A LOWER BOUND FOR THE FIRST EIGENVALUE OF A NEGATIVELY CURVED MANIFOLD

RICHARD SCHOEN

There has been much work in recent years on the relation of the low eigenvalues of a compact Riemannian manifold to the geometry of the manifold. For Riemann surfaces with positive genus, it was observed by P. Buser [1] that one can find a compact hyperbolic surface of fixed genus (hence fixed area) with arbitrarily small first eigenvalue (see [10] for more information on this problem). For hyperbolic manifolds of dimension larger than two, Mostow's theorem implies that the topology uniquely determines the geometry, so the above phenomenon for λ_{1} is likely to be a two-dimensional phenomenon. In this note we show that this is the case. Precisely, let M^{n} be a compact Riemannian manifold with sectional curvature bounded between two negative constants. We show here that if $n \geqslant 3$, then $\lambda_{1}(M)$ has a lower bound depending only on the volume of M. Actually, for $n>3$, Gromov [7] has shown that an upper bound on volume implies an upper bound on diameter (for negatively curved M). Using this result, a bound such as ours would follow from a general result of S. T. Yau [11]. For $n=3$, the diameter is not bounded in terms of volume (see [2, 3.13]) so our result seems to be of most interest in this case. Buser [2] has observed that our dependence on the inverse square of the volume is best possible.

The case $n=3$ of our theorem was announced in the Hawaii Symposium in 1979. In this note we give a simplified version, valid for all $n>2$, of our original proof. We wish to thank P. Buser for pointing out reference [9] which is used in the proof of Lemma 1.

The main results

We will assume throughout that M^{n} is a compact n dimensional manifold. We state our main result.

[^0]Theorem. If the sectional curvatures of M satisfy the inequality $-1 \leqslant K_{M} \leqslant$ $-\kappa^{2}$ for some $\kappa \in(0,1)$ and if $n \geqslant 3$, then the first eigenvalue $\lambda_{1}(M)$ satisfies

$$
\lambda_{1}(M) \geqslant \min \left\{\frac{(n-1)^{2} \kappa^{2}}{4}, \frac{\delta_{n}}{\operatorname{Vol}^{2}(M)}\right\} \geqslant \frac{\delta_{n, \kappa}^{\prime}}{\operatorname{Vol}^{2}(M)}
$$

where $\delta_{n}=4^{-1} \omega_{n-1}^{2}\left[\varepsilon_{n} e^{-\varepsilon_{n}(1-\kappa)}\right]^{2 n-2}, \varepsilon_{n}=4^{-(n+3)}, \omega_{n}=$ volume of the unit ball in R^{n}, and

$$
\delta_{n, \kappa}^{\prime}=(n-1)^{2} 4^{-1} \kappa^{2} \omega_{n}^{2} \varepsilon_{n}^{2 n}
$$

We now introduce some terminology. Given a hypersurface Σ in M and a local orthonormal frame e_{1}, \cdots, e_{n-1} tangent to Σ, the mean curvature vector is given by

$$
H=\frac{1}{n-1} \sum_{i=1}^{n-1}\left(D_{e_{i}} e_{i}\right)^{\text {Nor }}
$$

where D is the Levi-Civita connection on M, and ($)^{\text {Nor }}$ means projection normal to Σ. We will need three preliminary lemmas. The first is an isoperimetric inequality.

Lemma 1. Suppose Σ is a closed (possibly disconnected) hypersurface in M which bounds a region Ω in M. Suppose the mean curvature vector H points everywhere into Ω, and assume the inequalities

$$
|H| \geqslant 1, \quad \operatorname{Ric}_{M} \geqslant-(n-1)
$$

Then we have $\operatorname{Vol}(\Sigma) \geqslant(n-1) \operatorname{Vol}(\Omega)$.
Proof. This result follows from the paper of Heintze-Karcher [9]. The estimates of [9, p. 453] applied on one side of Σ give the inequality

$$
\operatorname{Vol}(\Omega) \leqslant\left(\int_{0}^{\infty}\left(\cosh r-\left(\min _{\Sigma}|H|\right) \sinh r\right)_{+}^{n-1} d r\right) \operatorname{Vol}(\Sigma)
$$

where () $)_{+}$indicates the positive part of a function. Using the fact that $|H| \geqslant 1$, we get immediately the conclusion of Lemma 1.

For a point $P \in M$, let $i(P)$ denote the injectivity radius of M at P. Our next lemma gives an estimate of $i(P)$ for points along a hypersurface in terms of the volume of the hypersurface.

