. But then, possibly after some further con-
tracting of Wo about 0, we derive an inequality similar to that in (2.1)κ but for
the function

(3.23) e* zjf>.tr*zv,t)F*(ght. z + z ^(o, ^ " ^ ( O , 0 ξ),

with Fκ defined as in Definition 4.1, Chapter I, but with Z(x) —
Zx(0, t)~λZ(x, t). Of course, in order that such an inequality be valid, we must
contract about the origin both the neighborhood Vc in Cm in which z varies
and, as already said, the one, W09 in which t varies. The smallness of Wo must
also insure that the absolute value of (3.23) decay exponentially as |f |-> +oo
(with ξ in an open cone in Cm\{0} containing £°), despite the presence of the
exponential factor in front of Fκ.

In order to conclude the proof of Theorem 3.2 it suffices to observe that
(3.23) is nothing but Ft

κ(gh; z, ξ) with the choice (3.22), and to apply Theorem
2.2 as announced.

4. Hypo-analytic wave-front set in hypo-analytic structures

of arbitrary codimensίon

We continue to deal with a hypo-analytic manifold Ω whose hypo-analytic
structure has arbitrary codimension n. We use the notation of §3. In particular
we continue to reason in the hypo-analytic local chart (U, Z1, , Z m ) in which
(3.9) and (3.10) hold. Observe that in order that Γo° be Φ 0 we must have

(4.1) r<m.
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Until otherwise specified we make the hypothesis that this is indeed the case.

In passing note that when r = m, which requires m ^ n, the structure T is

elliptic in some open neighborhood of the origin (and thus T° = 0 over that

entire neighborhood).

The next statement aims at describing all the maximally real submanifolds

which pass through the origin.

Proposition 4.1. // Y is any maximally real C°° submanifold of U containing

the origin there are an invertible r X r complex matrix S and a C°° map from an

open neighborhood V# C V of the origin to RΛ,/#, withf#(0) = 0, such that, if we

make the change of coordinates

(4.2) x'# + iy'# = Sz', xl = χ\y'i = y",

then Y is defined in an open neighborhood U# C U of the origin by the equations

(4.3) y#=Kχ#).

Conversely, any system of equations (4.2), (4.3) defines a maximally real C°°

submanifold in some open neighborhood of the origin, passing through that point.

Proof Suppose that, in an open neighborhood Uf C U of the origin, Y is

defined by equations

(4.4) fJ(χ9y) = θ9 j=i9...9n9

such that df\-'-,dfn are linearly independent. Then dZx,- ,dZr,

dxr+\- ,dxm, df1,' - -,dfn make up a basis of the cotangent space CΓ0*Ω.

Indeed, the first m differentials dZ1,- ,dxm have linearly independent restric-

tions to CT0Y, while dfx,--,dfn span the orthogonal of CT0Y.

We know, on the other hand, that

dZ\- ,dZr, dxr+\- ,dxm, dZ\- ,dZr, dyr+\- ,dyn

also make up a basis of C7JfΩ. It follows from this that there is a C-linear

bijection of the C-linear span of (dZ\- -,dZr, dyr+ι, -,dyn) onto that of

(df1,- - -,dfn). After an R-linear substitution of the/ y 's we may assume that

the matrix

is nonsingular. Define then x#, y# as in (4.2). It is checked at once that if we

setfi(x#, y#) = fJ(x, y) (j = 1, ,n), then

| 4 |4 ° . °) = ̂ ' j,k=\,- ;r,
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where 8{ is the Kronecker index. In turn this requires that the Jacobian

determinant at the origin of the fl with respect to they#J, k = r + 1, ,/i,

be invertible, and thus that Z)/#/Z)y# φ 0 at the origin. But then we may apply

the implicit function theorem, and solve (4.4) with respect to y#, thus obtaining

(4.3).

The "converse" part in Proposition 4.1 has an easy proof, left to the reader.

In the sequel Y will continue to denote a maximally real C°° submanifold of

U# C U defined by (4.2) and (4.3).

We define in some reasonable manner the powers S* of the matrix S for all

real / (for instance by means of a contour integral over a smooth simple curve

winding once around the spectrum of S and entirely contained in the comple-

ment of a closed half-line issuing from 0). We then consider the following C00

map from Rm X R1 to C r X R ^ " " 2 ' which is identified with Rm+n:

(4.5) (Jc, t)h*z' = S-'jc', x" = x\y" = 0.

As usual identifying U = V X W to an open neighborhood of the origin in

Rm+n, we select an open ball V centered at 0 in Rm with radius small enough

that the image of V X ]-2,2[ under the mapping (4.5) be contained in U. We

then call ZJ the pull-back of ZJ (1 < j < m) via (4.5). We have

( 4 6 ) Z'=(S-X'y9 j=h-',Π

ZJ = χJ + i&(x,t)9 j = r+l9 >,m.

Write Φ" = ( Φ r + 1 , ,Φm). By virtue of (3.10) and (4.5) we have, for some

(4.7) \Φ"(X9t)\<B\xf9 Vx€ΞK,/e]-2,2[ .

