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0. Introduction

The CR-submanifolds of a Kaehlerian manifold have been defined by one
of the present authors and studied by him [2], [3] and by B. Y. Chen [4].

The purpose of the present paper is to continue the study of CR-submani-
folds, and in particular of those of a complex space form.

In §1 we first recall some fundamental formulas for submanifolds of a
Kaehlerian manifold, and in particular for those of a complex space form,
and then give the definitions of CR-submanifolds and generic submanifolds
in our context. We also include Theorem 1 which seems to be fundamental in
the study of CR-submanifolds.

In §2 we study the f-structures which a CR-submanifold and its normal
bundle admit. We then prove Theorem 2 which characterizes generic sub-
manifolds with parallel f-structure of a complex space form.

In §3 we derive an integral formula of Simons’ type and applying it to
prove Theorems 3, 4 and 5.

1. Preliminaries

Let M be a complex m-dimensional (real 2m-dimensional) Kaehlerian
manifold with almost complex structure J, and M a real n-dimensional
Riemannian manifold isometrically immersed in M. We denote by {, > the
metric tensor field of M as well as that induced on M. Let V (resp. V) be the
operator of covariant differentiation with respect to the Levi-Civita connec-
tion in M (resp. M). Then the Gauss and Weingarten formulas for M are
respectively written as

VyY =V,Y+ B(X,Y), VyN=-AyX + DyN
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for any vector fields X, Y tangent to M and any vector field N normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle T(M)* of M. Both A and B
are called the second fundamental forms of M and are related by (4yX, Y
={(B(X,Y),N).

For any vector field X tangent to M we put
(1.1) JX = PX + FX,
where PX is the tangential part of JX, and FX the normal part of JX. Then P
is an endomorphism of the tangent bundle T(M) of M, and F is a normal
bundle valued 1-form on T(M).

For any vector field N normal to M we put

(1.2) JN = (N + [N,
where N is the tangential part of /N, and fN the normal part of JN.
If the ambient manifold M is of constant holomorphic sectional curvature

¢, then M is called a complex space form, and will be denoted by M™(c).
Thus the Riemannian curvature tensor R of M™(c) is given by

R(X,Y)Z =%c[<Y, Z)X — <X, ZDY + {JY, Z)JX
~JX, ZYJY + KX, JY)JZ]

for any vector fields X, ¥ and Z of M™(c). We denote by R the Riemannian
curvature tensor of M. Then we have

R(X,Y)Z =5c[{Y,Z)>X — (X, Z)Y +(PY,Z)PX — (PX, Z)PY
(13) +2(X, PYYPZ] + Apy,2)X — Apx,2)Ys

(VxB)(Y, Z) - (VyB)(X, Z)

(14) =2¢[{PY, Z)FX — (PX, Z)FY + XX, PY)FZ]

for any vector fields X, Y and Z tangent to M.

If the second fundamental form B of M satisfies the classical Codazzi
equation (VyB)(Y, Z) = (V,B)(X, Z), then (1.4) implies (cf., [1, p. 434])

Lemma 1. Let M be an n-dimensional submanifold of a complex space form
M™(c), ¢ #0. If the second fundamental form of M satisfies the classical
Codazzi equation, then M is holomorphic or anti-invariant.

Definition 1. A submanifold M of a Kaehlerian manifold M is called a
CR-submanifold of M if there exists a differentiable distribution ) : x — 9,
C T.(M) on M satisfying the following conditions:

(i) D is holomorphic, i.e., J 9D, = 9, for each x € M, and

(i) the complementary orthogonal distribution D*: x - DI c T (M) is
anti-invariant, i.e., J0; C T,(M)* for each x € M.
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If dim D} = 0 (resp. dim %), = 0) for any x € M, then the CR-submani-
fold is a holomorphic submanifold (resp. anti-invariant submanifold) of M. If
dim 9} = dim T, (M)* for any x € M, then the CR-submanifold is a
generic submanifold of M (see [9]). It is clear that every real hypersurface of a
Kaehlerian manifold is automatically generic submanifold. A CR-submani-
fold is called a proper CR-submanifold if it is neither a holomorphic sub-
manifold nor an anti-invariant submanifold. From Lemma 1 we have

Proposition 1. Let M be a proper CR-submanifold of a complex space form -
M ™(c). If the second fundamental form of M satisfies the classical Codazzi
equation, then ¢ = 0.

