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THREE EXOTIC R4'S AND OTHER ANOMALIES

ROBERT E. GOMPF

Abstract

We show that there are at least four smooth structures on R4, and that there are at least four
oriented diffeomorphism types of Casson handles. This is also an expository paper concerning the
theorems of Freedman and Donaldson; these theorems interact to demonstrate anomalous
behavior for 4-manifolds.

0. Introduction

There have recently been two quantum jumps in our understanding of
4-manifolds. Mike Freedman's work [4] has shown that topological 4-mani-
folds behave much like higher dimensional manifolds, at least in the simply
connected case (with hope for the nonsimply connected case as well). In sharp
contrast, Simon Donaldson's theorem [2] shows that smooth 4-manifolds
behave in a radically different way. In particular, Freedman's main results,
surgery and Λ-cobordism theorems, have counter-examples in the smooth
category. The most dramatic example of this pathology is the existence of
exotic smooth structures on R4, in particular, smooth manifolds which are
homeomorphic but not diffeomorphic to R4.

These exotic R4's are surprising for several reasons. First, it is a standard
fact that for n Φ 4, exotic Rn 's cannot exist. More fundamentally, exotic R4 's
show the failure in the smooth category of several major theories of higher
dimensional manifolds. We see the breakdown of surgery theory (even in the
simply connected case) during the construction of an exotic R4 (see §1). There
can be no 5-dimensional proper Λ-cobordism theorem, as it is easy to construct
a smooth λ-cobordism from any exotic R4 to the standard one. (This cannot be
a smooth product R4 X /, as one boundary component is not diffeomorphic to
R4.) Finally, we see a major breakdown of higher dimensional smoothing
theory, as we will now explain.

In dimensions five and up, the number of smooth structures on a given
manifold is determined by certain cohomology groups [6]. For example,
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S3 X R" (n > 2) has two smoothings, up to "isotopy." (These are actually
diffeomoφhic for « > 2, but the diffeomorphism is, in some sense, exotic.) The
exotic structures are "stable" under products with R"1, meaning that if (*S3 X
R")Σ denotes the exotic structure, then (S3 XR")ΣX Rm is the exotic structure
on S3 X Rn+m. In general, smooth structures of manifolds in these dimensions
always exhibit such stability.

Only one exotic smooth structure on a 4-manifold was known prior to
Donaldson's theorem; this was (S3 X R)F, the exotic S3 X R of Freedman [3].
This structure has the expected stability; (S 3 X R)F X R is the exotic structure
on S3 X R2. Exotic R4's, however, break this pattern. They are all unstable, as
R5 only admits one smooth structure (up to isotopy). In fact, higher dimen-
sional smoothing theory predicts that there should only be one structure on R4,
as it has no cohomology.

There are now many examples of unstable smoothings (and resulting un-
usual Λ-cobordisms). There are at least four oriented smooth manifolds homeo-
morphic to R4. From these, thirteen unstable X3 X R's can easily be con-
structed. Casson handles, the fundamental tools of Freedman's theory, provide
additional examples. Freedman's main theorem says that these are all homeo-
morphic to an open 2-handle, but Donaldson's theorem shows that they are
not all diffeomoφhic to it. In fact, they represent at least four oriented
diffeomoφhism types.

In §1 we will construct an exotic R4. In §2 we will modify this construction
to exhibit four distinct structures on R4, as well as the thirteen S3 X R's.
Finally, in §3 we will use similar methods to construct four diffeomoφhism
classes of Casson handles. We will use the following notation: if M is an
oriented manifold, M will denote the manifold obtained from M by reversing
orientation. We will, unless otherwise noted, work in the category of oriented
smooth manifolds and orientation-preserving diffeomoφhisms. Thus CP 2 and
CP2 will be considered different manifolds, as there is no orientation-preserv-
ing diffeomoφhism between them. All homeomoφhisms and imbeddings will
also be assumed to preserve orientation.