The ZJ define a hypo-analytic structure on F X ]-2,2[. For each /, | / | < 2,

Xt = V X {t} is a maximally real submanifold in this structure, and (4.5)

induces a hypo-analytic isomorphism of Xt onto an open neighborhood of the

origin in the maximally real submanifold of U,

Xt = {(x, y) e U\ Im(5V) = 0 , / ' - 0} .

Next we define another C°° mapping of an open neighborhood of the origin

in Rm + 1 into U. We use now the coordinates xJ#, y# of (4.2), and assume that

the neighborhood V# in Proposition 4.1 and an open ball W# in R" centered at

the origin are small enough that the following two properties hold:

(i) F# X W# C U; (ϋ) for all t,\t\< 2, ί/#(F#) C Wφ.

In the sequel we call U# the product V# X W# (this is compatible with

Proposition 4.1). The mapping from V# X ]-2,2[ to U (or to U#) we shall be
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interested in is the following one:

(4.8) ( i # , 0 »-> * # = *#>>># = '/#(*#)•

We call Z # the pull-back of (SZf, Z") via the mapping (4.8). We have

i = xi + /<#(**) , y = l , ,rf

Here also we avail ourselves of (3.10). Because /#(0) = 0 (Proposition 4.1) we
have, for a suitable B > 0,

(4.10) \%(x#9t)\<B\x#\\ x#GV#,\t\<2.

The Z£ define a hypo-analytic structure on F # X ]-2,2[. The image via (4.8)
of the maximally real submanifold Ym — V# X {/} is an open neighborhood
of the origin in the maximally real submanifold Yt of U# defined by the
equation j># = tf#(x#).

Since S is a constant matrix (SZ\ Z") define on U the same hypo-analytic
structure as Z. Thus the hypo-analytic structures defined on V X ]-2,2[ and
V# X ]-2,2[ respectively are both the pull-back of one and the same structure
on U. In particular the pull-back of any distribution solution in U is a
distribution solution in each of the hypo-analytic structures so defined.

Another important remark is the following: Both mappings (4.5), (4.8)
preserve x" and therefore any form £" dx"\ the pull-back of ξ" dx" via (4.5)
is £" dx", which via (4.8) is ξ" dx£. Thus, if (0, £", 0) E Γ0*Ω is a character-
istic point (see (3.13)), its pull-back to the maximally real submanifolds Xt via
(4.5) and to Y#t via (4.8) is represented by (0, ξ") in the coordinates xj and xJ

#

respectively.
Actually we are going to change the coordinates xJ, j ^ r, in V X ]-2,2[.

Since we shall not modify the coordinates xj for j > r, our change of
coordinates will have no effect on the remark just made. We proceed as
follows: we cover the closed interval [0,1] with a finite number of open
intervals /„ ,/„, all contained in ]-2,2[ and such that if we call /λ the central
point in /λ, the matrix

is invertible for any / in some neighborhood of the closure of /λ. Then in
V X / λ we use the coordinates Re(S"λ~'Jt')7,./ - >* * >>% which we shall call xfj

for the sake of simplicity. We then have (cf. (4.6))

(4.11) ZJ = x ' J + iΦj(x',t), j=l,...,r9

such that if we write Φ' = (Φ1, , Φr), we have

(4.12) | Φ ' ( j c ' , 0 l < c o n s t . | ί - ί λ p ' | > x^V,tEJλ.
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As a result of what precedes we see that in both cases, the one corresponding

to use of the map (4.5) and the one to use of (4.8), we find ourselves in a

situation that can be described as follows.

Let F b e an open ball centered at the origin in Rm, and / an open interval in

the real line. On F X / w e are given a hypo-analytic structure defined by the

following m C 0 0 functions:

(4.13) ZJ = x' + iΦ''(x,t)9 7 = l , , m ,

with

(4.14) ΦJ real-valued, Φy(0, t) = 0 in J (1 < ; < m).

Moreover there is B > 0 such that

(4.15) \Φ"(x,t)\<B\x\\ xGV9tGJ,

where we have used the notation Φ" = ( Φ Γ + 1 , ,Φm).

Lemma 4.1. Assume that (4.13), (4.14), (4.15) hold. Let h be a distribution

solution in V X /, and t0 any point in J. //(0, ξ"°) E T^V does not belong to the

hypo-analytic wave-front set of the trace Λ,o of h on VX {/0}, then it does not

belong to that ofh^ whatever tλ E J.

Proof. It suffices to show that to every closed subinterval KoίJ there is a

number 8 > 0 such that the assertion is true if t0, tx E K and \t0 — tx\< 8.

We shall begin by modifying the ZJ fory < r. Let LJ(x, t) denote the linear

part of the Taylor expansion of Zj with respect to x about x — 0. Notice that

by (4.14), (4.15) we have

\ZJ - Z/(0, Z " , tλ)\< const. ( |x ' | + | x | 2 + \t - tλ |
2 ) .

Thus after substitution of Zj — Ly(0, Z", tx) for Zj we may assume that

LJ(x, t{) is independent of x". But this means that, possibly after decreasing V

and increasing B9 we have, whatever tλ in K,

2 , x E V.