A submanifold M is said to be minimal if trace B = 0. If B = 0 identically,
M is called a totally geodesic submanifold.

Definition 2. A CR-submanifold M of a Kaehlerian manifold M is said
to be mixed totally geodesic if B(X, Y) = 0foreachX € 9 and Y € P+.

Lemma 2. Let M be a CR-submanifold of a Kaehlerian manifold M. Then
M is mixed totally geodesic if and only if one of the following conditions is
Sfulfilled:

@A) AyX € D forany X € D and N € T(M)*,

(i) AyY € Dt forany Y € D' and N € T(M)*.

The integrability of distributions ) and D* on a CR-submanifold M is
characterized by

Theorem 1. Let M be a CR-submanifold of a Kaehlerian manifold M. Then
we have

(i) D+ is always involutive, [4],

(ii) D is involutive if and only if the second fundamental form B satisfies
B(PX,Y) = B(X, PY) forall X, Y € 9, [2].

Definition 3. A CR-submanifold M is said to be mixed foliate if it is
mixed totally geodesic and B(PX, Y) = B(X, PY)forall X, Y € 9.

Now, let M+ be a leaf of anti-invariant distribution )+ on M. then we
have

Proposition 2. A necessary and sufficient condition for the submanifold M L
to be totally geodesic in M is that

B(X,Y) € fT(M)* forall X € D* and Y € 9.

Proof. For any vector fields X and Y tangent to M, (1.1) and Gauss and
Weingarten formulas imply

(1.5) tB(X, Y) = (V4P)Y — ApyX,

where we have put (VyP)Y = V,PY — PV,Y.
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Let X, Z € 9+ and Y € . Then (1.5) implies that
(PVYZ, YY) = A X, Y) = (B(X,Y), FZ),
which proves our assertion.

Corollary 1. Let M be a mixed totally geodesic CR-submanifold of a
Kaehlerian manifold M. Then each leaf of anti-invariant distribution D* is
totally geodesic in M.

Corollary 2. A generic submanifold M of a Kaehlerian manifold M is mixed
totally geodesic if and only if each leaf of anti-invariant distribution is totally
geodesic in M.

Lemma 3. Let M be a mixed foliate CR-submanifold of a Kaehlerian
manifold M. Then we have

AyP + PAy =0
Jor any vector field N normal to M.

Proof. From the assumption we have B(X, PY) = B(PX, Y)forall X, Y
€ 9. On the other hand, we obtain B(X, Y) =0for X € ) and Y € 9D+.
Moreover, we see that PX € % for any vector field X tangent to M.
Consequently we can see that B(X, PY) = B(PX, Y) for any vector fields
X, Y tangent to M, from which it follows that 4y P + PAy = 0.

Proposition 3. If M is a mixed foliate proper CR-submanifold of a complex
space form M™(c), then we have ¢ < 0.

Proof. LetX,Y € 9 and Z € . Then we have

(VxB)(Y, Z) — (VyB)(X, Z) = B(X, VyZ) — B(Y, VZ).
If we take a vector field U normal to M such that Z = JU = tU, we obtain
that V,Z = —PA,Y + tDyU. Thus Lemma 3 implies that
(V4B)(Y, Z) — (VyB)(X, Z) = B(PY, A,X) + B(X, A,PY).
Putting X = PY and using (1.4) we see that 2B(PY, A,PY) =
—3¢{PY, PY »U. Therefore we have
(1.6) 0 < 2{4,PY, AyPY) = —3c{PY, PY XU, U},

which proves our assertion.

Corollary 3. Let M be a mixed foliate CR-submamfold of a complex space
form M™(c). If ¢ >0, then M is a holomorphic submanifold or an anti-
invariant submanifold of M™(c).

