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Introduction

In 1841 Delaunay [1] discovered the following beautiful way of construct-
ing rotational symmetric hypersurfaces of constant mean curvature in
euclidean 3-sρace R3, by rolling a given conic section on a line in a plane, and
rotating about that line the trace of a focus, one obtains a hypersurface of
constant mean curvature in R3. Conversely, all rotational symmetric hyper-
surfaces of constant mean curvature in R3, except those spheres, can be
constructed in this way. Combining the above classical result with a theorem
of Ruh and Vilms [6] which asserts that the Gauss map of a hypersurface of
constant mean curvature in R" is automatically harmonic, one can easily use
the periodicity of such construction (for ellipse and hyperbola) to obtain
harmonic maps of T2 -^ S2. In this paper, we shall study generalized rota-
tional hypersurfaces of constant mean curvature in higher dimensional
euclidean spaces, and prove a generalization of Delaunay theorem, which
again enables us to construct harmonic maps of Sp X Sι -» Sp+ι.

From the viewpoint of equivariant differential geometry, a natural generali-
zation of the SO(2) rotation on R3 is simply an orthogonal transformation
group (G, RΛ) with codimension-two principal orbit type. Such orthogonal
transformation groups are classified in [4]. Therefore it is quite natural to
study solutions of hypersurfaces in RΛ with constant mean curvature, which
are invariant with respect to one of such orthogonal transformation groups
with codimension-two principal orbit type.

In § 1 we shall reduce the above equivariant geometric problem to a much
simpler ordinary differential equation defined on a suitable two-dimensional
manifold, namely, the orbit space Rπ/G. In the special case where G =
SO(n — 1), the corresponding ordinary differential equation can be in-
tegrated explicitly in terms of hyperelliptic functions. Furthermore, it is
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possible to generalize Delaunay's rolling construction to this special case, and
we shall exploit such geometric construction to discuss various properties
such as periodicity of the solutions (cf. §2 and §3). In succeeding papers we
shall further investigate the properties of hypersurfaces with constant mean
curvature, which are invariant under other cohomogeneity-two orthogonal
transformation groups.

1. Generalized rotational hypersurfaces

of constant mean curvature in Rn

Let G be a compact connected Lie group, and Φ an orthogonal representa-
tion of G acting on Rn with codimension-two principal orbit type. Such
orthogonal transformation groups (G, Φ, RΛ) have been classified in [4], and
the final result of such a classification can be neatly described as follows: Let
L/G be a symmetric space of rank 2, and Φ the isotropy representation of G
on the tangent space RΛ of the base point. Then it follows from the definition
of rank that Rn/G is of dimension two and hence it is an example of such
orthogonal transformation groups. The final result of the classification of [4]
simply asserts that every orthogonal transformation group (G, Φ, RΛ) with
dim Rn/ G = 2 is obtained from the isotropy representation of a symmetric
space of rank 2.

As a generalization of rotational surfaces in R3, we shall call an invariant
hypersurface in (G, Φ, RΛ) a generalized rotational hypersurface [with respect
to the given type of cohomogeneity-two transformation (G, Φ, RΛ)]. Hyper-
surfaces of constant mean curvature in RΛ are locally given by a quasi-linear
second order elliptic partial differential equation which is rather difficult to
deal with. Therefore our first step in the study of rotational hypersurfaces of
constant mean curvature will be to make effective use of the "symmetry" of
such a geometric situation to reduce the above formidable analytic problem
to a more manageable one. Let us recall here some basic generalities of
equivariant differential geometry. Suppose M is a Riemannian manifold with
a given isometric transformation group G. Then it is rather natural to equip
the orbit space M/G with the following structures: (i) a generalized smooth
structure on M/G whose smooth functions are exactly the quotients of
G-invariant smooth functions, namely, C°°(M/G) a C°°(Λf)σ, (ϋ) a gener-
alized Riemannian metric ds2 on M/G which measures the distances between
G-orbits, (we shall call it the orbital distance metric of M/ G), (iii) a smooth
function /: M/G—>R such that f(ξ) = (volume of ξ)2 if ξ is a principal
G-orbit. In term of the above orbital geometric invariants of (G, M), one has
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the following proposition of [3] which reduce the computation of mean
curvature of an G-invariant submanifold N c M to that of its image N/G c
M/G.