As a consequence, if we substitute

for Z\x, t) and take (4.15) into account, we may as well suppose

(4.16) \Φ{x,tλ)\^B\x\\ xGV.

Our first requirement on 8 will then be that, after contraction of V about the

origin and for all t in /, 11 — tλ | ^ δ,

(4.17) \/x9y<ΞV, |Φ(x, t) - Φ(y, t) \<\x - y\/2.
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We wish to apply Theorems 2.1, 2.2 and Lemma 3.1. First of all we select a

number d > 0 such that the closed ball {x\ | Λ | < d] is contained in F, and a

function g G CC°°(F) equal to one in that ball.

We shall apply Theorem 2.1 to the trace of gh on V X {ί0}, gΛ,o. To be able

to do this we must know that Condition (2.2) is satisfied. Notice that in the

present situation this means that £"° Φ"(x, to)^c\x\ + κ\x\2/4 for some

c > 0 and all x in V. But by (4.15) this is automatically true whatever c > 0

provided K > 42?.

We shall apply Theorem 2.2 to ght. For this all we need to know is that

Condition (2.11) is satisfied. But this is precisely what (4.16) insures. We shall

take K > K^, the number in Theorem 2.2.

Finally we apply Lemma 3.1 after a translation t\-*t — tλ (thus what is

/ = 0 in the statement of Lemma 3.1 now becomes / = tx). Here condition (3.4)

must be satisfied, and so it is whatever the value of d > 0, exactly for the same

reason that (2.2) is satisfied whatever the value of c: as a consequence of (4.15).

The neighborhood W in Lemma 3.1, which here becomes a neighborhood

W\tχ) of /,, only depends on d and o n κ > sup(4i?, κ#). The latter constant

may be taken to be independent of tx E K; this was noted earlier insofar as B

is concerned and is quite clear for κ+ (cf. Remark 2.1). We determine 8 by the

additional requirement that the interval ]t} — δ, tλ + 8[ be contained in W'(tλ\

again whatever the point tλ in K.

Theorem 2.1 tells us that ghto has Property (2.1)κ. Lemma 3.1 then implies

that the same is true of ght. Theorem 2.2 deduces from this fact that

(0, Γ ° ) € WFha{ghtχ). q.e.d. '

Lemma 4.1 is a result on the propagation of (microlocal) singularities in

certain hypo-analytic structures (of codimension one; see Chapter I). We

derive from it:

Theorem 4.1. Let h be a distribution solution in an open neighborhood U of a

point p0 of Ω, θ° φ 0 a characteristic cotangent vector to Ω at pθ9 X,Y two

maximally real C°° submanifolds of U passing through p0, and hx and hγ the

traces of h on X and on Y respectively. If πx(θ°) does not belong to the

hypo-analytic wave-front set ofhx, then πγ(θ°) does not belong to that ofhγ.

Proof. We assume that (£/, Z1,- , Z W ) is a hypo-analytic local chart

centered at/?0 (henceforth called the origin), adapted to X, as in §3. We assume

that (3.9), (3.10) hold, and that X is defined by the equation y = 0. On the

other hand we take Y to be defined (in t/#) by (4.2), (4.3). If then we return to

the definitions of Xt and Yt in the construction which follows Proposition 4.1,

we observe the following

X=X0,U# ΠXX = ^ , 7 , = 7Π t//#.
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We first apply Lemma 4.1 to the hypo-analytic manifold KX/ λ, whose
hypo-analytic structure is defined by the functions (4.6) and (4.11). Since the
intervals /λ, λ = 1, ,i% make up an open covering of [0,1], we reach the
conclusion that if the hypo-analytic wave-front set of the trace of a distribution
solution h on V X {0} does not contain πγ(θ°) = ττx(θ°) = (0, £"°), the same
is true of that of its trace on V X {1}.

Next we apply Lemma 4.1 to the hypo-analytic manifold V# X ]-2,2[,
whose structure is defined by the functions (4.9). Here we conclude that if the
hypo-analytic wave-front set of the trace of a distribution solution h# on
F # X {0} does not contain (0, ξ"°), the same is true of that of its trace on
V# X {1}.

We take h to be the pull-back via (4.5) of a distribution solution h in ί/, and
Λ# to be the pull-back via (4.8) of the same distribution solution. Since (4.5)
induces an isomorphism of Xo onto an open neighborhood of the origin in
XQ = X, and (4.8) induces one of Y# onto an open neighborhood of the origin
in Yx = Y Π ί/# (and that these isomorphisms "preserve" (0, £"°) as we have
seen), the assertion in Theorem 4.1 is proved, q.e.d.

Let h be a distribution solution in an open subset ΩΌf Ω, (p0, 0°) a point of
Γ Ώ with p0 E Ω' and 0° Φ 0, X a maximally real C° submanifold of Ω'
passing through /?0, and hx the trace of h on X.