Lemma 2. Suppose M satisfies $K_{M} \leqslant-\kappa^{2}$ for some $\kappa \geqslant 0$, and let Σ be a hypersurface in M with mean curvature H satisfying $|H| \leqslant \Lambda$. Suppose also that $\operatorname{Vol}(\Sigma)<\infty$ and $\mathscr{K}^{n-2}(\bar{\Sigma} \sim \Sigma)=0$ where \mathscr{H}^{s} denotes Hausdorff s dimensional measure. Then for every point $P \in \bar{\Sigma}$ we have

$$
i(P) e^{-i(P)(\Lambda-\kappa)_{+}} \leqslant\left[\omega_{n-1}^{-1} \operatorname{Vol}(\Sigma)\right]^{1 / n-1}
$$

where ω_{n} denotes the volume of the unit ball in R^{n}.

Proof. The proof is a modification of a well known monotonicity inequality for the area of a submanifold of R^{n}. We do the proof assuming that Σ is closed since an easy cutoff argument can then be used to prove the general case. By standard comparison theorems, if r denotes the distance function to a point, $P \in M$, then we have the Hessian comparison

$$
\frac{1}{2} D_{x, x} r^{2} \geqslant(1+\kappa r)|x|^{2}
$$

provided $r<i(P)$. Restricting this inequality to Σ and taking the trace we have

$$
\frac{1}{2} \Delta_{\Sigma} r^{2} \geqslant(n-1)\left(1-r(\Lambda-\kappa)_{+}\right)
$$

Integrating this inequality over $\Sigma_{\tau}=\Sigma \cap B_{\tau}(P)$ and applying Stokes theorem we get

$$
\tau \int_{\partial \Sigma_{\tau}}|\nabla r| \geqslant(n-1)\left(1-\tau(\Lambda-\kappa)_{+}\right) \operatorname{Vol}\left(\Sigma_{\tau}\right)
$$

where ∇ is the connection on Σ. Since for any regular value τ of $\left.r\right|_{\Sigma}$ we have

$$
\frac{d}{d \tau} \operatorname{Vol}\left(\Sigma_{\tau}\right)=\int_{\partial \Sigma_{\tau}}|\nabla r|^{-1},
$$

and since $|\nabla r| \leqslant 1$ on Σ, we get the differential inequality

$$
\tau \frac{d}{d \tau} \operatorname{Vol}\left(\Sigma_{\tau}\right) \geqslant(n-1)\left(1-\tau(\Lambda-\kappa)_{+}\right) \operatorname{Vol}\left(\Sigma_{\tau}\right) .
$$

Integrating from ε to $i(P)$ we have

$$
\left[\varepsilon e^{-\varepsilon(\Lambda-\kappa)_{+}}\right]^{1-n} \operatorname{Vol}\left(\Sigma_{\varepsilon}\right) \leqslant\left[i(P) e^{-i(P)(\Lambda-\kappa)_{+}}\right]^{1-n} \operatorname{Vol}(\Sigma)
$$

Letting $\varepsilon \downarrow 0$ then gives the conclusion of Lemma 2.
The third preliminary lemma we need is a version of the Margulis lemma.
Lemma 3. Suppose $-1 \leqslant K_{M}<0$, and define a set θ by $\theta=\{P \in M: i(P)$ $\left.<\varepsilon_{n}:=4^{-(n+3)}\right\}$. The set θ is an open set having finitely many components $\theta_{1}, \cdots, \theta_{l}$. Each component $\hat{\theta}_{i}$ is a neighborhood of a simple closed geodesic Γ_{i} with length $\left(\Gamma_{i}\right)<2 \cdot \varepsilon_{n}$. Moreover, each \mathcal{O}_{i} is topologically equivalent to $S^{1} \times$ B^{n-1}, and is star-shaped with respect to Γ_{i} in the sense that every point of \mathcal{O}_{i} is connected to Γ_{i} by a unique geodesic arc lying within $\mathcal{\vartheta}_{i}$ and meeting Γ_{i} orthogonally.

Proof. By a version of the Margulis lemma given by Buser-Karcher [3, 2.5.4] we have, under our hypotheses, that if α, β are loops at a point $q \in M$ which have lengths $|\alpha|,|\beta| \leqslant 2 \varepsilon_{n}$ then α, β generate a cyclic subgroup of $\pi_{1}(M, q)$. Lemma 3 can be derived from this result as follows. Let $P \in \mathcal{O}$ be a given point, and let \tilde{P} be a point in the universal cover \tilde{M} of M lying above P. Since $i(P)<\varepsilon_{n}$, there is a deck transformation γ which translates \tilde{P} a distance less than $2 \varepsilon_{n}$. Because M has negative curvature, there is a unique geodesic σ which
is preserved by γ. Let $\langle g\rangle$ denote the cyclic group of deck transformations which preserve σ. For any $h \in\langle g\rangle$, the function $\delta_{h}(x)=d(x, h x)$ is a convex function on M which achieves its minimum value on σ. The set $\tilde{\mathcal{O}}_{i}$ defined by

