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ON THE EXISTENCE OF INFINITELY MANY
ISOMETRY-INVARIANT GEODESICS

MINORU TANAKA

Among various problems about geodesies, one of the most prominent
questions is whether or not there exist infinitely many closed geodesies on an
arbitrary compact Riemannian manifold. The main interest lies in the question
of whether it is possible to estimate the number of closed geodesies in terms of
topological properties of the manifold only. In 1969 Gromoll and Meyer
succeeded to find such a criterion [4]. They obtained the following result:

Theorem. Let M be a compact and simply connected Riemannian manifold.

Then M has infinitely many closed geodesies if the sequence of the Betti numbers

for the space, with the compact-open topology, of all continuous maps Sι -» M is

unbounded.

Let us note that the spheres do not satisfy the above topological condition,
though clearly the standard one has infinitely many closed geodesies. About
ten years after their proof W. Klingenberg published a lecture note [10] which
offers a proof of the claim that there exist infinitely many closed geodesies on
any compact Riemannian manifold with finite fundamental groups. However
the proof seems to need much improvement. In the same spirit as the problem
of closed geodesies, one might ask if there are topological restrictions that
ensure the existence of infinitely many isometry-invariant goedesics. Here a
geodesic c: R -> M is said to be invariant under an isometry A on M (or
A -invariant) if A(c(t)) — c(t + 1) for all real t. Letting idM be the identity map
on M, an id^-invariant geodesic is simply a closed geodesic of period 1 and
vice versa. Thus the theory of isometry-invariant geodesies contains that of
closed geodesies. There are however some essential differences. For example a
rotation on a flat torus has no invariant geodesic, although any compact
Riemannian manifold has at least one closed geodesic (see e.g. [5]). While there
are infinitely many closed geodesies on the standard sphere, a rotation on it
has only finitely many invariant geodesies. Therefore it would be very reason-
able to ask if there are infinitely many A -invariant geodesies under the
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assumption of unboundedness of the sequence of the Betti numbers for
C°(M, A). Here M denotes a compact and simply connected Riemannian
manifold, A an isometry on M9 and C°(M, A) the space, with the compact-open
topology, of all continuous maps JC: [0,1] -* M satisfying A(x(0)) = c(l). Note
that C°(M9 Ax) and C°(Af, A2) are homotopy equivalent when Aλ and A2 are
homotopic isometries. In 1974 K. Grove solved the above problem affirma-
tively in the case of involutive isometries [7]. Following that the author did it in
the case of any isometry with prime power order [19], [20]. In 1976 K. Grove
and the author solved the problem affirmatively in the case of any isometry of
finite order [9], The purpose of the present paper is to prove the following
optimal result:

Main theorem. Let M be a compact and simply connected Riemannian

manifold and let A be an arbitrary isometry on M. Then there exist infinitely

many A-invariant geodesies if the sequence of Betti numbers of the space

C°(M, A) is unbounded.

As in the theory of closed geodesies, we shall make use of a certain path
space Λ(M, A) of A -invariant curves, to estimate the number of ^4-invariant
geodesies. As usual the energy function EA is defined on Λ(M, A) and any
A -invariant geodesic is characterized as a positive valued critical point of EA.
One should note that ^-invariant geodesies do not correspond bijectively to
critical points, but rather either to noncompact critical orbits or to towers of
compact critical orbits. This makes it difficult to estimate the number of
isometry-invariant geodesies. The difficulty occurs even in the case of A — idM.
Let us outline the proof of our theorem. The proof will be done by obtaining a
bound for the Betti numbers of C°(M, A) under the assumption that there
exist only finitely many ̂ -invariant geodesies. If the assumption holds, then all
the A -invariant geodesies are closed. This essential observation was done by
Grove [6]. Therefore let c be a closed ^-invariant geodesic, and say that A acts
rationally (resp. irrationally) on c if the least period a of c is rational (resp.
irrational). To show boundedness of the Betti numbers of C°(M, A\ it is
sufficient to prove that there are only a finite number of different characteristic
invariants among those of c w α + 1 , m E Z, the critical tower defined by c. We
use the notation of characteristic invariants as treated by Gromoll and Meyer
[3], which is very useful to handle degenerate critical orbits. If all the critical
orbits of cma+\ m E Z, are nondegenerate, then the finiteness is easily shown.
In case A acts rationally on c, the finiteness will be done by reducing it to the
case when A is of finite order. Otherwise it will be done by approximations of
EA by other energy functions in a topological sense. In both cases formulas of
nullities of cma+\ m E Z, are very crucial. These formulas will tell us which
energy functions are suitable approximations of EA. Moreover from these