The author wishes to thank Mike Freedman for his time and support.

1. An exotic R4

We now give a standard construction of an exotic R4, which we will call
R4

DF, the Donaldson-Freedman R4. Its existence was first observed by Freed-
man. The construction follows easily from three theorems which we state
below.
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We first state Donaldson's theorem [2] in its most convenient form for our
purposes.

Theorem 1.1 (Donaldson). If a smooth closed simply connected 4-manifold

has a negative definite intersection form (over Z), then this form must be

isomorphic (over Z) to ®k{-\), i.e., it has a basis eλ,- -,ek of k elements

(k>O)witherej= -δijm

In particular, there is no such smooth manifold with form Es® Es, where Es

is the unique symmetric form over Z which has rank 8, is even, and is negative
definite.

It is well known that the Kummer surface K, the zero set of zf + z\ + z\ + z\
in CP3, is a smooth closed simply connected 4-manifold which realizes the
form Es θ Es θ H, where H is the hyperbolic form of rank 6, i.e., the sum of
three subspaces each with matrix [^Q]. Notice that H is also the intersection
form of the compact manifold X = (jj^S2 X S2) — (open 4-ball).

Theorem 1.2 (Ereedman). The subspace H of the intersection form of K is

represented by a topological imbedding i: X -» K. This imbedding is "smoothly

equivalent to" an imbeddingj: X -> #3S
2 X S2.

The latter statement means that there are neighborhoods Uoϊ i(X) and Fof
j(X) which are diffeomorphic, with the following diagram commuting:

UCK

diffeomorphism

VC#3S
2 xS2

In particular, U — i(X) is diffeomorphic to V — j(X). It is easy to arrange
that U — i(X) be homeomorphic to S3 X R (although it will not be diffeomor-
phic), since the boundary of Xis 5 3 .

Theorem 1.2 is a special case of Freedman's topological (simply connected)
surgery [4]. Notice that K — i(X) is an open manifold whose end is collared by
U — i(X\ which is homeomorphic to S 3 X R. Thus we may topologically cap
this end by gluing on a 4-ball, obtaining a closed topological manifold with
intersection form Es® Es. In other words, we have "surgered out" the
summand H from the intersection form.

We now see why Donaldson's theorem shows the failure of smooth surgery,
for if we could smoothly surger out H we would obtain an impossible smooth
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manifold representing E% θ Es. In particular, U — i{X) cannot be diffeomor-

phic to S3 X R, i.e., it is an exotic smoothing of S3 X R. In fact, it cannot

contain any smooth S3 separating its two ends; otherwise we could trim off the

end of K — i(X) by cutting along this S 3, and then cap the new boundary

smoothly with a 4-ball.

Theorem 1.2 is proven by using a theorem of Casson [1] to construct six

Casson handles in K representing a basis for H. We will discuss a similar proof

in the next section.

Theorem 1.3 (Freedman [4, Corollary 1.2]). Any open 4-manifold M with

πx(M) = 0, H2(M) = 0 and end collared (topologically) by S3 X R is homeo-

morphic to R4.

This is basically an application of Freedman's proper λ-cobordism theorem.

We now exhibit R4

DF. Consider the imbedding j : X -> ^S2 X S2 of Theo-

rem 1.2. It is easy to check that the open manifold (faS2 X S2) ~j(X) must

satisfy the hypotheses of Theorem 1.3; this is our R4

DF. (Consider # 3 S 2 X S2 as

the union of the two sets V and R4£>F. These intersect in V — j(X), which is

topologically S3 X R. The hypotheses of Theorem 1.3 now follow from the

Seifert-Van Kampen and Mayer-Vietoris theorems.) We must show that R4

DF is

not diffeomorphic to R4. Note that the end of R4

DF is collared by V — j{X).

This is diffeomorphic to U — i(X), the exotic S3 X R described above. It has

no smooth S3 separating its ends; hence R4

DF has " n o S3's near infinity."

