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0. Introduction

The CΉ-submanifolds of a Kaehlerian manifold have been defined by one
of the present authors and studied by him [2], [3] and by B. Y. Chen [4].

The purpose of the present paper is to continue the study of CR-submani-
folds, and in particular of those of a complex space form.

In §1 we first recall some fundamental formulas for submanifolds of a
Kaehlerian manifold, and in particular for those of a complex space form,
and then give the definitions of CΛ-submanifolds and generic submanifolds
in our context. We also include Theorem 1 which seems to be fundamental in
the study of CΛ-submanifolds.

In §2 we study the /-structures which a CΛ-submanifold and its normal
bundle admit. We then prove Theorem 2 which characterizes generic sub-
manifolds with parallel /-structure of a complex space form.

In §3 we derive an integral formula of Simons' type and applying it to
prove Theorems 3, 4 and 5.

1. Preliminaries

Let M be a complex m-dimensional (real 2m-dimensional) Kaehlerian
manifold with almost complex structure /, and M a real ^-dimensional
Riemannian manifold isometrically immersed in M. We denote by < , ) the
metric tensor field of M as well as that induced on M. Let V (resp. V) be the
operator of covariant differentiation with respect to the Levi-Civita connec-
tion in M (resp. M). Then the Gauss and Weingarten formulas for M are
respectively written as

VXY=VXY + B(X, Y), VXN = -ANX + DXN
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for any vector fields X, Y tangent to M and any vector field N normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle T(M)^ of M. Both A and B
are called the second fundamental forms of M and are related by (ANX, Y)
= (B(X, Y),N>.

For any vector field X tangent to M we put

(1.1) JX= PX + FX,

where PX is the tangential part of JX, and FX the normal part of JX. Then P
is an endomorphism of the tangent bundle T(M) of M, and F is a normal
bundle valued 1-form on T(M).

For any vector field TV normal to M we put

(1.2) JN=tN + fN,

where tN is the tangential part of JN, and fN the normal part of JN.
If the ambient manifold M is of constant holomorphic sectional curvature

c, then M is called a complex space form, and will be denoted by Mm(c).
Thus the Riemannian curvature tensor R of Mm(c) is given by

R(X, Y)Z = \C[(Y, zyx - (x,zyγ + (jγ,zyjχ

-(jx, zyjY + 2(x, jYyjz]

for any vector fields X, Y and Z of Mm(c). We denote by R the Riemannian
curvature tensor of M. Then we have

R(X, γ)z = \c[(γ, zyx - (x, zyY + (PY, zypx - (PX, zypY

(1.3) +2<X, PYyPZ] + AB(YtZ)X - AB(XfZ)Y,

(VXB)(Y,Z)-(VYB)(X,Z)
(1.4) ,

— ^Cχ\r 1, Z, /ΓΛ — \rΛ, Δ, /Γ I T -ώ\A, rl /rΔ,

for any vector fields X, Y and Z tangent to M.
If the second fundamental form B of M satisfies the classical Codazzi

equation (VXB)(Y, Z) = (VYB)(X, Z), then (1.4) implies (cf., [1, p. 434])
Lemma 1. Let M be an n-dimensional submanifold of a complex space form

Mm(c), c φ 0. If the second fundamental form of M satisfies the classical
Codazzi equation, then M is holomorphic or anti-invariant.

Definition 1. A submanifold M of a Kaehlerian manifold M is called a
CΛ-submanifold of M if there exists a differentiate distribution ^D: x —» βϋx

C TX(M) on M satisfying the following conditions:
(i) <$> is holomorphic, i.e., J6ϋx = βύx for each x ΈLM, and
(ii) the complementary orthogonal distribution βΰ±: x -» ̂  C TX(M) is

anti-invariant, i.e., Jty* C TX(M)^ for each x G M.
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If dim <$£ = 0 (resp. dim Θύx = 0) for any x G M, then the CR-submani-

fold is a holomorphic submanifold (resp. anti-invariant submanifold) of M. If

dim ^ = dim T^M)1^ for any x G M, then the CΛ-submanifold is a

generic submanifold of M (see [9]). It is clear that every real hypersurface of a

Kaehlerian manifold is automatically generic submanifold. A CΛ-submani-

fold is called a proper CR-submanifold if it is neither a holomorphic sub-

manifold nor an anti-invariant submanifold. From Lemma 1 we have

Proposition 1. Let M be a proper CR-submanifold of a complex space form

Mm(c). If the second fundamental form of M satisfies the classical Codazzi

equation, then c = 0.