INFINITELY MANY ISOMETRY-INVARIANT GEODESICS 173

formulas we will obtain a crucial fact that the null space at a sufficiently many
iterated A -invariant closed geodesic consists of periodic Jacobi fields only. This
was actually conjectured by K. Grove in 1976 in his personal letter to the
author, where he gave a proof of it in case the closed geodesic is fixed by A.
We refer to [2], [3], [5], [10] and [14] for fundamental knowledge of path spaces
and Hubert manifolds and to [5], [6] and [9] for basic facts of isometry-in-
variant geodesies. In fact K. Grove initiated and developed the theory of them
in [5], [6] and [7]. Finally the author wishes to thank K. Grove for helpful
conversations during the author's visit to Copenhagen in 1979/80.

1. Preliminaries and basic formulas

Let (M, g) be a compact and connected Riemannian manifold with a
Riemannian metric tensor g and let A be an isometry on (Λf, g). A continuous
map x: R -• M is said to be of class H{ if it is absolutely continuous and its
tangent vector field x is locally summable. Hι -vector fields along x are defined
analogously. Let Λ(M, A) be the Hubert manifold of all Hι-maps x with
A(x(t)) = x(t + 1) for all t G R. The tangent space TXA(M, A) to Λ(M, A) at
x, is identified by the vector space of all i/1-vector fields X along x with
A+(X(t)) = X(t + 1). Here A+ denotes the differential map of A. Λ(M, A)
carries a natural complete Riemannian metric (, > λ induced from g. If X and Y
are tangent vectors to Λ(Λf, A) at x, then (, > x is defined by

(x9 y>! - f A,

where X', Y denote the covariant derivatives along x of X9 Y respectively. The
energy function EA on the manifold is defined by

A critical point c of EA is either a constant map in Fix(^l), the fixed point set

of A, or an ^-invariant geodesic [5]. The Hessian HC{EA) of EA at a critical

point c, is given by

HC(EA)(X9 Y) = f\g(X\ r) - g(R(X, ύ)έ, Y)) ώ,

where R denotes the Riemannian curvature tensor of M. If X is C00, the

Hessian is expressed as

Hc(EA)(X,Y)=fg(LX,Y)dt,

where -LX= X" + R( X, c)c.
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There exists a continuous Λ-action on Λ(M, A) by isometries [6] defined by

Tu(x)(t) = x(t + u) for any t, u G R and x e Λ(ΛΓ, Λ).

Moreover Λ induces an isometry on Λ(M, Λ), which we also denote by A. We
will say that A acts irrationally o n x G Λ(Λf, A) if no positive integer s
satisfies Asx — x. Otherwise we say that A acts rationally on x. For each
positive number u and x E A(M9 A), xu denotes the curve defined by xu(t) =
x(ut) for any real t. Let c be a closed ^-invariant geodesic with least period α.
Then cma+\ m G Z, are critical points of ^ and orb(cm α + 1) denotes the
critical orbit containing c m α + 1 , i.e.,

orb(cw α + 1) = {ΓM(cmα+1) I u G Λ}.

Let λ(c,EA) (resp. P(C, J^)) be the index (resp. nullity) of orb(c). When
v(c, EA) is zero, orb(c) is said to be nondegenerate [14]. In order to compute
λ(c m α + 1 , EA) and v(cma+\ EA\ we introduce the vector space Vc of all C°°
vector fields along c which are orthogonal to c, and consider the differential
operator L defined above on Vc. The map A^ (resp. Tu) induces a bijective
linear map of Vc onto Vτ^c) (resp. of Vc onto Vτu(C)) Then the index and
nullity of orb( cma +1) are given by

λ(cm*+\EA)= Σ dim{XGVc\LX=μX,A*X=Tma+ιX},
(1.1)

Since I is an elliptic differential operator, each eigenspace of L is finite
dimensional and it has discrete eigenvalues μx < μ 2