Proposition 1. Let N be an invariant submanifold of M with the same
principal orbit type as that of M, x be a point on a principal orbit ξ E N/G, vx

be an arbitrary unit normal vector of N at x, and vζ be its image vector at ξ.
Then

(1)

where H(vx), H'(Vξ) are the mean curvatures of N, N/G in the direction of
vx, ι>£ respectively, and d/dv^ is the differentiation in the direction of v^.

Next, let us recall the result of some explicit computations of the orbital
geometric invariants of those orthogonal transformation groups on RΛ of
cohomogeneity two [cf. 4]:

Suppose (G, Φ, Rπ) is an orthogonal transformation group of cohomoge-
neity two. Then, according to the classification of [4], Φ is the isotropy
representation of a rank-2 symmetric space L/G. It follows from the maximal
tori theorem of E. Cartan (for the case of symmetric space) that (i) there
exists a 2-dimensional linear subspace R2 which interesects every G-orbit
perpendicularly, (ii) the Weyl group of L/G, W, acts on R2 as a group
generated by reflections and RΛ/G a R2/ W. Therefore the orbit space Rπ/G
can be identified with a Weyl chamber of (W, R2), and the orbital distance
metric is flat. We shall choose an orthonormal coordinate system (x,y) on R2

such that the Weyl chamber of (W, R2) is given by y > 0 and x sin π/d —
y cos π/d > 0, namely, it is a linear cone of angle π/d as follows:

FIG. 1



164 WU-YI HSIANG & WEN-CI YU

We list the needed orbital geometric invariants of those cohomogeneity-two

orthogonal transformation groups (G, Φ, RΛ) as follows:
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SU(3)/SO(3)

SU(3) X SU(3)
SU(3)

SU(6)
Sp(3)
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SO(5) X SO(5)
SO(5)

SO(2 + m)
SO(2) X SO(m)
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where pm, JU ,̂ ^m are the birth-certificate representations of SO(m)9 SU(m) or
U(m)9 Sp(m) respectively, and w(d, i) is the following linear function:

w(a, i) = x sin— — y c o s — .
a a

Combining the above list of geometric invariants with Proposition 1, we
can easily write down the corresponding ordinary differential equation satis-
fied by the image curve N/G c Rn/G a R2/W of a generalized rotational
hypersurface N of constant mean curvature in each of the above 14 cases. For
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example, in the first two cases, the corresponding equations are simply as
follows:

(2)

(3)

(i) (G, Φ) = (SO(n- 1),
X

xy —yx — (n — 2)— =h(constant),

(ii) (G, Φ) = (SO(l) X SO(m), p, + Pm):
x y

xy -yx - ( / — 1) h (m - 1)— = h {constant),
y x

where x, y, jc, y are derivatives with respective to the euclidean arc length
ds2 = dx2 + dy2 of RVί? a* R2/W c R2, and (x(s),y(s)) is the image curve
N/G of a generalized rotational hypersurface of constant mean curvature h.

In the first case, if one considers y as a function of x, y(x), then (2) is
equivalent to the following:

(4)
(« -

- h = 0.

Therefore it is easy to integrate the above equation explicitly in terms of
hyperelliptic functions, namely,

(5)

+ -^ϊyt

• /
C —

(n - 1)'

- 1

-1/2

In the beginning case of n = 3, the above integral is an elliptical integral
which is, by definition, closely related to the arc-length of an ellipse. The
classical theorem of Delaunay neatly demonstrate the explicit relationship of
the above geometrically arrived function y(x) by a simple geometric construc-
tion, namely, by rolling an ellipse and plotting the trace of one of its focus. In
the next section, we shall prove a generalization of the above theorem of
Delaunay to construct higher dimensional rotational hypersurfaces of con-
stant mean curvature by rolling.