A submanifold M is said to be minimal if trace B = 0. If B = 0 identically,

M is called a totally geodesic submanifold.

Definition 2. A CΛ-submanifold M of a Kaehlerian manifold M is said

to be mixed totally geodesic if B(X, Y) = 0 for each X G fy and Y G ^D^.

Lemma 2. Let M be a CR-submanifold of a Kaehlerian manifold M. Then

M is mixed totally geodesic if and only if one of the following conditions is

fulfilled:

(ι)ΛNX G <ΐ> for anyX <Ξty and N G T^M^,

(n)ΛNY G ty1- for any Y G ^ andN G Γ(M) X .

The integrability of distributions ^ and Φ 1 o n a CΛ-submanifold M is

characterized by

Theorem 1. Let M be a CR-submanifold of a Kaehlerian manifold M. Then

we have

(i) tf)1- is always involutive, [4],

(ii) Φ is involutive if and only if the second fundamental form B satisfies

B(PX, Y) = B(X, PY)forallX, Y 6 ί , [2].

Definition 3. A CR-submanifold M is said to be mixed foliate if it is

mixed totally geodesic and B(PX, Y) = B(X, PY) for all X, Y G ^D.

Now, let M± be a leaf of anti-invariant distribution 6D"L on M. then we

have

Proposition 2. A necessary and sufficient condition for the submanifold M x

to be totally geodesic in M is that

B(X, Y) (EfT(M)1- for all X G <%•>- and Y G φ .

Proof. For any vector fields X and Y tangent to M, (1.1) and Gauss and

Weingarten formulas imply

(1.5) tB(X,Y) = (VxP)Y-AFYX,

where we have put (VXP)Y = VXPY - PVXY.



140 AUREL BEJANCU, MASAfflRO KON & KENTARO YANO

Let ^ Z E ^ a n d F G 6 ! ) . Then (1.5) implies that

<PVXZ, Y} = -(AFZX, 7> - -{B{X, Y\ FZ\

which proves our assertion.

Corollary 1. Let M be a mixed totally geodesic CR-submanifold of a

Kaehlerian manifold M. Then each leaf of anti-invariant distribution £5DX is

totally geodesic in M.

Corollary 2. A generic submanifold M of a Kaehlerian manifold M is mixed

totally geodesic if and only if each leaf of anti-invariant distribution is totally

geodesic in M.

Lemma 3. Let M be a mixed foliate CR-submanifold of a Kaehlerian

manifold M. Then we have

ANP + PAN = 0

for any vector field N normal to M.

Proof From the assumption we have B(X, PY) = B(PX, Y) for all X, Y

E <φ. On the other hand, we obtain B(X, Y) = 0 for X E ty and Y E βϋ±.

Moreover, we see that PX e ^ for any vector field X tangent to M.

Consequently we can see that B(X, PY) = B(PX, Y) for any vector fields

X, Y tangent to M, from which it follows that ANP + PAN = 0.

Proposition 3. If M is a mixed foliate proper CR-submanifold of a complex

space form M m (c), then we have c < 0.

Proof. Let X, Y E <ΐ> and Z G ty1-. Then we have

{VXB)(Y, Z) - (VYB)(X, Z) = B(X, VYZ) - B(Y, VXZ).

If we take a vector field U normal to M such that Z = JU = tU, we obtain

that V y Z = -PAυY + tDγU. Thus Lemma 3 implies that

(VXB)(Y, Z) - (Vy20(X, Zj = B(PY, AυX) + B(X, AυPY).

Putting X = PY and using (1.4) we see that 2B(PY, AVPY) =

-\c(PY, PY}U. Therefore we have

(1.6) 0 < liAvPYMuPry = -\c(PY, PY}(U, t/>,

which proves our assertion.

Corollary 3. Let M be a mixed foliate CR-submanifold of a complex space

form Mm(c). If c > 0, then M is a holomorphic submanifold or an anti-

invariant submanifold of Mm(c).