< / j t 3 < μy < which
are bounded from below, and μy goes to infinity as j tends to infinity.
Therefore the index and nullity of orb(cm α + 1) are finite. For each real μ, set
J(μ)= {X G Vc I LX = μX}. Define a semipositive definite bilinear form ωm

on Vc by

»m(X,Y)=(ma+lg(X(t),Y(t))dt.
J0

Then Tx

 λ o A% is an orthogonal transformation on the vector space {X G J(μ)
I A^X = T^^^j^} with inner product ωm. In order to compute the index and
the nullity of orb(cm α + 1) complexify /(/A), which will be denoted by J(μ) ® C.
L, yl̂  and Tu denote also the C-linear extensions of L, A^ and Tu respectively.
Let 5[μ, ma + 1, z l̂] (z G C) be the linear space {X G /(μ) <£> C | zA+X =
Tma+xX] with Hermitian inner product ώm, the Hermitian extension of ωm to
J(μ) Θ C
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Lemma 1.2. For each real μ, S[μ, ma+ 1, A] has a direct sum decomposi-
tion of finitely many of its subspaces;

S[μ,ma+19A]= 0 0 {X E s[μ, 1, z"U] | TaX = pX}.
\z\ = \ pm=z

Here \ z \ denotes the absolute value of z.
Proof. Since Γf1 © AΦ is a unitary transformation o n % m α + I, A] with

the inner product ώm, S[μ, ma + 1, A] has a direct sum decomposition of
eigenspaces of Γf1 o ̂  i.e.,

S[μ, ma + 1, Λ] = 0 Sfju, mα + 1, Λ] Π 5[μ, 1, z"U].
μ| = i

Furthermore each eigenspace of T{x o A^ is invariant under Ta. Hence each
one also has a decomposition:

, mα + 1, A] Π Sfju, 1, z"U]

- 0 {* G S[μ, wα + 1, A] Π S[μ, 1, Z'1A] \ TaX =
P

= φ {jfeS[μ,l,z-U]|ΓβJf=pA },
ρ"—z

which completes the proof.
From (1.1) and the above lemma we have
Corollary 1.3.

λ(c™+\EA)= Σ I Λ*(p)f
\z\ = \ pm = z

p(c™+\EA)= Σ Σ ^ ( P ) 5
W = l p m = z

where Az(p) = Σ μ < o d i m c { ^ E S[μ, 1, z"U] | ΓαJT - p^} αnrf iVz(p) =
dimc{ Jf E 5[0,1, z~ιA] \ TaX — pX} which are considered as functions on the
unit circle { p E C | , | p | = l } for each z with absolute value 1.

Remark. Compare [16] for different index formulas for isometry-invariant
geodesies. The functions Λ2, Nz have the following crucial properties (cf. [1], [9]
and [19]).

(1.4) Az and Nz are identically zero except for a finite number of z 's.
(1.5) For each z, Nz(p) = 0 except for at most 2(dim M - 1) points p, which

will be called U Poincare points.
(1.6) For each z, Λz is locally constant except possibly at the U Poincare

points.
(1.7) For each z, the inequality limp^Po Λ

z(ρ) > Λz(ρ0) holds for any p0.
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As in [9] we obtain from Corollary 1.3, (1.6) and (1.7) the following
important growth-estimate.

Lemma 1.8. Either λ(cma+ι, EA) — 0 for all nonnegatiυe integers m or there
exist positive numbers ε and a such that

λ(c w α + 1 , EΛ) - λ(cm*a+\ EA) ^ (m, - m2)ε - a

for all integers mx > m2 > 0.
Remark. It is also possible to derive the above lemma from a general index

theorem by Klingmann [11] together with Lemma 2.8 in [9] or Lemma 1 in [4].
Next let us recall the definition and some properties of the local homological