166 WU-YI HSIANG & WEN-CI YU

2. Rolling construction and a generalization of Delaunay theorem

Suppose Γ is a plane curve given by polar coordinate graph r = r(θ)9

e.g., an ellipse can be expressed as the polar coordinate graph of r =
eP/Q ~~ e c o s 0) with origin at one of its focus. If one rolls Γ on the c-axis,
then the trace of the origin of the polar coordinate system attached to Γ plots
another curve Ω. Let us first investigate the analytical relationship between Γ
andΩ.

As indicated in Fig. 2, ξ is the arc length of Γ starting from Qo. Let s be arc
length of Γ starting fromP0, φ be the angle of the tangent vector of Ω at P,
and φ be the angle of QP.

FIG. 2

Then it is easy to see the following relationships

(6) x = ξ, + r cos φ, y = r sin φ, dr = -cos φ -dξ

It follows easily from (6) that

(7) cos φ -dx + sin φ -dy = cos φ -dξ + dr = 0.

Hence PQ is normal to Ω, and φ = φ — π/2. By differentiating with respect
to the arc length s of Ω, one obtains

y

(8)
dr

COS φ '

cos φ
dy +

c o s

2 sin φ dφ = tan φ(l + rφ)ds;
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ξ-x + rsmφ,

dξ = dx + sin φ dr + r cos φ dφ = sec φ(l + rφ)ds.

Therefore it follows that

(10) dθ = ± -ψξ2 - dr2 = ± -(1 + rφ)ds.

(By the choice of directions of the curves Γ and U (cf. Fig. 2), we should take

the + sign in (10).)

Proposition 2. Suppose Ω is a C2-curve given by y = f(x) > 0. If the center

of curvature of Ω never lies on the x-axis, then there exists a unique polar

coordinate graph Γ such that Ω is the trace of the origin by rolling Γ on the

x-axis.

Proof. Under the assumption of the proposition, one always has 1 + rφ

φ 0. Therefore it never changes its sign. Choose a starting point (x0, y0) and

assign the corresponding values of s = 0, θ — 0, r = r0 = y0/cos φ0. Then

(11) θ = θ(s) = Γ - ( l + rφ) ds
Jo r

is clearly a strictly monotonic function of s. Hence one may solve for s in

terms of θ and substitute it into r =y/cosφ = r(s) to obtain the polar

coordinate equation r = r(θ). It is rather straightforward to verify that if one

rolls the plane curve Γ (defined by the above polar coordinate graph r =

r(θ)) on the x-axis, then the trace of the origin of its attached polar

coordinate system is exactly the given Ω. q.e.d.

Next let us assume that Ω is a solution curve of (2).

Lemma 1. Suppose Ω is a solution curve of (2). If there exists a point P onQ,

whose center of curvature lies on the x-axis or Ω intersect with the x-axis, then

Ω is a circular arc with its center on the x-axis and (n — 1)/|Λ| as its radius.

Proof The first case follows from the uniqueness of solution of (2) at a

regular point, and the second case from the analyticity as well as the

uniqueness of solutions of (2) at a boundary singular point (cf. 4). q.e.d.

In view of the above lemma, from now on we shall assume that Ω is a

solution curve of (2) different from a circular arc. Therefore it follows from

Proposition 2 that there exists a unique polar coordinate graph Γ given by

r = r(θ).

Theorem 1. Suppose Ω is not a circular arc. Then Ω satisfies (2) if and only

if its corresponding Γ satisfies
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Proof. It follows from (8) and (10) that

(13) - ^ = r tan φ, or — {In r) = tan φ.
uu uu

Observe that xy - yx = φ and x/y = cos φ/y = \/r. Then it follows from
(2) and (10) that

dφ = rφ = (Λ - 2) + rh
K } dθ i + r ψ ( Λ - l ) + rt

Differentiating (13), one has

which, together with (13) and (14), gives the differential equation (12) satis-
fied by Γ.