If 0° is noncharacteristic, i.e., if 0° §£ 7j£,, then either πx(θ°) = 0 or else
77-̂ (0°) ί WFha(hx\ by Theorem 3.1. Actually, if we keep in mind that the
hypo-analytic wave-front set never intersects the zero-section, we see that
πx(θ°) £ WFha(hx) in all cases. Suppose now that 0° G Tp°o. Then Theorem
4.1 tells us that 7^(0°) E WFha(hx) if and only if 7ry(°0°) E WFha{hγ)
whatever the maximally real submanfold Y of Ω' passing also through pQ. In
other words, this "if and only i f property is valid whether 0° is characteristic
or not. This allows us to introduce the following.

Definition 4.1. The point (ρ0, 0°) E Γ*Ω, with/>0 E Ω' and 0° φ 0, will be
said to belong to the hypo-analytic wave-front set of h if its natural projection
on the cotangent bundle of any (or, equivalently, of every) maximally real
submanifold ^of Ω' passing throughp0 belongs to the hypo-analytic wave-front
set of the trace of h on X.

When the codimension of the hypo-analytic structure of Ω is equal to zero,
we have T° = Γ*Ω, and Definition 4.1 agrees with Definition 1.2.

When there is not risk of confusion we shall denote by WFha(h) the
hypo-analytic wave-front set (for the structure of Ω) of a distribution solution
h in Ω' C Ω. Note that, by Theorem 3.1,

(4.18) WFha{h)cT«\Q,.
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Also note that by Definitions 1.2 and 4.1 the hypo-analytic wave-front set is a
hypo-analytic "invariant".

Remark 4.1. The hypo-analytic wave-front set of an arbitrary distribution
in Ω' C Ω has not been defined.

Theorem 4.2. The base projection of the hypo-analytic wave-front set of a

distribution solution is equal to its hypo-analytic singular support (Definition 1.3,

Chapter I).

Proof. Combine Theorem 3.2, Chapter I with Theorem 2.4 of present
chapter, q.e.d.

It is not immediately apparent that WFha(h) is a closed subset of T°\Q,. But
so it is:

Theorem 4.3. The hypo-analytic wave-front set of a distribution solution h in

an open subset Ω' o/Ω is a closed conic subset of Γ*Ω\0 |Ω,.

Proof. Since T° is closed in Γ*Ω, it suffices to show that WFha(h) is
relatively closed in T° \Q,. Let us go back to the usual hypo-analytic local chart
(£/, Z\ ,Z W ) centered at a point (called the origin) of Ω', in which (3.9),
(3.10), and all the other standard properties are valid. Let us use the same
notation as in the proofs of Theorems 3.1, 3.2.

Let (0, ξ°) be an arbitrary point in Γ0°|̂ o\0 (cf. (3.13)). We know that the
hypo-analytic wave-front set of the trace h0 of h on Xo (defined by y = 0) is
closed. Therefore if (0, ξ°) & WFha(h0), we shall have (x, ξ) £ WFha(h0) for
all x in a suitably small open neighborhood F ' C F o f the origin, and for all ξ
in an open conic neighborhood Γ of £°. According to Theorem 3.2 to each such
point (x, ξ) there is an open neighborhood Wo C W of the origin such that
(x, ξ) &WFha(ht) for all / in Wo. All that remains to be checked is that W
can be chosen independently of (x, £) provided V is small enough and Γ
"thin" enough. Inspection of the proof of Theorem 3.2 shows that Wo is
determined by the neighborhood W in Lemma 3.1, which only depends on K
and a number d > 0 which can be taken to be the same for all the relevant
(x, I), and on the number c in Theorem 2.1. It is true that the latter depends
on ξ° through its dependence on the number c0 in (2.9). But of course this
number can be taken to be the same if ξ° is replaced by points ξ which are
close enough, "conically speaking", to ξ°. By Definition 4.1 we conclude that
none of the points (x, y, ξ, 0), with xGV\y £W0,ξG Γ, belong to WFha(h).
They obviously make up a neighborhood of (0,0, |°, 0) in T°.

Remark 4.2. Suppose Ω is a real analytic manifold of dimension m + n,
and let n linearly independent analytic complex vector fields L,, ,Ln satisfy-
ing the bracket condition, be given in Ω. Then one may want to study the
analytic wave-front set WFa(h) of the solutions A of the equations Ljh — 0
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(j = 1, ,m). In our terminology this would be the hypo-analytic wave-front
set of h for the initial hypo-analytic structure β 0 of Ω, its real-analytic
structure, whose codimension is zero. A priori it has little to do with the
hypo-analytic structure β 1 defined on Ω by the vector fields Lj (codim Qx — n).
But note that if A'is any maximally real analytic submanifold of Ω for βj, both
β 0 and Qx induce on X the same structure, which is real analytic.

Let h be a solution in Ω of the equations Ljh = 0, j = 1, ,H, hx its trace
on X, and let (/?0, θ°) G Γ*Ω\0 be a characteristic point (for the system
L1? ,LJ such that/>0 G X. By Definition 3.2 (pQ, θ°) does not belong to the
hypo-analytic wave-front set of h (for βx) if πx (0°) £ WFha{hx). But the
"true" microlocal Holmgren theorem (see [15]) states that the latter is equiva-
lent to (p09 θ°) 6 WFha{h). Thus one sees that WFha{h) = WFa{h).