and characteristic invariants as defined by Gromoll and Meyer [3]. Let orb(c)
be an isolated critical (compact) submanifold in Λ(M, A). Hence c is a closed
geodesic by Theorem 2.4 in [6]. The definition of local homological invariant
for this orbit is similar to the one in the case of isometries with finite orders [9].
Let % be the normal bundle of orb(c) and let Ψ: 9 1 ^ Λ(M, A) be an
arbitrary .R-equivariant smooth (C00) map which is the identity on the zero-
section and of maximal rank there. The image by Ψ of a sufficiently small disc
bundle of 91 defines an equivariant tubular neighborhood ^ = UM€ΞΛ TJJfyς) of
orb(c), where 6ύc is the fiber over c. From the construction, Tu(tf)c) = ^ ( c )
holds for any u. For 8 > 0 and 0 < ρ0 < pl9 let dδ: D̂ -> R be the function
defined by

ds(x) = (2δ)-\p] - pl)E(x) + <*"•*, *-•*>„

where E — EA — EA{c). Then for sufficiently small positive 5, p0, ρλ

W=E-ι[-δ,δ] Πdsl(-oo,(p2

0 + p\)/2] 3indW-=E-ι(-δ) Π W

is a pair of so called admissible regions and

%(EA,oίb(c)) =

is a well-defined local homological invariant of orb(c). Here we take singular
homology with coefficient in a field. This local homological invariant has the
following crucial property which can be proven by the excision theorem and
the standard deformation by integral curves of the gradient vector field of EA

[3]:
Lemma 1.9. Ifb is the only one critical value ofEA in [b — ε, b + ε]for some

ε > 0, and if there exist only finitely many (compact) critical orbits
orb^),- ',oτb(ck) with EA-valuedb, then

H*(A(M, A)b+\ Λ(M, A)b-ε) = 0 %(EA

9orb(Ci))9

where Λ(M, A)a = (EAyl[0, a).
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Remark. In [6] it is proven that c is a closed ^-invariant geodesic if orb(c)
is an isolated critical submanifold. Hence orb(c) is compact if it is isolated.

It follows from the construction of the pair of admissible regions that
TU(WC) = WTΛc) and TU{WC~) = WfM hold for any real u. Here we put
W Π 6ύc = Wc and W~Π%= W~. As in [9] choose open intervals Ix and I2 of
orb(c) with orb(c) = /,U 72, and let π:W -> orb(c) denote the natural projec-
tion. Define Xj - ir~\lj) and Aj - Xj Π W~9 j = 1,2. The Mayer-Vietoris
sequence [17] for pairs (Xl9 Aλ) and (X2, A2) gives

(1.10) dhn%k(EA

9orb(c)) <2(ώmHk_x(Wc9Wc') + dim Hk(Wc9 W~))

for all integers k.
Moreover HJJVC, W~) is the local homological invariant which Gromoll and

Meyer defined in [3] for an isolated critical point c in βϊ)c for the function
E\%,i.e.9

(1.11) %(EA\%,c)=Ht(Wc9W-).

It follows from the shifting theorem in [3] that

(1.12) %k+λ{EA\%,c) = %°k(EA,c) far all*,

where λ is the index of c, and %k(EA, c) denotes the characteristic invariant of
c, i.e., the local homological invariant of EA \ 6ϋc restricted to a characteristic
submanifold [3]. Note that the definitions of characteristic invariants may
depend on the choice of %. Since the dimension of a characteristic submani-
fold is equal to the nullity of orb(c) (< 2 dim M — 2), we have

(1.13) %°k(EA,c) = 0 f o r a l U > 2 d i m M - 1 .

If we set Bk(c, EA) = dim%k(EA,orb(c)) and B°k(c, EA) = dim%°k(EA, c),
then

(1.14) Bk(c9 EA) < 2(2>°_λ(c, EA) + B»_x_λ{c9 EA))

holds for all k, where λ = λ(c, EA).

2. Rational cases

In this section c E A(M, A) denotes an A -invariant closed geodesic with
least period α, and let us suppose that A acts rationally on c. Then
orb(cma+ι), m E Z+ , are critical submanifolds for EA, and there exist unique
relatively prime positive integers m0 and s0 with a — so/mo. Let us examine
the formulas for the nullities of orb(cm α + 1) in detail. From Corollary 1.3 we
have

v(cma+\EA)= 2 Σ
1*1 = 1 pm=z
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whereNz(p) = dimcS[0,1, z'ιA] Π S[0, α, pidM]. Obviously A'fX = pm«zs°X
holds for any X E S[0,1, z"U] Π S[0, a,idM]. On the other hand, since
4 « : { I G F c ® C | U l f = 0 } -> { I G K C ® C | L Z = O } is a unitary trans-
formation there exist at most 2 (dim M — 1) eigenvalues of A^0,
exρ(2ττ/d1), ,exp(2τri#J. Here 0 < dj < # 2 < < &k < 1. If fl, is ra-
tional, choose positive integers pt and qt which are relatively prime and satisfies
pi/qi = fy. If all 3,'s are irrational, define s = s0, otherwise let s/s0 be the least
common multiple of the qt's with #z rational.