Specifically, there is a compact set in R4

DF (namely R 4 ^ — V) which cannot be

enclosed by any smooth S3. This behavior is impossible in the standard R4.

From our construction it is clear that R4

DF imbeds smoothly in $3S
2 X S2.

With care, we could have obtained a sharper result. In particular, by consider-

ing the three [®Q] factors of H separately, we could have constructed our exotic

R4 in S 2 X S2.

2. Three exotic R4's

By suitably modifying the construction of R4

DF, we will obtain R4

Γ, an exotic

R4 imbedded in CP2 rather than S2 X S2. This will enable us to show that R4

Γ

has no orientation-reversing self-diffeomorphisms. Hence R4

Γ is distinct from

R4

Γ. We can then easily construct a third exotic structure R^ which has such a

self-diffeomorphism. It is an open question whether R4

DF can equal R4

Γ or R^

or even whether these manifolds are uniquely defined by the given construc-

tions.

We obtain the necessary modification by replacing the Kummer surface with

the manifold M - C P ^ J ^ C P 2 ) . The intersection form of Λf has rank 10,
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and can be naturally written as (1>Φ(Θ 9 (-1» with corresponding basis
eo,el9 ",e9. We will surger out the rank 1 subspace generated by the element
x = 3eo + e1 + +e 8 . Note that x x — 1; hence this subspace has form
(1). Also, its orthogonal complement is Es θ (-1). (To see this, consider x in
span (eo, ,e8} = (1)0 (Θ 8 (-1)). It is easy to check that for each j> in this
subspace x y = y-y (mod2). It follows that in this subspace the orthogonal
complement of x is even (with rank = 8, signature = -8) and hence Es). Now
by Donaldson's theorem 1.1, E% θ (-1) cannot be realized by a smooth
simply-connected manifold. Thus the required surgery cannot be accomplished
in the smooth category.

We now give the appropriate modification of Theorem 1.2.

Theorem 2.1. The element x E H2{M) is represented by an open set W
homeomorphic to CP2 — point. There is a smooth imbedding j : W -> CP2. (All
maps preserve orientation.)

W replaces U in Theorem 1.2; j(W) replaces V. X will be replaced by £, a
topological 2-sphere in ^coming from CP1 C CP 2 — point.

Proof. A theorem of Casson ([1] or [4, Theorem 3.1]) gives conditions
under which Casson handles can be constructed in a simply-connected mani-
fold. In our case, it gives the following: let B be a small 4-ball in Af, with C an
unknotted circle in its boundary. Then there is a Casson handle CH C M with
CH Π B = 9~CH = tubular neighborhood of C in dB, such that CH U £
represents the class x E H2(M). To get this, we need to check one algebraic
condition: there must be an element β E H2(M) with x - β = 1 and β /? even.
In fact /? = -ex + e9 works.

Now let W- CH U int B. By Freedman's theorem [4, Theorem 1.1] any
Casson handle is homeomorphic to an open 2-handle; hence W is homeomor-
phic to the total space of an R2-bundle over S2. This is actually a Hopf bundle,
since H2(W) is generated by x, and x x = + 1 . Thus W is (oriented) homeo-
morphic to CP 2 — point, the total space of the Hopf bundle.

We next construct the mapy: W -> CP 2 . Now CP 2 can be decomposed as
0-handle U 2-handle U 4-handle, where the 2-handle is glued to an unknotted
circle in the boundary of the 0-handle, with one right-hand twist in the
framing, forming a closed Hopf bundle. A Casson handle imbeds smoothly in
a 2-handle (preserving the attaching region); in fact it is the complement of a
certain "generalized cone on a Whitehead continuum" ([1] or [4, §5]). We can
now define j on CH by this imbedding CH -> 2-handle C CP2. Since CH and
the 2-handle are both glued to +1-framed unknots, we can extendy to all of W
by sending int B onto int (0-handle). This completes the proof of Theorem 2.1.
q.e.d.
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The construction of R4