5. Standardized local charts and the Levi form

Let (£/, Z\ ,Z W ) be our usual hypo-analytic chart centered at the origin.
As before we suppose that U is the domain of local coordinates x1,- -9x

m,
y\ - -,yn, and that (3.9)—(3.10) hold. In the present section the analysis will be
focused on a conic neighborhood of a characteristic covector at the origin
θ° G Γ0°\{0}. As noted in §3 we have θ° = (0, ξ",Q) with ξ» = (£ r + 1 , ..,ξm)
Φ 0. We shall perform right away a linear change of the variables x" —
(xr+\ ,xw), which brings us into the situation where ξ" = (1,0, ,0), that
is to say,

(5.1) θ° = dxr+x\0.

Our aim in the first part of the present section is to use appropriate manipula-
tions of the basic hypo-analytic functions Zι and the coordinates xJ\ yk

9 to
obtain an expression for Φ r + ι which will serve us well in the subsequent
arguments.

Let us spell out in detail what are the "manipulations" which are allowed.
We have the right to change variables but only under the proviso that the
hypotheses (3.9)-(3.10), and (5.1), always be valid. We also have the right to
perform holomorphic substitutions of Z1, ,ZW—under the same proviso.
With this in mind we shall make use of the following notation: if / and g are
two real quadratic forms in the xJ\ yk, we say that they are equivalent, and
write/ — g if there is a holomorphic quadratic form h in the Zι's such that
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Note that if this is so, then

Φ r + I - ( / - * ) = Im{Z' + 1 - ih(Z)} + O(\x? + \y\3),

and consequently up to third order terms the substitution of Z r + 1 — ih(Z) for

Z Γ + 1 has the effect of substituting Φ Γ + 1 - / + g for Φ r + 1 (and the expression

of the former might be more suited to our purposes than that of the latter). It is

true that it also modifies Re Z r + 1 . But then we may take Re{Z r + 1 - ih(Z)} as

new coordinate xr+ι. These substitutions have no effect on our basic hypothe-

ses (3.9), (3.10) and (5.1).

With this notation we have

(5.2) xJxk~yJyk,χJyk~-xkyJ ifj9k<r;

(5.3) χJχk~xY~0 ifj>r,k<r;

(5.4) xJxk~0 ifj,k>r.

Lemma 5.1. The hypo-analytic functions Zι

9-—9Z
m and the local coordinates

x1,- ,xm, y\- - -,yn {all vanishing at the origin) in U can be chosen in such a

way that hypotheses (3.9), (3.10) and (5.1) are satisfied, and that furthermore the

following hold:

There are s real numbers λj(j = 1, ,s) with r < s < n, such that λj Φ 0 for

every j > r9 and complex numbers ajk (j — s + 1, ,«, k = !,*••,/*) such that

* r + 1 ( * j ) = Σ M n + Σ yJ** Σ«>
7=1 7=.*+l \ * = 1

( 5 5 ) / .

+o 2 ιyιι*
\y=5+l

Proof. We look at the homogeneous part of degree two in the Taylor

expansion of Φ r + x about the origin:

m m n n

φ/ +i — y p xjxk i 2 y y Q ιXJvk + y R vJvk
7,A:=1 7 = 1 Λ = l 7,A:=1

with ΛyA = Λ^. From (5.3) and (5.4) we derive

7,A:=1

+ 2 y \ y o, xk + y R, vk\vj + y R,vjvk

~ Δ ΔL I ZJ *έkjΛ • ^ kjy \y ΔL ^jky y
j=r+\ \ k=\ k=\
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We perform an R-linear change of variables y" — (yr+ι, -9y
n) so as to

transform the last quadratic form into

2 λj(yJ)2, λ y *0.
j=r+\

If the quadratic form in question happens to vanish identically, we take s = r,

and the present step in the argument can be skipped. Otherwise we make the

following change of variables:

k=\

Note that, by virtue of (5.3), (5.4),

,2I m r \2 / r

2 QkJχ
k + Σ Rkjy

k ~ Σ
\A;=1 A;=l / \A:=1

and thus for suitable constants Ajk, Bjk, Cjk E C with Cjk — Ckj we have

< Ύ Re(B,zJzk)+ Ύ C,zjzk+ Y i
jΛ=\ j,k=l j = r+\

n m

+ 2 Re ΣΛJkz
k]yJ + 2 2 Σ <2*,*V

7 = j + l \A:=1 / j=s+\ k = r+\

But the first sum is trivially equivalent to zero, and the second sum can be

brought into the form of a sum of squares, after a C-linear change of the

variables z/ = (z1, ,zΓ). Noting that, by (5.2),

(5.6) Σ λ y | z ' f / 2 ~ 2 λ y ( y ) 2 ,
7=1 j=l

we obtain (5.5) (after deleting the tildas).

Lemma 5.2. Suppose that (3.9), (3.10) and (5.1) hold, and that Φr+1 is given

by (5.5) with at least one coefficient ajk φ 0. Then the Z7, xJ

9 y
k can be further

modified so that all the preceding conditions are met, and that moreover λy < 0

for somej, 1 <j < r.