Lemma 2.1. There exists a positive integer k0 such that

for any m^ k0, where f is the restriction of A to Fix(As).
Remark. Since Fix(Λ5) is a collection of closed totally geodesic submani-

folds of M9 one can consider the Hubert manifold Λ(Fix(^4s),/) and the
energy function Ef and so on. Note that any critical point of Ef is one of EA.

Proof. From Corollary 1.3, (1.4) and (1.5) it follows that there exist positive
integers k0 and r such that

p(c""+l,EA)= 2 Σ tf'(p)
zr—\ pm = z

for all m > k0.
To see this note that there are at most finitely many integers m with

Nz(ρ) Φ 0 and pm — z in case arg(z)/2τπ is irrational. If Nz(p) is positive for
some z and p, then pm°zs° is an eigenvalue of 4̂*° on {X E Vc ® C | LX = 0}.
Therefore ®zr=ι ®p™=z S[0,1, z"U] Π S[0,a,ρidM] is contained in {X G
^[0, mα + 1, α] μ ; 0 ^ = X). This implies that v{cma+\ EA) < K c m β + 1 , ^ )
for all m^kQ. On the other hand v(cma+\ Ef) is not greater than
v(cma+\ EA) from the defintion of nullities.

Proceeding exactly as in the proof of Proposition 3.5 in [9] we get from
Lemma 2.1 the following important consequence.

Lemma 2.2. For all m> k0

%°(EA, cma+ι) = 3C°(£/ c m α + 1 )

ifoτb(cma+]) is an isolated criticalsubmanifold in Λ(M, A).
As in [9], now in particular from this we get
Corollary 2.3. There exists a constant B such that

B°k{cma+\ EA) < B

for all k and m> 0.
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3. Irrational cases

In this section suppose that A acts irrationally on c. Hence the least period a

of c is irrational. Let us introduce various path spaces for technical reasons.

For each nonnegative integer m, let Λ m α + 1 be the Hubert manifold consisting

of all Hx maps x: R-> M with Ax = Tma+Xx9 and let ma+ιE be the energy

function on Ama+\ i.e.,

λ Jo

for any JC G Λ m α + 1 .

The Riemannian metric ( , ) W β + 1 o n Ama+1 is defined by

for X, r e 7;Λm α + 1. For each positive integer £, Λ*α denotes the Hubert

manifold of all Hι maps x: R -> M with Γ | ΛJC = x. Let * α £ be the energy

function on Λ*α. If we regard Λ m α + 1 Π Kia as the fixed point set of Tia: Ama+ι

-» A m α + 1 , then Λ w α + 1 Π Λ^α can be understood as a totally geodesic submani-

fold of Λ m α + 1 . On the other hand it can also be understood as a totally

geodesic submanifold of Λ*α. However these two manifolds are diffeomorphic.

Let m«+λEia (resp. t«Ema+x) denote the restriction of ma+λE (resp. *«E) to

Λm«+i n Aξa A s i n t h e p r o o f o f Lemma 2.1 it follows from Corollary 1.3, (1.4)

and (1.5) that there exist positive integers m0 and s such that

v(cma+\EA)= Σ Σ

for any m > m0. Note that of course λ(cma+ι, EA) = λ(c,ma+ι E) and

v(cma+ \ EA) = y ( c , m α + 1 £ ) for any integer m9 since (wα + X)EA =ma+ιE

o ψw on Λ(M, Λ). Here ψ w ( * ) ( 0 = x(t/(ma + 1)) for any x G Λ(M, ^ ) and

real t.

Lemma 3.1. There exist positive integers kx,— -9kq and sequences {mιj}9

i > 0,7 = 1, •,#, such that m'jkj are mutually distinct, {mljkj} — Z + and

Θ Θ J(P,Z)= 0 ®J(P,Z),
zs=\ pm'jkj=z z

sj=\ pkJ=z

where sιj is the maximal integer relatively prime to mιj dividing s, and J(p9 z) —

S[09\9z-χA]ΠS[09a9pidM].