Γ is now analogous to that of R 4 ^ . Let R4

Γ — CP2 —

j{S) where S is the image in W of any CP 1 under the homeomorphism

C P 2 — point » W. Then R4

Γ is homeomorphic to R4 by Theorem 1.3, and its

end is collared by j(W — S) which is diffeomorphic to W — S, a topological

C P 2 - CP 1 - point = S3 X R. But W - S collars M - S. Since we cannot

cap this end by Donaldson's theorem, it follows that R4

Γ has no S3's near

infinity.

Theorem 2.2. R4

Γ has no orientation-reversing self-diffeomorphisms.

Since R4

Γ C C P 2 by construction, this theorem follows immediately from the

next lemma.

Lemma 2.3. R4

Γ does not imbed in CP2 {or in any negative definite smooth

simply connected closed 4-manifold).

Proof. We suppose there is an imbedding h : R4

Γ -» CP 2 . This will enable us

to cap the end of M — S with a negative definite manifold to obtain a closed

manifold with form Es θ ( - l ) Φ (negative definite) contradicting Donaldson's

theorem. Let Y be the compact set R4

Γ ~ j{W - S). Then CP 2 - h{Y) is an

open manifold with form (-1), and end collared by hj{W — S). {Note. The

two ends of W — S are very different from each other. We have exposed the

end which was not exposed in R4

Γ.) Now use the map hj to glue this collar of

C P 2 - h{Y) onto the collar W - S of M - S, obtaining the desired closed

manifold, q.e.d.

Next we construct R^, an exotic R4 which has an orientation-reversing

involution. It is an "end-connected sum" of R4

Γ and R4

Γ. Specifically, choose a

smooth proper imbedding of a ray, γ : [0, oo) -» R4

Γ. A tubular neighborhood

of γ is diffeomorphic to [0, oo) X R3. Glue this onto the subset [0, £) X R3 of

[0,1] X R3, preserving the R3 fibers. Now take another copy of R4

Γ and glue the

same subset to {{, 1] X R3 (preserving fibers; hence reversing orientation). We

have now attached R4

Γ to R4

Γ, using / X R3 like a piece of scotch tape. The

resulting manifold R^ is homeomorphic to R4, and has a reflection inter-

changing the two factors. It is not standard since it contains both R4

Γ and R4

Γ,

so it cannot imbed in any definite manifold (negative or positive) as in Lemma

2.3.

We have now established that Rttandard* ^4r> Rr a n i * ^ Δ a r e a ^ distinct

oriented smooth structures on R4. It seems a reasonable conjecture that we can

obtain many more structures via end-connected summing as above.

At this point, we can easily exhibit thirteen (unstable) oriented smooth

structures on S 3 X R. Let R4

Σ and R4

Σ/ each be any of the four structures listed

above. Then R4

Σ#R4

Σ, is homeomorphic to S3 X R (in fact, it is diffeomorphic

in the case where R4

Σ and R^, are both the standard structure). There are ten

choices of {R4

Σ,R4

Σ,}, and these all yield distinct structures on S 3 X R. To see
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this, it suffices to check that the ends of the four R4's all exhibit different
behavior. For example the end of R4

Γ cannot be capped with any negative
definite manifold as in the proof of Lemma 2.3, but it can be capped by
something positive definite (since R4

T imbeds in CP 2). The end of R ,̂ however,
cannot be capped with either sort of manifold.

The three other S 3 X R's occur as sufficiently narrow collars of the ends of
the three exotic R4 's (such as the manifold W — S defined earlier). These differ
from the ten structures given above, as they admit no smooth S3 's separating
their ends. (In fact, the inside ends of these S 3 X R's differ from each other
and from the ends of exotic R4's. This may be seen by examining which
manifolds they can be the ends of; e.g., not R4 with any smoothing.)