$$
\tilde{\mathscr{O}}_{i}=\left\{x \in \tilde{M}: \delta_{h}(x)<\varepsilon_{n} \text { for some } h \in\langle g\rangle\right\}
$$

is therefore a finite union of convex neighborhoods of σ. Hence $\tilde{\mathscr{\theta}}_{i}$ is star-shaped with respect to σ. Now if k is a deck transformation such that both x and $k(x)$ lie in \mathcal{O}_{i} for some x, then for some integers r, s, g^{r} (resp. g^{s}) translates x (resp. $k(x)$) a distance less than $2 \varepsilon_{n}$. But then both g^{r} an $k^{-1} g^{s} k$ translate x less than $2 \varepsilon_{n}$ and hence we have $k^{-1} g^{s} k \in\langle g\rangle$. From this it follows that g, k generate a solvable subgroup of π, which is cyclic by Preissman's theorem and hence $k \in\langle g\rangle$. Therefore, the set $\tilde{\mathcal{O}}_{i} /\langle g\rangle=\mathcal{\theta}_{i}$ is a domain in M containing the original point P and is a component of θ. This gives the conclusions of Lemma 3.

Proof of Theorem. To prove the theorem we will use the isoperimetric quantity $h(M)$ of Cheeger [4] defined by

$$
h(M)=\inf \left\{\frac{\operatorname{Vol}\left(\Sigma^{n-1}\right)}{\min \left\{V_{1}, V_{2}\right\}}\right\},
$$

where the infimum is taken over all smooth embedded hypersurfaces Σ^{n-1} (not necessarily connected) which divide M into two components with volumes $V_{1}, V_{2} . \operatorname{In}[4]$, Cheeger proved the inequality

$$
\begin{equation*}
\lambda_{1}(M) \geqslant \frac{1}{4} h^{2}(M) . \tag{1}
\end{equation*}
$$

Thus we concentrate our efforts on giving a lower bound on $h(M)$. We will use the following existence theorem from minimal surface theory (see [5, Chapter 5], [6])

Existence Theorem. For any v with $0<v \leqslant \frac{1}{2} \operatorname{Vol}(M)$, there exist an open set $\Omega_{v} \subset M$ with $\operatorname{Vol}\left(\Omega_{v}\right)=v$, and a smooth embedded hypersurface Σ_{v} with the property that $\bar{\Sigma}_{v}=\partial \Omega_{v}, \mathcal{H}^{s}\left(\bar{\Sigma}_{v} \sim \Sigma_{v}\right)=0$ for $s>n-8$, and Ω_{v} has the extremal property

$$
\operatorname{Vol}\left(\Sigma_{v}\right)=\inf \{\operatorname{Vol}(\partial \Omega): \Omega \subseteq M \text { with } \operatorname{Vol}(\Omega)=v\}
$$

Moreover, the mean curvature vector H of Σ_{v} satisfies $|H| \equiv H_{v}$ for a constant $H_{v} \geqslant 0$ as well as the property that H points everywhere into or everywhere out of Ω_{v}.

From the extremal property of Σ_{v} it is clear that

$$
\begin{equation*}
h(M) \geqslant \inf \left\{v^{-1} \operatorname{Vol}\left(\Sigma_{v}\right): 0<v \leqslant \frac{1}{2} \operatorname{Vol}(M)\right\} . \tag{2}
\end{equation*}
$$

We divide our proof into two cases. First, if $H_{v} \geqslant 1$ then Lemma 1 can be applied to give

$$
\begin{equation*}
v^{-1} \operatorname{Vol}\left(\Sigma_{v}\right) \geqslant n-1 \tag{3}
\end{equation*}
$$

Note that one has to take some care in applying Lemma 1 because for large n, Σ_{v} may have singularities. By the observation of Gromov [8], a nearest point to $\bar{\Sigma}_{v}$ from any given point of $M \sim \bar{\Sigma}_{v}$ is always a regular point and hence the methods of [9] are applicable.