Conversely, suppose Γ is a polar coordinate graph given by a solution
r = r(θ) of (12), and Ω is the trace of the origin by rolling Γ on the x-axis. We
shall verify that Ω is the graph of y = f(x) which satisfies (2). As shown in
Fig. 2, φ = φ — τr/2, hence

(13) tan φ = - cot φ = I ^ = -^(ln r).

Again it follows from (10) that dφ/dθ = rφ/(\ + rφ). Therefore by differen-
tiating the above equation and making use of (12), one has

/>->\ r<t> (n -2) + hr , _.
(2) 2-τ- = •) -{ — or rφ = (n - 2) 4- hr.

1 + rφ (n-l) + hr v J

This proves that Ω is a solution of φ — (n — 2)/r = h or φ = (n — 2)x/>> =
A. q.e.d.

Combining Proposition 2 with Theorem 1, one demonstrates that it is
always possible to use the rolling construction to transform the problem of
solving (2) to the problem of solving (12). As it was pointed out in §1, (2) can,
in fact, already be solved explicitly in terms of hyperelliptic functions. Hence
it is rather natural to seek explicit solutions of (12) and then try to analyze
whether such a geometric transformation actually simplifies the original
problem or at least improves our understanding of its solutions. In order to
solve (12) explicitly, it is natural to introduce the following auxiliary variables,
namely,

SΛΛ\ f dr \ dr

(14) u = lnr, „ = _ = - - .



GENERALIZATION OF A THEOREM OF DELAUNAY 169

Then

d2 _ do __ du do __ do
'dθ2 Ίiθ~~~dβ~d[ι~ VΊhι9

and hence (12) becomes

β * - a + <* (" - 2> + *g"

or

Integrating both sides of (15), one has

(16) /Λ(1 + v2) = 2/" " ff/ ff u + /π|π i + te| + α
(n - 1) (n - I)

That is,

(1 + v2) = ae^H-2>^H'l)u\n - 1 + heu\2^n~ι\ a = ea\

or

(17) I ± = υ = ± Γαr2*"-2^"-1)!/! - 1 + Ar|2/(""!) " l Γ l / 2

Letw = 1/r. Then

(18) ^ - + {α|(n - 1)W + ApA-"1) - wψ2 - +*(w)1/2,

where 6(w) = α|(/ι - l)w + A|2/(«-D _ ^2 Hence

(19) θ = τfb(w)~ι/2dw = +Λ(w) = cj.

Lemma 2. Let bλ(w) = {a[(n - \)w + AfA"- 1) - w 2 } , -h/{n -\)<w
< oo, n > 3, α > 0. TΛeπ ft^w) satisfies the following properties'.

(i) Ifh<0anda< (-h/n - 2)2<Λ-2>A«-D) / A e Λ i i ( w ) < 0 .
(ii) // A > 0, or h < 0 and a > {-h/n - 2)2<l|-*>A»-i)> tf^ ft^^

exactly two simple roots wx and w2, say wx < w2, and bx(w) > 0 for w
[wv w2].

(iii) bλ{w) > -(w - wλ)(w - w ^ w G [wx, w2], and

wλ=0 ifh = 0,

\ w λ < 0 O v 2 , ifh>0,
n — l

( 7 ^ T ) < W ' < ( ^ 2 ) < M ' 2 ' ' y A < 0
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Proof. b\(w) = 2a[(n - \)w + ftp-«>/<"-D - 2w,

b'({w) = 2(3 - n)a[(n - 1) - w + hf-
2»>/(»-» - 2, w > 3.

Therefore &ί'(M>) < -2, and hence b\(w) has at most one simple root. From

the above facts, it is easy to verify that bλ(w) has all the above three

properties.