2. /-structure

Let M be an ̂ -dimensional CΛ-submanifold of a complex /n-dimensional

Kaehlerian manifold Λf. Applying / to both sides of (1.1) we have

-X = P2X + tFX9



CΛ-SUBMANIFOLDS 141

from which it follows that P3X + PX = 0 for any vector field X tangent to
M. Thus

P3 + P = 0.

On the other hand, the rank of P is equal to dim 6ΰx everywhere on A/.
Consequently, P defines an/-structure on M (see [7]).

Applying J to both sides of (1.2) we obtain that

-N = FtN + fN,

so that f3N + fN = 0 for any vector field N normal to M, and the rank of
/ is equal to dim TX(M) - dim βϋx everywhere on M. Thus / defines an /-
structure on the normal bundle of M.

Definition 4. If VXP = 0 for any vector field X tangent to M, then the
/-structure P is said to be parallel.

Proposition 4. Let M be an n~dimensional generic submanifold of a complex

m~dimensional Kaehlerian manifold M. If the f-structure P on M is parallel,

then M is locally a Riemannian direct product Mτ X M±, where Mτ is a

totally geodesic complex submanifold of M of complex dimension n — m, and

M1- is an anti-invariant submanifold of M of real dimension 2m — n.

Proof. From the assumption and (1.5) we have JB(X, Y) = tB(X, Y) =
-AFYX. Thus JB(X9 PY) = 0 and hence B(X, PY) = 0. On the other hand,
we see that

(2.1) fB(X, Y) = B(X, PY) + (VXF)Y.

Since/ = 0, we have (VXF)Y = -B(X, PY) = 0.
Let Y G ^ . Then we have that PVXY = VXPY - (VXP)Y = 0 for any

vector field X tangent to M, so that the distribution 6ί)± is parallel. Similarly,
the distribution Φ is also parallel. Consequently, M is locally a Riemannian
direct product Mτ X M x , where Mτ and Λfx are leaves of D̂ and D±

respectively. From the constructions, Mτ is a complex submanifold of Λf,
and M± is an anti-invariant submanifold of M. On the other hand, since
B(X, PY) = 0 for any vector fields X and Y tangent to M, Mτ is totally
geodesic in M. Thus we have our assertion.

Theorem 2. Let M be an n-dimensional complete generic submanifold of a

complex m-dimensional, simply connected complete complex space form Mm(c).

If the f-structure P on M is parallel\ then M is an m-dimensional anti-invariant

submanifold of Mm(c\ or c = 0 and M is Cn~m X Mlm~n of Cm, where

M2m~n is an anti-invariant submanifold of Cm.

Proof First of all, we have

(VXB)(Y, PZ) = DX(B(Y, PZ)) - B(VXY, PZ) - B(Y, PVXZ) = 0,
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which together with (1.4) implies

±c[(PY, PY)FX - (PX, PY}FY] = 0.

Thus we have c = 0 or P = 0. If P = 0, then M i s a real w-dimensional
anti-invariant submanifold of Mm(c). If c = 0, then the ambient manifold
Mm(c) is a complex number space Cm, and our assertion follows from
Proposition 3.

Proposition 5. Let M be an n-dimensional complex mixed foliate proper
generic submanifold of a sirrφly connected complete complex space form Mm(c).
If c > 0, then c = 0 and M is Cn~m X M2m~n of Cm, where M2m~n is an
anti-invariant submanifold of Cm.

Proof. From Proposition 3 we see that c = 0 and hence Mm(c) = Cm.
Then (1.6) implies that AυX = 0 for any X G 6ύ. From this and (1.5) we see
that P is parallel. Thus theorem 2 proves our assertion.

3. An integral formula

First of all, we recall the formula of Simons' type for the second funda-
mental form [6].