Proof. In (5.5) we make the change of variables

yJ - yJ =yJ + KΣ Re{ajkz
k), j = s+\, ,n.

k=\
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where K is a large positive constant. Again by (5.3), (5.4), we get from (5.5):

r n I r \2 5

φ 2 r + I ~ Σ λ , M 2 - κ Σ ΣRe(<^*) + 2 λ,(y)2

7=1 7=5+1 \A;=1 / 7 = r+l

+ Σ Reί Σ v ' W o l Σ lJyΊl*"l)
7=5+1 \fc=l / \ 7=5+1 /I 7=5+1

By the argument already used to see that

( ^ Σ <£*'**.
7=1 7=ί+l W=l / j9k=\

with C^ = C'kj. If not all the ajk are equal to zero, and K is large enough, then

not all the eigenvalues of the hermitian form at the right will be > 0, as one

sees by letting d2/dzJdzk (1 <j, k1^ r) act on the left-hand side. Reducing

once again that hermitian form to a sum of squares and applying (5.6) yields

the sought result, q.e.d.

We are now going to bring the Levi form into the picture. Let ω be an

arbitrary point of Ω, θ E Γω°, vl9 v2 two complex vectors in T'J^, and Vl9 V2

two C°° sections of Tf± such that Vj\ω = Vj for j = 1 , 2 . The Levi form at the

point (ω, 0) evaluated at (υx, v2) is defined by

(5.7) e («.#)(^«a)=^τ(β,[K1,F2] i β).

We have denoted by (, > the bracket for the duality between tangent and

cotangent vectors. One should show that the left-hand side is independent of

the choice of the vector fields Vj. In order to prove this it suffices to show that

if either vx or v2 is zero, the expression (5.7) vanishes. Suppose for instance

v2 — 0. Let L,, ,Ln be a basis of Tf± in an open neighborhood Ω' of ω, and

write

V2 = cxLλ + +cnLn with Cj E C°°(Ω').

The functions cx,' -,cn must vanish at ω. This clearly implies that the

right-hand side of (1.1) is zero.

Thus £ ( ω .) is a function on Γω° valued in the space of hermitian forms on

T^~. We can then define the quadratic form £ ( ω θ)(υ) on T'J- by

(5.8) £(ω,.)(ϋ) = e ( ω , 4 ϋ ' ϋ )
Customarily we also refer to the quadratic form (5.8) as the Levi form. We

shall make use of the customary basis of Tf± over U, Lx, ,LΠ, defined by

the conditions (cf. §2, Chapter I)

(5.9) LjZ1 = 0, Ljyk = δ/ ( / = ! , - • • , « J , * = ! , - • • ,Λ)
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We call Lj the value of the vector field Lj at the origin. An immediate
computation based on (3.9)-(3.10) shows that

L 2i

(5-10)

It follows from the second set of relations (5.9) that [LJ9 Lk]yι = 0 for ally, k,
I— 1, , n. On the other hand,

[LJ9 Lk]xh = i[L y , Lk](Zh + ZΛ) = h{LjLkZ
h - LkLjZh) (1 < h ^ m),

and therefore

h=\ UΛ

But LjZh = Lj(Zh - Zh) = -2iX/ImZΛ). Returning to (3.9)-(3.10) we see
that

LjZh = -2iLjyh ifh < r, LjZh = -2iL,ΦΛ i/A > r.

But this of course means that LjLkZ
h - LkLjZh = 0 if h < r. Also, by (3.10)

we have at the origin

LjLkΦ
h = Ljϊ?kΦ

h ifh > r,

and therefore

1 m 7\

(5.ii) ^ T [ L 7 , L J | 0 = 2 ( ^ Φ ' H 0 ' 0 ) - ^ ( Λ * = U ,Λ)-

Recalling Hypothesis (5.1) we reach the conclusion that

fξ. ΪΊΛ P / r θ r θ \ — ^ _/Γ r 7~ Ί W Λ Λ 0 \ — / r 0/~0>κr+1 \ί(\ r\\
yj.iz.) us,Q βoΛJ^j , LjkJ — — o\ I Lij, i^ki)\y > " ) — v 7 Λ /v̂ >̂ /

Let us compute the numbers (5.12) when Φ r + 1 has the form (5.5). We find
that

/ -K x 2λ, ifj = k<s;
(5.13) (LOQΦ-)(0,0)= ^ / / y . > J f Λ < r .

0 ifj> s9k> r.

Call £ 0 for short the matrix with generic entry (5.12). Among its eigenvalues we
definitely find 2λ r + 1, ,2λ ί ? but not necessarily 2λl9- ,2λr. Nevertheless



MICROLOCAL HYPO-ANALYTICITY 387

the following can be asserted:

Lemma 5.3. Suppose that (3.9), (3.10) and (5.1) hold, and that Φr+ι is given

by (5.5). Possibly after further modification of the Zι, xJ, yk which does not

modify those hypotheses, the following two properties are equivalent:

(5.14) at least one of the eigenvalues of £ 0 is < 0

(5.15) at least one of the real numbers λj in (5.5) is < 0.