Lemma 2'. Let b2(w) = {a[-(n - \)w - h]2/(n~ι) - w2}, h < 0, -oo <

w < -h/(n — 1). Then b2{w) satisfies the following properties:

(i) b2(w) has two simple roots wx, w2 and wx < 0 < w2 < -h/(n — 1).

(ii) wλ < -w2 and b2(w) > 0 if and only if wx < w < w2; moreover, b2(w)

> -(w — Wγ)(w — w^for w E [HΊ, W2\

Proof. Again one has b2 (w) < -2, and hence b2(w) has at most one

simple root. Moreover, it is clear that b2(-h/(n - 1)) < 0 and b2(0) > 0.

Therefore it is straightforward to verify that b2(w) has properties (i) and

(ii). q.e.d.

Based on the above properties of 6f(w), / = 1, 2, one may define the

antiderivatives At(w) of 6f.(w)"1/2 more precisely as follows:

[a[(n - \)t + hf<"-l) -

w e[max(0, wx), w2],

A2(w)=fJ{a[-(n - l)t - h]2/^ - t^dt, w £[0, w2].

Summarizing the discussion of this section, we state the generalization of

Delaunay theorem as follows.

Theorem 2. Suppose N is a generalized rotational surface of (SO(n —

1), pn-ι + 1, Rn)-type and of constant mean curvature h, and Ω = N/G C

Rn/G ^ R 2 / ^ is its image curve which can be given as a graph ofy = f(x) >

0 in the upper half plane. Then one has the following possibilities:

I. Case h < 0.

(i) Ω is a circular arc with its center on the x-axis and (n — l)/(-Λ) as its

radius,

(ii) Ω is given by y = (n - 2)/(-A),

(in) j>/cos φ < (n — l)/(-A), and Ω is obtained by rolling a uniquely

determined curve Γ whose polar coordinate equation is given by θ =

± Ax(l/r) + c.

(iv) y/cos φ > (n — l)/(-A), and Ω is obtained by rolling a uniquely

determined curve Γ whose polar coordinate equation is given by θ — ± A2(l/r)

+ c.



GENERALIZATION OF A THEOREM OF DELAUNAY 171

II. Case h > 0. Ω is obtained by rolling a uniquely determined curve Γ
whose polar coordinate equation is given by B — ± Aλ(\/r) + c.

We shall make use of the above theorem to investigate various properties of
Ω via that of Γ in §3.

3. Properties of generalized rotation hypersurfaces of constant

mean curvature of (SO(n - 1), RΛ)-type

In this section we shall apply the rolling construction of §2 to investigate
some interesting properties of generalized rotational hypersurfaces of con-
stant mean curvature of (SO(n — 1), R")-type. According to Theorems 1 and
2, the rolling construction enable us to transfer the equation of the generating
curve Ω, namely (2), to that of the polar coordinate function of the rolling
curve Γ, namely (12), whose solutions can be explicitly expressed in terms of
the following integral:

(19) θ = ± fbilwy^dw, i = 1, 2, w = i .

Therefore it is easy to use the above integral expression to study some
interesting properties of Ω such as periodicity via the rolling construction. In
the classical case of n = 3

bx(w) = a (2H> + h) - w2, b2{w) = -[α(2w + h) + H>2]

are simply quadratic polynomials of w. Therefore it is straightforward to
compute θ = ± f bi(w)dw in terms of trigonometric functions. Explicit com-
putation will show that

— = w = a + b cos(0 + c), (a, b, c: suitable constants),

which is exactly the polar coordinate function of a conic section with a focus
as its origin. This gives us the classical Delaunay theorem.

In the general case of n > 4, Lemmas 2 and 2' provide those essential
properties of the functions 6,(H>), / = 1,2, for our investigation of the integral
θ = ± f bi(w)~1/2dw. We shall divide our discussion as follows.