2. f-structure

Let M be an n-dimensional CR-submanifold of a complex m-dimensional
Kaehlerian manifold M. Applying J to both sides of (1.1) we have

-X = PXX + tFX,
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from which it follows that P°X + PX = 0 for any vector field X tangent to
M. Thus

P*+ P=0.
On the other hand, the rank of P is equal to dim %, everywhere on M.
Consequently, P defines an f-structure on M (see [7]).
Applying J to both sides of (1.2) we obtain that

—-N = FtN + f°N,

so that f°N + fN = 0 for any vector field N normal to M, and the rank of
f is equal to dim T,(M) — dim %), everywhere on M. Thus f defines an f-
structure on the normal bundle of M.

Definition 4. If V, P = 0 for any vector field X tangent to M, then the
Jf-structure P is said to be parallel.

Proposition 4. Let M be an n-dimensional generic submanifold of a complex
m-dimensional Kaehlerian manifold M. If the f-structure P on M is parallel,
then M is locally a Riemannian direct product MT X M*, where M7 is a
totally geodesic complex submanifold of M of complex dimension n — m, and
M* is an anti-invariant submanifold of M of real dimension 2m — n.

Proof. From the assumption and (1.5) we have JB(X, Y) = tB(X, Y) =
—AgyX. Thus JB(X, PY) = 0 and hence B(X, PY) = 0. On the other hand,
we see that

(2.1) fB(X, Y) = B(X, PY) + (V4F)Y.

Since f = 0, we have (Vy,F)Y = —-B(X, PY) = 0.

Let Y € ®*. Then we have that PV, Y = V,PY — (V,P)Y = 0 for any
vector field X tangent to M, so that the distribution %D~ is parallel. Similarly,
the distribution % is also parallel. Consequently, M is locally a Riemannian
direct product M7 x M+, where MT and M+ are leaves of ) and D+
respectively. From the constructions, M7 is a complex submanifold of M,
and M* is an anti-invariant submanifold of M. On the other hand, since
B(X, PY) = 0 for any vector fields X and Y tangent to M, M7 is totally
geodesic in M. Thus we have our assertion. )

Theorem 2. Let M be an n-dimensional complete generic submanifold of a
complex m-dimensional, simply connected complete complex space form M™(c).
If the f-structure P on M is parallel, then M is an m-dimensional anti-invariant
submanifold of M™(c), or ¢ =0 and M is C"™™ X M?"~" of C™, where
M?"~" is an anti-invariant submanifold of C™.

Proof. First of all, we have

(V4 B)(Y, PZ) = Dy(B(Y, PZ)) — B(V4Y, PZ) — B(Y, PV4Z) =0,
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which together with (1.4) implies
i¢[(PY, PY)FX — (PX, PY)FY] = 0.

Thus we have ¢ =0 or P=0. If P =0, then M is a real m-dimensional
anti-invariant submanifold of M™(c). If ¢ = 0, then the ambient manifold
M™(c) is a complex number space C™, and our assertion follows from
Proposition 3.

Proposition 5. Let M be an n-dimensional complex mixed foliate proper
generic submanifold of a simply connected complete complex space form M™(c).
If ¢ >0, then c =0 and M is C"~™ X M*"~" of C™, where M*™~" is an
anti-invariant submanifold of C™.

Proof. From Proposition 3 we see that ¢ = 0 and hence M™c)=C
Then (1.6) implies that A;,X = 0 for any X € . From this and (1.5) we see
that P is parallel. Thus theorem 2 proves our assertion.

3. An integral formula

First of all, we recall the formula of Slmons type for the second funda-

mental form [6].