Proof. If all the aJk in (5.5) are equal to zero, the eigenvalues of £ 0 are

exactly equal to 2λ,, ,2λ5, and the equivalence of (5.14) and (5.15) is trivial.

If at least one of the numbers ajk is nonzero, we modify the Z', xJ\ yk so that

the conclusion in Lemma 5.2 is valid. Then (5.15) is automatically valid, and

we must show that (5.14) is also valid. But (5.14) is equivalent to the property

that the associated quadratic form £0(t>) on Cn takes at least one strictly

negative value. This is evident if one notes that when vs+ι = ' = vn = 0, we

have, according to (5.13),

Lemma 5.4. Same hypotheses as in Lemma 5.3. The matrix £ 0 is positive

definite if and only ifs — n, and if all the numbers λy (y — 1, ,«) are > 0.

Proof. The conditions are sufficient by (5.13). We know that if some ajk is

nonzero, possibly after modification of the Z', xJ\ yk (it is easy to see that this

does not have any effect on the signature of the Levi matrix) one of the

numbers λy will be < 0, and therefore so will be one of the eigenvalues of £ 0 . If

the latter is positive definite, then all ajk must vanish. It suffices once again to

apply (5.13) to see that we must have s = w, and λy > 0 for ally = 1, ,«.

6. A criterion of microlocal hypo-analyticity based on the Levi form

We continue to use the same notation as in §5. In particular we reason in an

open neighborhood U of a point of Ω which we call the origin, and denote by

0. By θ° we denote an arbitrary characteristic covector at the origin, i.e.

ί ° E Γ0°\0. As in §5 we denote by £ ( 0 , β ° ) ( ϋ ) t h e Levi form at that point. In the

proofs below we shall always assume that U is the domain of independent

hypo-analytic functions Z 1 , , Z W , and of local coordinates x\- ,xm,

y\- - ,yn

9 all vanishing at the origin, such moreover that (3.9)-(3.10) and (5.1)

hold.

Theorem 6.1. Suppose that there is v G T^ such that £(Of ̂ ( t ? ) < 0. Then

(0, θ°) does not belong to the hypo-analytic wave-front set of any distribution

solution defined near 0.
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Proof. We select the Z7, xj, yk so as to be able to apply Lemma 5.3. Of
course the hypothesis says that Condition (5.14) holds. Thus Condition (5.15)
holds. We shall assume that λy < 0 for somej < r. The proof in the case where
λj < 0 for somey, r <j < s, is essentially identical, in fact somewhat simpler,
and we leave it to the reader. After a permutation in the z' variables, and a
dilation, we may and shall assume that λ, = - 1 .

Then according to (5.5) we can find a number δ0 > 0 such that whatever δ,
0 < δ < δ 0 , i f | x | < 8 δ , then

(6.1) Φ ' + 1 ( x , δ , 0 ) ^ - δ 2 / 2 , |Φ(x,«,0) |<2«,

where, as usual, Φ = (Φ1, ,Φm) We suppose tacitly that

l* |< H » \y\< δ0impUes (x, y) G U.

It is convenient to take U in the form of a product V X W with V (resp., W)
an open ball centered at the origin in x-space Rm (resp., in >>-space Rn).

In what follows we apply the results of §§1 to 4. We deal with an arbitrary
distribution h in £/, and denote by hx its trace on the maximality real
submanifold V X {0}, which we call X. In order to prove Theorem 6.1 it will
suffice to prove that πx(θ°) = (0, ξ") G Γ**, with {" = (1,0, ,0), does not
belong to the hypo-analytic wave-front set of hx (Definition 4.1 and Theorem
4.1). To this end we shall apply Theorem 2.2. But we want to avail ourselves to
Remark 2.1. Note first that, by virtue of (5.5),

(6.2) Φ' + 1 (*,0) = 0(|xp).

Suppose then that for eachy = r + 2, ,m, we substitute

Z£(X,JO = Z ' ( X , J O - { Σ ^ 7 ( 0 , 0 ) Z * ( X ^ ) Z ' ( X , ^ ) ,

for ZJ(x9 y). We set xJ

# = ReZ^(x, y)9j = r + 2,--9m9 and then delete the
subscripts # . This modification of the ZJ has no effect on (5.5). It does
however have the effect that now all second derivatives of the functions
ZJ(x,0) (j = 1, ,m) vanish at the origin. Therefore by Remark 2.1 we can
select the number σ0 small enough that if the open ball Vo = {x G Rw; | χ | <
8δ0} is taken as the neighborhood U in Theorem 2.2, then the corresponding
number K# can be taken ^ 1/16. We shall thus take

(6.3) 1 ^ * 4 '

and show that (2.1), holds when ξ° = (0, Γ) , i" = (1,0, ,0).
In order to obtain the latter we shall first apply Lemma 3.1 with V = Vo and

d = 7δ. Because of (6.2), if δ0 > 0 is small enough, |χ |< 8δ0, and (6.3) is true,



MICROLOCAL HYPO-ANALYTICITY 38 9

then |Φ r + 1(jc,0)|<ιc|jcp/4, which implies (3.4) when ξ = (0, {")• W e

select g E CC°°(FO), g = 1 if \x\< 7δ, and reach the conclusion that (3.5) is

valid. We shall in fact apply (3.5) with / = (δ,0, ,0), 0 < 8 < So suitably

small.