All of the exotic S 3 X R's described here are unstable, that is, if (S3 X R)Σ

is any one of these, then (S3 X R)Σ X R is diffeomorphic to the standard
S3 X R2. This follows from the observation that each of these S3 X R's has
Rohlin invariant zero.

3. Four diffeomorphism types of Casson handles

A Casson handle is a certain type of smooth manifold which comes with a
fixed decomposition into kinky handles; see [1], [4] or [5] for details. By
Freedman's theorem [4, Theorem 1.1], they are all homeomorphic to the
standard open 2-handle B2 X int B2. It is well known that Donaldson's
theorem shows that some Casson handles are not diffeomorphic to the stan-
dard 2-handle, but further results about their diffeomorphism types are scarce.
We will show that there are at least four oriented diffeomorphism types of
Casson handles.

Freedman [4, §5] gives notation for Casson handles, representing a kinky
handle decomposition by a signed tree with base point. The vertices of the tree
correspond (bijectively) to kinky handles. Every vertex has one edge leaving it
for each kink (self-plumbing) of the corresponding kinky handle. The edges are
each labelled ( + ) or (-), representing the self-intersection numbers of the
associated kinks. The first stage kinky handle corresponds to the base point.
Each second stage kinky handle caps off some first stage kink; its vertex is the
endpoint of the corresponding edge. Continuing this pattern with higher stages
specifies the tree. We have established a bijection between kinky handle
structures of Casson handles and locally finite signed trees with base points for
which every edge path extends indefinitely away from the base point.

For convenience, we will extend this notation to allow branches which
terminate. A vertex with no edges leaving it represents a "kinky handle with no
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kinks," i.e., a 2-handle glued to the appropriate framed curve in place of a
kinky handle. Thus a tree with some finite branches represents a manifold with
a decomposition into kinky handles and 2-handles. We will not consider these
to be kinky handle decompositions of Casson handles; instead we call the
space associated with any signed tree a generalized Casson handle (GCH). Note
that capping a kink with a 2-handle is the same, up to diffeomorphism, as
removing the kink. Thus, if an edge has no edges leaving its endpoint, it may
be deleted without changing the diffeomorphism class of the corresponding
GCH. In particular, a finite GCH is diffeomorphic to a 2-handle, and an
infinite GCH is diffeomorphic to some Casson handle.

We next define our invariants for distinguishing Casson handles. For
m = 0,1,2, let Mm = CP2#(#m+9CP2). Thus Mo is the manifold M used in
§2; the others are obtained from Mo by connected sums with CP2. If
eo, ,em+9 is the natural basis for H2(Mm\ let xm — 3e0 + ex + + e8.
This is essentially the element x of §2. Note that the orthogonal complement of
x is £ 8 θ ( Θ m + 1 ( - l } ) (see §2); so by Donaldson's theorem we may not
smoothly surger out xm.

Definitions. A GCH has positive polarity if for some m it has a smooth
orientation-preserving imbedding in Mm representing xm (attached to an un-
knot in the boundary of a small 4-ball as in the proof of Theorem 2.1). A GCH
has negative polarity if reversing its orientation gives a GCH with positive
polarity.

Note that reversing the orientation of a GCH corresponds to reversing all
signs of the associated signed tree. There is an equivalent definition of negative
polarity in terms of imbedding in Mm. We will also refer to positive or negative
polarity of a signed tree, meaning that of the corresponding GCH.

These polarities are clearly (oriented) diffeomorphism invariants. They de-
termine four possible states: both positive and negative polarity (a dipolar
GCH), neither (a nonpolar GCH), or exactly one (a positively or negatively
monopolar GCH). Our goal is now to show that all four states are realized by
Casson handles. This will follow axiomatically from the following five facts.

Fact 3.1. There exists a Casson handle with positive polarity.