Proof. The proof is analogous to that of Lemma 2.9 in [9]. For each

z = exp(2πiu/v) with (w, v) = 1, let Qz denote

Qz = {q(ΞZ+\3b EZ+sΛ.(b9qv) = 1, Nz(exp(2πib/qv)) >θ}.
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If we set Q = U z , = 1 Q
z U {1}, Q is a finite set by (1.5). For each D C β let

λ:(Z>) be the least common multiple of all elements in D. Choose distinct

numbers kl9- ,kq such that {kλ, -,kq} - {k(D) \ D C Q}. For each kJ9 we

select from the sequence mkJ9 m E Z + , the greatest subsequence /WyΛy with the

property that p E Q divides kj whenever p divides mjkj. Then the numbers

mljkj are mutually distinct and {mιjkj \ i > 0,y = 1, ,q) = Z4" . Let us check

that kλ9- - ,kq and the sequences mιj have the required property. If Nz(ρ) is

positive for some z = exp(2πiu/v) with (w, t>) = 1, zs = 1 and p with ρm'jkJ = z,

then there exists positive integers b and q satisfying (b,qv) = 1 and p =

exp(2τπft/(#ϋ)). Hence # is an element of Qz. Since nijkjb/q = wmod v9 q

divides m'jkj. From the construction of m'jkj, q divides kj. Since u and υ are

relatively prime, so are mιj and t>. Let Sj be the integer defined in the lemma.

Then v divides sj, because v also divides s and is relatively prime to mj. This

implies the claim.

Let us interpret the meaning of the equality in the above lemma.

Lemma 3.2. For m > m 0 , the null space of Hc{
ma+λE) is equal to that of

Hc(
ma+ιE^m)a), where m = mfc andξ(m) = sjkj. Thus

%°(ma+ιE, c) = 3 C ° ( m β + 1 £ € ( m ) β , c),

//orb(c m α + 1 ) is an isolated critical orbit in Λ(Λf, A).

Proof. It is sufficient to prove the first claim if we show the complexified

null spaces are equal. Since m«+ιE*im)a is the restriction of ma+ιE to Λ*(m)α Π

Λ w α + 1 , the Hessian of *»«+Wn)a at c is the restriction of Hc(
ma+ιE) to

Γ c(Λm α + 1 Π Λ^ ( m ) α). Let Ac be the bounded linear operator defined by

for I J G Γ cA
m β + 1. Then Ac maps Tc(Ama+ι Π Λ^(m>α) into itself, because

ATu(c) o Tu — Tu o Ac holds for any real u. Hence the null space of

H£ma+ιE^m)a) is given by

{X E Tc(Ama+ι Π Λ* ( m ) α) I J ^ c ( m f l £ + 1 £ ) ( Z , y ) = 0 for any Y E Γ c Λ w α + 1 } .}.
This implies that the complexified orthogonal space of c in the null space of

Hc(
ma+ιE^m)a) is S[0, mα + 1, A] Π 5[0, ί ( w ) α , i d M ] . On the other hand,

the equality in Lemma 3.1 implies that S[0, ma + 1, A] is a subspace of

£[0, ξ(m)a, idM]. Thus we have

S[0, ma + 1, i4] Π S[θ, ί ( m ) α , i d M ] = S[0, mα + 1, A].

Noting that 5[0, wα + 1, A] is the complexified orthogonal space of c in the

null space of Hc(
ma+ιE\ one gets that the null spaces of Hc(

ma+ιE) and

Hc(
ma+ιE^m)a) are equal. Let 6jΓ«+!,£(")« be an equivariant tubular neigh-

borhood of orb(c) in Λ m α + 1 Π Λ^(w)α and let D be an equivariant one of
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Λm«+1 n AUm)a j n Λmα+1 χ h e n fyma+l = jy | fyma+ \,ξ(m)a {$

tubular neighborhood of orb(c) in Λ w α + 1 . Since Tu((gradma+ιE)x) =
(grad m α + 1 E)TyX for any real u and x G Ama+\ g r a d w α + 1 £ is tangent to