Let M be an n-dimensional minimal submanifold of an /n-dimensional
Riemannian manifold M. Then the formula of Simons' type for the second
fundamental form A of M is written as

(3.1) ΨA = -A o A -A o A 4- R(A) + R',

where we have put A = Ά ° A and A = Σ™~? adAaadAa for a normal frame
{ K}> a = 1, - - ,m — n9 and Aa = AVa. For a frame {£,}, i = 1, , n of
M, we put

(3.2) <R'"(X), Y> = Σ {<(ΪXR)(E,, Y)E,,N> + <(VER )(£;, X)Y, N))

for any vector fields X, Y tangent to M and any vector field iV normal to M,
R being the Riemannian curvature tensor of M. Moreover, we put

<R(A)N(X), Y}

= Σ [2<R(Elt Y)B(X, E,), N} + 2<Λ(£J, X)B(Y, E,), N}
/ = 1

(3.3) -(ANX, R(EP Y)E,.} - <ANY, R{Et, X)Ei}

i, B(X, Y))EP N> -
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In the following, we assume that the ambient manifold M i s a complex
space form Mm(c). Since Mm(c) is locally symmetric, we have R' = 0. A
straightforward computation gives

<R(A)N(X), Y) =\cn(ANX9 Y) -^(A^X, tN) -\c(AFXY, tN)

+ c(fB(X, PY), N) + c(fB(Y, PX\ N)

(3.4) +f c<PX, PANY) + \c(PY, PANX) - \c(ANPX, PY)

-\c 2 [<A^Ei9 XXFY, N) + <AFEEi9 Y)(FX, N}

We now prepare some lemmas for later use.
Lemma 4, [9]. Let M be a generic submanifold of a Kaehlerian manifold M.

Then we have

Apχ Y = ApγX

for any vector fields X, Y.
Lemma 5. Let M be a minimal CR-submanifold of a Kaehlerian manifold

M with involutive distribution ^D. Then we have

ΣB(Ea,Ea)=0

for a frame {EJ of^.
Proof. We take a frame {Et, Ea) of M such that {Et} and {Ea} are

frames of D̂ and D± respectively. Since D̂ is involutive, we have that
Σ B(Et, Et) = 0 so that Σ B(Ea, Ea) = 0.

We now define a vector field H tangent to M in the following way. Let
{EJ be a fame of ^D"1, and put H = Σ α AaEa. Then H = Σ, AMtfet for any
frame {e,} of M and H is independent of the choice of a frame of M.

In the following we assume that M is a generic minimal submanifold of
Mm{c\ c > 0, with the second fundamental form B satisfying that B(PX, Y)
= B(X, PY) for all X, Y G 3), which implies that <$ is involutive, and

From (3.4), using Lemmas 4 and 5 we obtain

(3.5) (R(A),A)>\(n + l)c\\A\\2.

On the other hand, we have [6]

(3.6) {A °A,A> + (A°A,A> < (2 - j\\\A\\\



144 AUREL BEJANCU, MASAfflRO KON & KENTARO YANO

where/? denotes the codimension of M, and \\A\\ is the length of the second
fundamental form A of M. Thus (3.1), (3.5) and (3.6) imply

(3.7) -<V2A,A>

If M is compact orientable, then

( VA).f
JM
f (

JM JM

Therefore (3.7) implies the following.
Theorem 3. Let M be an n-dimensional compact orientable generic minimal

submanifold of a complex space form Mm(c), c > 0. If ty is involutive and
H e φ-1, then we have

(3.8) / <VΛ, VΛ>< / ((2 - i
JM JM{\ P

As the ambient manifold Mm(c) we take a complex projective space CPm

with constant holomorphic sectional curvature 4. Then we have
Theorem 4. Let M be an n-dimensional compact orientable generic minimal

submanifold of CPm with involutive distribution Φ. //H G βύ± and \\A\\2 < (n
+ l)/(2 — l/p), then M is real projective space RPm and n = m = p.

Proof From (3.8) we see that M is totally geodesic in CPm. Thus M is a
complex or real projective space (see [1, Lemma 4]). Since M is a generic
submanifold, M is a real projective space and anti-invariant in CPm. Thus we
have n = m — p and dim D̂ = 0.

Theorem 5. Let M be an n-dimensional compact orientable generic
minimal submanifold of CPm. If <>D is involutive, ffeί1, and \\A\\2 =
(n + l)/(2 - l /» , then M is Sι X Sι in CP\ andn = m = p = 2.

Proof. From the assumption we have VA = 0, and M is an anti-invariant
submanifold of CPm, and hence m = n = p. Thus our assertion follows from
[5, Theorem 3].
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