In fact, we constructed one in Mo while proving Theorem 2.1.

Fact 3.2. The standard 2-handle is nonpolar.

If it had positive polarity, we could imbed it in some Mm representing xm.
This would give us an open set W diffeomorphic to CP2 — point, representing
xm (compare with Theorem 2.1). We could use this to smoothly surger out xm,
contradicting Donaldson's theorem. The case of negative polarity is now
trivial; see Fact 3.5.
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Fact 3.3. // Q is a signed tree with positive polarity, then any signed tree Qr

containing Q (with the same base point) also has positive polarity.

If we imbed the corresponding manifold G C H ρ in Mm as in the definition of

positive polarity, we can enlarge it to obtain GCYLQ, in Mm by adding tiny

kinks and kinky handles within small coordinate patches. Alternatively, using

the dual picture of a Casson handle as a 2-handle minus a generalized cone on

a Whitehead continuum, we get GCH^, C G C H ρ whenever Q C Qf.

Fact 3.4. // Q has positive polarity, then any tree Qf obtained from Q by

" pruning" a finite number of(-) labelled edges also has positive polarity.

This means the following: take the signed graph Q and delete the specified

edges. The component of the resulting graph which contains the base point is

the desired Q'. We have thus "pruned off some branches. We will prove this

fact below.

Fact 3.5. We obtain analogues of the above facts for negative polarity by

reversing all signs.

This follows immediately from the definition of negative polarity.

Proof of Fact 3.4. We will prove the case where Q' is obtained from Q by

pruning one edge; the general case will follow by induction. Imbed GCHg in

some Mm as in the definition of positive polarity. Let p G GCH^ C Mm be the

point of intersection we wish to remove; two sheets of the core C of some

kinky handle k meet here transversely with intersection number - 1 . We will

remove this intersection by "blowing up a C P 2 , " i.e., carefully forming the

connected sum Mm$CP2 = Mm+X to obtain the desired GCH^, imbedded in

Let Sx and S2 be two unoriented 2-spheres in CP 2 , obtained by forgetting

the orientations of two CP l 9 s . These 2-spheres intersect transversely in one

point p'. If Sx and S2 were oriented to represent the same generator of

H2(CP2), their intersection number Sx S2 would be - 1 ; if they represented

opposite generators, it would be + 1 .

Now let B be a small 4-ball in Λfm, centered at/?, intersecting the core disk C

in a standard pair of unknotted disks Dx and D2 with Dλ Π D2 — {ρ} Let B'

be a similar ball about pr in CP 2 , intersecting Sx and S2 at D[ and D2

respectively. There is an orientation-reversing diffeomorphism φ : B -» B' send-

ing Dx onto D[ and D2 onto D2. We define the connected sum Mm$CP2 as

follows: remove int B and int B' from the respective manifolds, then glue the

resulting boundaries via φ 192?. This connected sum respects orientation since φ

reverses it. Note that removing int B from M has punctured C twice, by

deleting int Dx and int D2. We plug these holes by the disjoint disks Sx — int D[

and $2 — int D2, respectively, in CP2. We have thus eliminated the desired

kink from C.
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Suppose, for the moment, that our kinky handle k is the first stage of the
GCH. In this case we have succeeded in imbedding GCΆQ, in Mm+X. We must
now show that GCHQ, represents xm+x as in the definition of polarity, i.e., that
the homology class represented by k U (small 4-ball) is not changed by the
"blowing up" process. Our construction has altered C by "connected sum-
ming" with Sx and S2. Thus an orientation of C induces orientations on Sx and
S2. In fact, these orientations are related so that φ\Di\ Z>z-> D[ reverses
orientation for / = 1,2. Now all three maps φ, φ\Dx, and φ\D2 reverse
orientation, so the fact that the kink at/? had intersection number Dx D2 — -1
implies that Sx S2 = D[ D2 = • + 1 . It follows that Sx and S2 are oriented to
represent opposite generators of H2(CP2). Thus our construction modified the
homology class of C only by adding two terms [Sx] and [S2] which cancelled
each other. This completes the proof if k is the first stage kinky handle.