The remaining case is $H_{v}<1$. Now if it were true that

$$
\begin{equation*}
\operatorname{Vol}\left(\Sigma_{v}\right) \geqslant \omega_{n-1}\left[\varepsilon_{n} e^{-\varepsilon_{n}(1-\kappa)}\right]^{n-1} \tag{4}
\end{equation*}
$$

where $\varepsilon_{n}=4^{-(n+3)}$, then we would be finished in light of (1)-(4). Therefore we assume that (4) does not hold. Then from Lemma 2 we would have $i(P)<\varepsilon_{n}$ for every $p \in \bar{\Sigma}_{v}$; that is, we have $\bar{\Sigma}_{v} \subseteq \theta$ in the terminology of Lemma 3. Since $n>2$, the set $M \sim \theta$ is connected. Let U_{v} be the component of $M \sim \bar{\Sigma}_{v}$ which contains $M \sim \mathcal{O}$, and let $\Omega_{v}^{\prime}=M \sim \bar{U}_{v}$ and $\Sigma_{v}^{\prime}=\Sigma_{v} \cap \partial \Omega_{v}^{\prime}$. By construction we have

$$
\begin{equation*}
v^{-1} \operatorname{Vol}\left(\Sigma_{v}\right) \geqslant \operatorname{Vol}\left(\Omega_{v}^{\prime}\right)^{-1} \operatorname{Vol}\left(\Sigma_{v}^{\prime}\right) \tag{5}
\end{equation*}
$$

(recall that $v \leqslant \frac{1}{2} \operatorname{Vol}(M)$). Let Ω be a component of Ω_{v}^{\prime} and let $\Sigma=\Sigma_{v} \cap \partial \Omega$. Then $\bar{\Omega} \subset \mathcal{O}_{i}$ for some component \mathcal{O}_{i} of $\theta_{\text {. Since }} \mathcal{\theta}_{i}$ is the quotient by a cyclic group of a star-shaped neighborhood of a geodesic σ in \tilde{M} (see the proof of Lemma 3), the distance function to σ is a well defined function in \mathcal{O}_{i} which we denote by ρ. By standard comparison methods we have $\Delta_{M} \rho \geqslant(n-1) \kappa$ in θ_{i}. Thus Stokes theorem applied in Ω gives

$$
(n-1) \kappa \operatorname{Vol}(\Omega) \leqslant \operatorname{Vol}(\Sigma)
$$

Since any two components of Ω_{v}^{\prime} have disjoint closures, we can sum these inequalities over all components of Ω_{v}^{\prime} to conclude

$$
\begin{equation*}
\operatorname{Vol}\left(\Omega_{v}^{\prime}\right)^{-1} \operatorname{Vol}\left(\Sigma_{v}^{\prime}\right) \geqslant(n-1) \kappa \tag{6}
\end{equation*}
$$

Combining (1)-(6) we have

$$
\lambda_{1}(M) \geqslant \min \left\{\frac{(n-1)^{2} \kappa^{2}}{4}, \frac{\delta_{n}}{\operatorname{Vol}^{2}(M)}\right\}
$$

where $\delta_{n}=4^{-1} \omega_{n-1}^{2}\left[\varepsilon_{n} e^{-\varepsilon_{n}(1-\kappa)}\right]^{2 n-2}, \varepsilon_{n}=4^{-(n+3)}$. The final inequality of the theorem follows from this because by Lemma 3 there is a point $P \in M$ with $i(P) \geqslant \varepsilon_{n}$ hence the volume satisfies

$$
\operatorname{Vol}(M) \geqslant \omega_{n} \varepsilon_{n}^{n}
$$

Thus we have

$$
\lambda_{1}(M) \geqslant \frac{\delta_{n, \kappa}^{\prime}}{\operatorname{Vol}^{2}(M)}
$$

where $\delta_{n, \kappa}^{\prime}=4^{-1}(n-1)^{2} \kappa^{2} \omega_{n}^{2} \varepsilon_{n}^{2 n}$. (Note that for $n \geqslant 3$ we have $\delta_{n, \kappa}^{\prime} \leqslant \delta_{n}$.) This completes the proof of the main theorem.

References

[1] P. Buser, Riemannsche Flächen mit Eigenwerten in (0, $\frac{1}{4}$), Comment. Math. Helv. 52 (1977) 25-34.
[2] ___, On Cheeger's inequality $\lambda_{1} \leqslant h^{2} / 4$, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 29-77.
[3] P. Buser \& H. Karcher, Gromov's almost flat manifolds, Soc. Math. de France 81 (1981).
[4] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis, Symposium in honor of Bochner, Princeton Univ. Press, Princeton, NJ, 1970, pp. 195-199.
[5] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
[6] \qquad , The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 79 (1970) 761-771.
[7] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
[8] __ Paul Levy's isoperimetric inequality, to appear.
[9] E. Heintze \& H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ècole Norm. Sup. (4) 11 (1978) 451-470.
[10] R. Schoen, S. Wolpert \& S. T. Yau, Geometric bounds on the low eigenvalues of a compact surface, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 279-286.
[11] S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975) 487-507.

University of California, Berkeley

[^0]: Received December 14, 1981. Research supported by the Sloan Foundation.