3.1. Periodic solutions
In the classical case of n = 3, if Γ is an ellipse then Ω is periodic, namely, Ω

is given by a periodic function^ = f(x),f(x + T) =/(*). In the general case,
Ω is periodic if and only if Γ is periodic, and hence a necessary condition for
Ω to be periodic will be that r = r(θ) is positive and bounded. In view of
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Theorem 2 and Lemmas 2, 2', the above necessary condition implies that

θ = ± / bx(w)~ι/2dw, and h < 0, a > [ - * / ( * - 2)]2<Λ-2)/<'I-1>. In fact, it is

not difficult to deduce the following theorem from Theorem 2 and Lemma 2

by straightforward computation.

Theorem 3. Ω is periodic if and only if Γ is given by the following polar

coordinate function, namely, θ = ± / bx(w)~ι^2dw with w = 1/r, bx(w) =

{a[(n - l)w + hf^n~l) - w2} and A < 0, α > [-h/(n - 2)fn-2^n~ι\ By

Lemma 2, bx(w) has two simple roots wl9 w2, -h/{n — 1) < wλ < -h/(n — 2)

< w2. Then, up to a translation along the x-axis, Ω is given by y = f(x)

satisfying the following properties:

(i) f{x) is a periodic function with its period T < -2ft(l + ττ)/(n — 1),

(ϋ) /(0) = \/wx < -(n - 1)/A, f(T/2) = \/w2, and f(x) is symmetric

with respect to x = Γ/2,

(iii) f(x) is strictly decreasing between 0 and Γ/2, and strictly increasing

between T/2 and T.

Proof, Theorem 2 reduces the verification of above theorem to the corre-

sponding properties of Γ. Let θ = / ^ bλ{t)~ι/2dt. Then the properties of bλ{t)

listed in Lemma 2 and simple estimates will show that

(i) w is a strictly increasing function of θ between 0 and θ* =

(ϋ) dw/dθ = 0 at both θ = 0 and θ = θ*.

Therefore it follows from the uniqueness of (12) that one may analytically

continue the solution w = w(θ) of (12) simply by reflection with respect to

θ = kθ*9 namely,

θ = 2Θ*

FIG. 3

Hence Γ is a periodic curve of period 20*, and consequently Ω is also periodic

whose period T is equal to the arc length of Γ between θ = 0 and θ = 20*.
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It is easy to use the properties bλ(w) > -(w - wx)(w — w^ and wx >
-(n - \)/h to estimate that

COROLLARY. AS a corollary of Theorem 3 and a theorem of Ruh and Vilms
[6], the Gauss map of the generalized rotational hypersurface of Ω in RΛ is a
periodic harmonic map of R1 X S"1"2-* Sn~ι, and hence its quotient is a
harmonic map of degree zero of Sι X Sn~2 —» Sn~ι.

3.2. Generalized rotational minimal hypersurfaces in R"

In the classical case of n = 3, the constant mean curvature A = 0 if
and only if Γ is a parabola. The generating curve Ω is given by y =
\ cosh(c(x — Λ;0)). In the case n > 4, it is to specialize the explicit formula of
(5) to obtain the following:

(120 χ = -g(c y) + χ0, g(u) -

Therefore the properties of Ω can easily be investigated directly from the
above formula (without going through the following construction).

33. The hyperbolic type

Suppose n = 3, and Γ is a hyperbola. Then we have the following two
different possibilities, namely,

(i) if one rolls a branch of hyperbola on the upper side of the x-axis, then
the focus inside of the branch traces a curve Ω whose rational surface has
constant mean curvature h > 0.

(ii) if one rolls a branch of hyperbola on the lower side of the x-axis, then
the focus outside of the branch traces a curve Ω whose rotational surface has
constant mean curvature h < 0.