If k is in the nth stage, n > 1, our newly constructed subspace of Mm+X

automatically represents xm+ι, as this is determined by the first stage. The
difficulty in this case is in showing that we have not altered the framing by
which our kinky handle attaches to the previous stage. If we have, our new
object will not be a GCH (or even a topological 2-handle). This framing can be
defined by a relative self-intersection number of C in Mm — int(first n — 1
stages of GCH ρ) (see [5, §2.2.2], or [1]). The above argument now shows that
blowing up the CP2 does not affect this relative homology class, hence
preserves the framing. (Alternatively, note that this number C C equals
χ(v) + 2 self C, where χ(v) is the relative normal Euler class, and self C is the
number of self-intersections of C counted with sign. Our construction de-
creases χ(v) by two (from running twice over CP2) but increases self C by one
(from removing a (-l)-intersection). Thus there is no net change.) q.e.d.

It is now easy to prove our main result:

Theorem 3.6. Each of the four polarity states is realized by a Casson handle.

Proof. There is a Casson handle CH+ with positive polarity and only ( + )
kinks at the first stage (or in fact at the first n stages for any fixed n). To get
CH + , take any CH with positive polarity (Fact 3.1) and prune out all (-)
kinks from the first stage (or first n stages). Now CH+ is positively monopolar,
for if it had negative polarity we could prune away the entire first stage (Fact
3.4 with reversed orientation) to get the standard 2-handle with negative
polarity, contradicting Fact 3.2. Clearly CH_= CH+ is negatively monopolar.

To get a dipolar Casson handle, take the signed trees Q+ (for CH + ) and Q_
(for CH_) and identify their base points. The resulting tree contains both Q+

and Q_\ hence it is dipolar by Facts 3.3 and 3.5. (This operation is equivalent
to boundary-connected summing the first stage kinky handle cores, or gluing
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the attaching regions 92?2 X int B2 of the Casson handles together along
/ X int B2.)

Any tree with only ( + ) edges at the first stage and only (-) edges at the
second stage is nonpolar. If it had positive polarity we could prune out the
whole second stage and get a finite tree with positive polarity, contradicting
Fact 3.2. Similarly it cannot have negative polarity, q.e.d.

There may be a simple procedure for determining the polarity of a Casson
handle by looking at its tree: let CH0 be the simplest Casson handle, with only
one positive kink at each stage and no negative kinks. Let Qo be the
corresponding tree. Notice that any tree with positive polarity must contain
Qθ9 for otherwise we could obtain a finite tree by pruning a finite number of
(-) edges.

Conjecture. CH 0 has positive polarity.

If this is true, then a tree has positive polarity if and only if it contains Qo

(with the same base point). Negative polarity will be similarly determined by

Go-
This conjecture becomes more likely if we generalize the definition of

positive polarity. For example:

New Definition. A GCH has positive polarity if it imbeds in the (noncom-
pact) infinite connected sum M^ = CP^jf^CP 2), representing x^ = 3e0 +
ex + +es.

This definition enlarges (strictly?) the class of GCH's with positive polarity.
For example, we can now prune an infinite number of (-) edges as in Fact 3.4,
so there is a CH+ with positive polarity and no negative kinks at all. The proof
of Theorem 3.6 is essentially unaltered by this change of definition. (The
standard 2-handle is still nonpolar (see Fact 3.2) because the set W required in
the proof can be taken to be a small neighborhood of a topological 2-sρhere
which, by compactness, actually lies in Mm for some finite m.)

The author has explicitly constructed an imbedding of the first eight stages
of CH0 in M^ as required. Although he has found no way to continue the
construction indefinitely, this does seem to suggest that the conjecture may be
true.
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