Λm«+i n Aξ(m)a w h e r e &dL&ma+\ E d e n o t e s t h e g r a dient vector field of ma+ιE.
Thus g r a d ( m β + 1 £ | Φ ; β + 1 ) is tangent to q>««+i.€(«>^ w h e r e ^mβ+i a n d

6j)mα+l^(m)α d e n o t e ^ fiber o v e r c Q f φmβ+1^ 6jjmβ+l,««)β r e Spectively. If #2 IS

not less than m 0 , then the null space of the Hessian of ma+ιE \ ty™a+λ at c is

contained in r c<3) c

m β + l f* ( m ) α. Note that any element of the null space of

Hc{
ma+xE\^a+x) is pointwise orthogonal to c. Hence by Lemma 7 in [3],

Lemma 3.3. For an isolated critical orbit o r b ( c w α + 1 ) in Λ(M, A)

arO/ma+\g£(m)a Λ̂ _ πrθ/|(m)α^mα+1 Λ̂

Ao/έ& ifm> m0, wΛere w = wj/cy α«ί/ ξ(m) = Sjkj as defined in Lemma 3.2.

Proof. At first let us note that g(x(O> *(0) i s independent of t for each

smooth curve x G Ama+ι Π Λ l(m)α, since g(x{t\ x(t)) has ξ(m)α and ma + 1

as periods, and ξ(m)a/ma + 1 is irrational. Therefore

holds for any smooth curve x E Ama+λ Π Λ l ( m ) α. By the standard method in

analysis any element in Λ m α + 1 Π Λ*(m)α can be approximated by smooth

curves in Λ m α + 1 Π Λ^(m)α. This implies

""

Hence we are done.

Corollary 3.4. Suppose that all critical orbits o rb(c m α + 1 ) , m G Z+ U{0},

are isolated ones in Λ(M, yl). Then there exists a constant B such that

B%(cma+\ EA) < B for all k and m ^ 0.

Proof. Since ψ^ 1 ( 6 D w α + 1 ) is an equivariant tubular neighborhood of

o r b ( c m α + 1 ) in Λ(M, A) with the fiber ψ-1^""*"1"1) over c w α + 1 , ψm gives the

isomorphism between 3C°(^^, c w α + 1 ) and %°(ma+ιE, c). From Lemmas 3.1

and 3.2 there exists a positive integer ξ(m) < s max{/:71 1 <y < r̂} such that

3 C ° ( m f l + 1 ^ c) = g c o ( m α + 1 £ { ( m ) β , c) for m > m0. From Lemma 3.3,

Π Λ^(w)α for some integer η(m) < £(m) as Hubert manifolds, there are only

finitely many kinds of energy functions &m)aEma+x for any m > m0. Therefore

the set {%°(EA, cma+x) \ m ^ 0} is finite. In particular there exists a constant

B such that B^(cma+\ EA) < B for all k and m ^ 0.
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4. Existence of infinitely many invariant geodesies

Let M be a compact and simply connected Riemannian manifold and A an

isometry on M. Then the space C°(M, A) defined in the introduction has finite

kth Betti number for each A: [16].

Theorem 4.1. Assume that M is a compact and connected Riemannian

manifold and that A is an isometry on M. If there are at most finitely many

A-inυariant geodesies on M, then the sequence of dim Hk(C°(M, A), F), k ^

2 dim M, is bounded for any field F as a coefficient of the homology.

Proof. Since the inclusion Λ(M, A) C C°(M, A) is a homotopy equiva-

lence [5] it is sufficient to prove the theorem for Λ(M, A) instead of C°(M, A).