Correspondingly, one also has the following two possibilities for the general
case of n > 4, namely,

(i) h > 0. In this case b^w) = {a[(n - l)w + h]2An~l) - w2} has exactly
two simple roots wl9 w2 and (-h)/(n - 1) < wx < 0 < H>2. The curve Γ is
given by the polar coordinate relationship:

θ = ± ΓbM-^ώ + θθ0.
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Let θ* = /o2 &i(0~1/2 Then it is not difficult to show that Γ is a curve of the
following shape:

- θ < Θ < θ *

r •>• « as θ -*• ±θ* >. axis of symmetry

FIG. 4
Ω is obtained by rolling the above Γ on the upper side of the x-axis.

(ii) h < 0 and Γ is given by the following polar coordinate relationship:

Θ = ± Γb2(tyι/2dt + Θ0,
J0

By Lemma 2', b2(w) has two simple roots wl9-w2, wx < 0 < w2 <
(~h)/(n - 1). Let θ* = /£2 b2(tyι/2dt. Again it is not difficult to see that Γ is
then a curve of the following shape:

axis of symmetry

r -* °° as θ -* ±θ*

FIG. 5
Ω is obtained by rolling Γ on the lower side of the x-axis.
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It is rather straightforward to use the rolling construction and the integral

expression of Γ to investigate further properties of Ω in the above two cases of

hyperbolic type. We state some of their basis properties as follows without

proof.

Theorem 3'. The generating curve Ω of hyperbolic type has the following

properties:

(a) If h > 0, then, up to a translation along the x-axis, Ω is given by

y = f(x) satisfying the following properties:

(i) f(x) is a convex function symmetric with respect to x = 0,

(ii) Ω is a finite length open arc defined over (-/?, β) with β < I/A,

lϊmx_+βf'(x) = + oo and hmx_^β f(x) = γ < + oo.

(b) If W < 0, then, Up to a translation along the x-axis, Ω is given by

y = f(x) satisfying the following properties:

(i) f(x) is defined over [-β'9 β'], β' < (n - 1)/|A'| and symmetric with

respect to x = 0,

(ii) f(x) is strictly increasing over (-/?', 0) and strictly decreasing over

(0, /?'),/"(*) > 0, l im^'/ 'W = -oo, li*W/(x) - γ' < + oo.

FIG. 6

(c) By suitably adjusting the value of a, one may realize an arbitrary

positive value for γ or γ'. Therefore it is easy to piece the above two kinds of

generating curves with h! = -h and γ ' = γ by translation and uniqueness. In

this way, one obtains periodic solutions of the following type whose Gauss map

provides harmonic maps of Sι X S" 1 " 2 -* Sn~\ which covers Sn~λ twice

generically, and hence also those examples which cover Sn~λ2k times generically

by taking longer period.
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FIG. 7

3.4. Concluding remarks

(i) The rolling construction is a simple geometric construction which
establishes a simple, rigid, analytic relationship between the cartesian expres-
sion of Ω and the polar expression of Γ. In the case that Ω is a generating
curve of a generalized rotational hypersurface of constant mean curvature in
RΛ, the polar coordinate expression of Γ is given by a rather simple integral,
namely, θ = ± / bt(w) dw. Therefore it is usually advantageous to investigate
the properties of Ω via the corresponding properties of Γ.

(ii) In the case h < 0, there are four types of solutions for the generating
curve Ω, namely,

(1) constant solution: y = (n — 2)/(-A),
(2) circular solution: y = [((π - \)/h)2 - xψ2,
(3) periodic solutions of elliptic type,
(4) solutions of hyperbolic type.
Geometrically, they can all be fitted into a continuous family with the

constant solution as the limit of periodic solutions and the circular solution as
the dividing point of periodic solutions of elliptic type and that of hyperbolic
type.

(in) In the periodic case, one constructs a family of harmonic maps of
Sk x Tι-+Sk+ι X T~\ It is not difficult to check that the composition
Sk x Γ'-» Sk+ι X Tι~ι -* Sk+1 X Tι~2 is no longer harmonic. However, it
is rather tempting to see if some suitable modification of the above composi-
tion will yield a harmonic map of Sk X Tι -> Sk+2 X Tι~2.
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