Let M be an n-dimensional minimal submanifold of an m-dimensional
Riemannian manifold M. Then the formula of Simons’ type for the second
fundamental form 4 of M is written as

(3.1) VM4 =-A°A-A°A4+R(4) + R,

where we have put 4 =4 o 4 and A =270 adAadA, for a normal frame
{(V,}a=1,---,m—n,and 4, = AaForaframe{E,}t I,---,nof
M, we put

(32) (RM(X), Y) = (<(VXR )(E, Y)E, N) + {(VgR )(E, X)Y,N>)

for any vector fields X, Y tangent to M and any vector field N normal to M,
R being the Riemannian curvature tensor of M. Moreover, we put

(RA)"(X), Y
= 3 [XR(E, )B(X, E), N> + %R (E, X)B(Y, E), N

(33) ~{AxX, R(E, Y)E) — {AyY, R(E, X)E,
+(R(E, B(X, Y))E, N> — XAyE, R(E, X)Y)].
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In the following, we assume that the ambient manifold M is a complex
space form M™(c). Since M™(c) is locally symmetric, we have R’ = 0. A
straightforward computation gives

CRAY(X), YY) =5endAyX, Y = 1clApyX, INY = LedApy ¥, IND
+c(fB(X, PY),N) + ¢{fB(Y, PX),N)
(3.4 +3c(PX, PAyY ) + 2c(PY, PAyX) —3c{AyPX, PY)

-3¢ i [{AggE» X){FY,N) + {ApE, Y){FX,N)
i=1

+3{Apg X, Y){FE, N}].

We now prepare some lemmas for later use.
Lemma 4, [9]. Let M be a generic submanifold of a Kaehlerian manifold M.
Then we have
Ay Y = Apy X
for any vector fields X, Y.
Lemma 5. Let M be a minimal CR-submanifold of a Kaehlerian manifold
M with involutive distribution 0 . Then we have

2 B(Ea’ Ea) = 0

for a frame {E,} of D*.

Proof. We take a frame {E, E,} of M such that {E,} and {E,} are
frames of %) and D™ respectively. Since ¢ is involutive, we have that
2 B(E, E,) = 0so that ¥ B(E,, E,) = 0.

We now define a vector field H tangent to M in the following way. Let
{E,} be a fame of D+, and put H = 3, A,E,. Then H = 3, A, tfe, for any
frame {¢;} of M and H is independent of the choice of a frame of M.

In the following we assume that M is a generic minimal submanifold of
M™(c), ¢ > 0, with the second fundamental form B satisfying that B(PX, Y)
= B(X, PY) for all X, Y € %, which implies that % is involutive, and
H e D+,

From (3.4), using Lemmas 4 and 5 we obtain

(3.5) (R(A), 4y > 3(n + Dc| A%
On the other hand, we have [6]

(3.6) oAy + o aady < (2= Jar
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where p denotes the codimension of M, and ||4|| is the length of the second
fundamental form 4 of M. Thus (3.1), (3.5) and (3.6) imply

1
3.7 (V4,4 < (2 - ;)HA”“ —1(n+ 4%
If M is compact orientable, then

fM<v2A, A = -fM<VA, VAD.

Therefore (3.7) implies the following.

Theorem 3. Let M be an n-dimensional compact orientable generic minimal
submanifold of a complex space form M™(c), ¢ > 0. If D is involutive and
H € 9+, then we have

(3.8) fM<VA, VA < fM[(z - %)”A”‘ —Ln+ 1)c||A||2}.

As the ambient manifold M™(c) we take a complex projective space CP™
with constant holomorphic sectional curvature 4. Then we have

Theorem 4. Let M be an n-dimensional compact orientable generic minimal
submanifold of CP™ with involutive distribution ). If H € D+ and ||A||> < (n
+ 1)/(2 — 1/p), then M is real projective space RP™ and n = m = p.

Proof. From (3.8) we see that M is totally geodesic in CP™. Thus M is a
complex or real projective space (see [1, Lemma 4]). Since M is a generic
submanifold, M is a real projective space and anti-invariant in CP™. Thus we
have n = m = p and dim % = 0.

Theorem 5. Let M be an n-dimensional compact orientable generic
minimal submanifold of CP™. If D is involutive, H € D+, and ||A|* =
(n+1)/2—1/p),then Mis S' X S'in CP*,andn=m = p = 2.

Proof. From the assumption we have VA = 0, and M is an anti-invariant
submanifold of CP™, and hence m = n = p. Thus our assertion follows from
[5, Theorem 3).
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