In order to estimate Ft

κ(gh; z,ζ) we estimate from below, away from zero,

the quantity

Q = Re{tf Z(x, t) + κ(ζ)[z - Z(x, t)f}/\ζ\,

for z E F c , a suitable open neighborhood of the origin in Cm, and ξ in some

open cone in Cm\{0} containing £°. As usual it suffices to have a lower bound

for Qo = Q when z = 0, ξ = ξ°. The properties (6.1) imply

Qo = -Φ'+\x91) + κ(\xf ~ I Φ(JC, t) | 2) > i ( l - 8fc)δ2,

which, in view of (6.3), implies all we wanted. (Cf. proof of Theorem 3.1.)

Corollary 6.1. Suppose that to every θ° E Γo°\0 there is v E T^ such that

£ ( 0 θo^(v) < 0. Then any distribution solution is hypo-analytic at the origin.

Corollary 6.2. Suppose the hypo-analytic structure is real-analytic. If the

hypothesis in Theorem 6.1 is satisfied, the point (0, θ°) E Γ*Ω\0 does not belong

to the analytic wave-front set of any distribution solution in some open neighbor-

hood of the origin.

The proof of Corollary 6.2 follows from Theorem 6.1 and Remark 4.2.

Corollary 6.3. Suppose that the hypo-analytic structure is real-analytic and

that to every θ° E Γo°\0 there is v E 7 ^ such that t^jo^υ) < 0. Then every

distribution solution in an open neighborhood of the origin is an analytic function

in a smaller neighborhood.

We prove next a weak converse of Theorem 6.1.

Theorem 6.2. Suppose that the Levi form at the point (0, θ°) E Γ°\0 is

positive definite. Then there exist an open neighborhood U of the origin and a C 1

solution h in U whose hypo-analytic wave-front set is exactly the ray {(0, pθ°);

p > 0 } .

Proof. By Lemma 5.4 we know that if Z7, xJ, yk are as in Lemma 5.1 such

that (3.9)-(3.10) and (5.1) hold, and if (5.5) holds, then s = n and all the

numbers λj are > 0. A dilation in each variable zj enables us to suppose λy = 2

for everyy = 1, ,n. Thus we have, by (5.5),

(6.4) Φ'+\x,y)

and if we set

2 [z]2=
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then

(6.5) Im/(x, y) = \x\2 + \y'\2 + 2\y"\2 + θ(|x|3 + |>>|3).

Let U be an open ball centered at the origin such that Im / > 0 in t/\{0}. We
take h=f3/2 in ί/, where the square root is the main branch of that function.
We are going to show that h fulfills our requirements.

For one thing h is a holomorphic function of / off the origin, and therefore
the hypo-analytic wave-front set of h must be contained in Γo° (Theorem 3.1
and Definition 4.1). By virtue of Theorem 6.1 and our hypothesis (that λy > 0
for ally) we know that -dxr+λ £ WFha{h). Since obviously h is not hypo-
analytic at the origin, it will suffice to prove that

for every θ G Γ0°\0 which is not a multiple of dxr+1.
As usual let X be the maximally real submanifold of U defined by y = 0. We

are going to show that πx(θ) = (0, ξ") does not belong to the hypo-analytic
wave-front set of the trace hxof h onX. It is convenient to assume that X is an
open ball centered at the origin in x-space. Note also that

(6.6) Z(x,0) = JC + fΛΦ(x,0)9

with

(6.7) | Φ ( x , 0 ) | < ί | * P , x£X,

for a suitable B > 0.
Let us write

f(z)=z'+ι+i[z]2,h(z)=f(z)3/2.

Let us now consider the following C00 functions in X X /, where / is the
open interval {t E R1 111< 2}:

(6.8) Zi(x,t) = χJ + f\tφJ(x,0), j=l, ,m.

Set/#(x, 0 = /(Z#(x, 0) We have

0(t\x\3).

Thus, provided X is small enough, we shall have Im /# > 0 in (X\{0}) X /,
and this certainly allows us to deal with h#(x, t) — h(Z#(x, t)). The latter is
C ι in X X J, and is a solution for the structure defined by (6.8). Properties
(6.6)-(6.7) imply that the hypotheses in Lemma 4.1 are satisfied. Its conclusion
enables us to derive that (0, ξ") does not belong to the hypo-analytic wave-front
set of the trace of Λ# o n I X {1}, trace which can be identified to hx via the
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map (x, 1) h-» x, from the fact that it does not belong to the hypo-analytic

wave-front set of the trace of Λ# on X X {0}.

Since Z£(JC, 0) = xjj — 1, , w, we must show that (0, £") does not belong

to the analytic wave-front set of the function

a well-known fact, whose proof follows directly from Definition 1.2, and which

we leave as an exercise to the reader.
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