Since A has only finitely many invariant geodesies, all of them must be closed

[6] and hence there exist finitely many ^4-invariant closed geodesies cx, ,cr

such that any ^4-invariant geodesic lies in a critical orbit orb(c™ai+ι), where m

is a nonnegative integer, and ai denotes the least period of ct. Since all the

critical orbits are isolated, we can apply the results obtained in the previous

paragraphs. By Corollaries 2.3 and 3.4, there is a constant B such that

B%(c?a'+ι

9 EA) < B for all k and / = 1 , • • - , / - . Thus from (1.14),

Bk(c?a'+ι,EA)<4B for any k9i and m > 0. It follows from (1.13) and

Lemma 1.8 that the number of orbits with Bk(c™a'+ι

9 EA) φ 0 is bounded by

a constant C for each k >• 2 dim M. Thus from Lemma 1.9 and the exact

sequence argument we get (Morse inequalities [12]) that for all regular values

0<a<b

dim Hk(A(M9 A)\ Λ(M, A)a) < ABC

for k > 2 dim M. For a sufficiently small positive a, Fix(Λ) C Λ(M, A) is a

strong deformation retract of Λ(M, A)a, [5], Since furthermore the dimension

of any connected component of Fix(^4) is not greater than that of M, we see

that dim Hk(A(M, A)b) < 4BC for all k > 2 dim M and all regular values b.

Fix now a k ^ 2 dim M and choose b so large that Bk(c, EA) = Bk+ι(c9 EA)

= 0 for all critical orbits orb(c) with EA(c) > b. Then by Lemma 1.9 and an

exact sequence argument dim Hk(A(M, A)) — dim Hk(A(M, Λ)b). Hence

sup{dimHk(A(M, A))\k>2dimM} < ABC.

Corollary 4.2. Let M be a compact Riemannian manifold which has the same

homotopy type as a compact symmetric space of rank > 1, and let A be an

isometry on M which is homotopic to ΊάM. Then A has infinitely many invariant

geodesies.

Proof. Since A is homotopic to id M , Λ(M, A) has the same homotopy type

as Λ( M, i d M ) . By Ziller [21], the sequence of the Betti numbers for Λ(M, i d M )

is unbounded. Hence A has infinitely many invariant geodesies from Theorem

4.1.
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Let us discuss the topological assumptions in the main theorem. In [8] a
necessary and sufficient condition on A and on M for C°(M, A) to have a
unbounded sequence of rational Betti numbers is given. From the result and
our main theorem, we get

Corollary 4.3. Let M be a compact \-connected Riemannian manifold and let
A be an isometrγ on M. Then

dimπe™(M)A* 0 Q < dimπfά(M)A# ® Q < 1,

// A has only finitely many invariant geodesies, where π^(M)A# denotes the
homotopy of M fixed by the induced map A#: TTJ^M) -+ π^(M).

For further discussion of this see [8]. There are still interesting open
problems on the existence of isometry-invariant geodesies. If an isometry A on
a 1-connected compact Riemannian manifold has more than one fixed point or
no fixed points, then A has at least one invariant geodesic. But the case when A
has just one fixed point is still open. Consult [5] and [6] for more details.

Problem A. Does any isometry on a 1-connected compact Riemannian
manifold have an invariant geodesic?

In what follows M denotes a compact connected Riemannian manifold, and
d denotes the distance function on M induced from the Riemannian metric of
M. If an isometry A on M is a small displacement without fixed point, i.e.,
d(py Ap) is less than the injectivity radius at p for each point p on M, then A
has more than one invariant geodesic. The proof is easy if one notes that the
function p E M\^>d(p, Ap) E R is smooth on M and that any critical points
of the function correspond to ̂ -invariant geodesies [15]. As a generalization of
this property, we may consider

Problem B. Suppose A is an isometry without fixed points on M. Do there
exist more than one ̂ -invariant geodesic if A is homotopic to idM?

In [17], Serre proves that for any two points on M, there exist infinitely
many geodesic segments connecting these two points. But his way of counting
geodesic segments is not geometrical, i.e., whenever two points lie on a closed
geodesic, there exist infinitely many geodesic segments connecting these two
points by his way of counting. Hence it would be more natural and interesting
to count them in a geometrical way. Let Ω be the loop space of M with a base
point.

Problem C. Let M be a compact simply connected Riemannian manifold.
For any given two points on M, do there exist infinitely many geodesic
segments connecting these two points if the sequence of the Betti numbers of Ω
is unbounded?

Remark. In case two points are nonconjugate along any geodesic segments
connecting them, this problem can be solved positively by analogous technique
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used in proving Theorem 4.1. The difficultly in solving this problem would lie
in nonperiodicity of the Jacobi fields which form the null space of the energy
function on the Hubert manifold {x; [0,1] -> M \ x(0) = p, x(\) = q and x is of
class H1} at a critical point.
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