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THE GAUSS MAP OF A
THREE-DIMENSIONAL MINIMAL SURFACE

HAROLD R. PARKS

1. Introduction

It is well known that the Gauss map of a connected two-dimensional
minimal submanifold of R3 either is an open map or its image is just one
point. This is based on the connection between two-dimensional minimal
surfaces and analytic functions. It is natural to wonder to what extent the
above result can be generalized to a connected three-dimensional minimal
submanifold M of R4. Consideration of simple examples leads to the follow-
ing conjecture: Either M is a portion of a cartesian product (of a two-dimen-
sional minimal surface and a line) or a portion of a cone or the Gauss map of
M is open. We will show this conjecture to be false.

The method of this paper is to derive, using an estimate from [6] and the
assumed truth of the conjecture, certain conclusions about two-dimensional
surfaces of least area. Specifically, we conclude that there is an oriented
surface of least area T with boundary R, where R is as in §5(3), such that T is
invariant under the transformation

It is shown in §7 that no such T can exist. Thus the conjecture cannot be true.
We state the conjecture in a more convenient form. Let Ω c RΛ (n > 2) be

a connected open set. Suppose/: Ω —> R is of class 2 and satisfies the minimal
surface equation. Define the Gauss map ξ: Ω —» SΛ by requiring, for each
x 6 8,

(i) ξ(x) (e, + Dif(x)en+ι) = 0, i = 1, 2, 3, - , n,
(iiKW e Λ + 1 > 0 ;

throughout this paper, e1? e2, e3, , e π + 1 will be the standard basis for
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OMn: Either we have

for each compact K c Ω or ξ is an open map.
Thus OM2 is true and we will show OM3 can fail to hold. Notice that

whenever the graph of / is a portion of a cartesian product or a portion of a
cone, then we have

for each compact K czΏ.

2. Preliminaries
Except when otherwise stated, we will follow the notation and terminology

(1) Let n denote an integer (n > 2) and Ω a bounded open uniformly
convex subset of Rπ. Set

Γ = Bdry Ω, Γo = 3(EΛLΩ).

(2) For each lipschitzian u: Clos ί i ^ R w e write

G[u] = j\Du\dt\

A[u] =J(1 + \Du\2)x/2dt\

(3) For each lipschitzian φ: Γ -> R we denote by % (φ) the set of
lipschitzian u: Clos Ω -^ R such that u\T = φ.

(4) For use in the next proposition, fix φ0: Γ —»R which satisfies the
bounded slope condition (see [5, Definition 1.1]) and w0 E % (φ0) with

(«o exists by [6, 3(2)]).
(i) Set

Tr = Γ0L{x: φo(x) > r) -

for α = inf{ uo(x): x£ίl}<r<b = s\xp{uo(x): x G Ω}.

(ii) For each hpschitzian t>: Clos Ω ̂  R define

Uv: Clos Ω -> R, Λ :̂ Clos Ω -> Λ!(RΛ)

as in [6, 4(2)].
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3. Proposition. Suppose | |D«0(x)| | > 0 holds for tn almost every x G

Clos Ω.

(1) Forv G $ (φ0), G[v] = G[u0] implies v = w0.

(2) Letω G O ( Λ ) ZK> such that

(i) ω(Ω) = Ω,

(ii) ωttE" = -E Λ ,

(iii) -φ0 o <o(x) = φ o ( x ) > x G Γ.

// a C 1 " 1 ^ Π Φo^0)] = 0 holds, then we have ω#Γ 0 = Γo.
/. (1) Suppose v G ® (φ0) satisfies G[ϋ] = G[w0]. By [6, 10(1)] we have

Applying [6, 5, 8(2)] we obtain

f* ί\\fr(x)LD(v - uo)(x)\\d\\Tr\\xd£}r = 0.
J a J

By [6, 7(1)] we see that [2, 2] is applicable for β1 almost every r, so we have

Γ [\v-uo\d\\Tr\\xd£i=0.

Conclusion (1) now follows by applying [6, 5] and [1, 3.2.12].

(2) Using (1) we obtain

-u0 © ω(x) == uo(x) for x G Clos Ω.

Noting also ω#Γ0 = -Γ o , we compute

ω^T0 = 3(EΛL{x: uQ(x) < 0}) - T0L{x: φo(x) < 0},

and hence

To - U$TO = T0L{x: φo(x) = 0} - 9(E"L{x: «0(x) = 0}).

Conclusion (2) now follows from [1, 2.9.11].

4. Lemma. Let fx,f2,f^ * έe α sequence of class 2 functions on U c RΛ

(£/ qpe/z) wΛ/cΛ converge uniformly on compact subsets of U to the lipschitzian

function f. If there is d > 0 such that \Dfk(x)\ > d holds for each x G U and

each k = 1, 2, 3, , then \Df(x)\ > d holds for tn almost every x G ίΛ

Proof Fix c G ί/ and ε > 0 so that Df(x) exists and B(x, ε) c U. By

solving the initial value problem

<e l f Du(ή) = gradΛ(n(0), "(0) = *,

we see easily that there exists yk G B(x, ε) with fk(yk) — fk(x) > dε9 for

k = 1, 2, 3, . It follows that there exists z G B(x, ε) with/(z) - f(x) >

dε. Since ε > 0 can be chosen arbitrarily small, we have |/>/(Λ;)| > d.
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5. Notation

(l)Set

x(r, φ, θ) = (r sin φ cos θ, r sin φ sin θ, r cos φ),

v(φ, θ) = (-cos φ cos 0, -cos φ sin 0, sin φ).

(2) For use in the next proposition, fix 0 < d, 0 < φ0 < π/2, F: S2 -> R of
class 3, and affine functions A+9A_: R3 -> R. Suppose

(i) If φ0 < φ < m - φ0 holds, then we have, for each 0 < θ < 2π,

(ii) DA + = DA_, <e3, DA + > > d, and

<e1,Z)^ + > = <e2,Z)^ + > = 0 ,

(iii) A_(x) < F(x) < A +(x), for each x e S2,
(iv) F\U+ = A + \U+ and F\U_= A_\£/_,

where

U+ = {x(\,φ,θ):0<φ<φ0},

U_= {x(\,φ,θ):π-φo<φ<π}.

(3) For each θ G R, define/^i R ̂  R3 by setting

fθ(φ) = JC(1, φ, 0).

Put

where

(4) Define r, μ, σ G O(3) by setting

τ(x,^, z) = (x9y, -z),

/A(X,^, Z) = (-7, x, z),

σ(x,^, z) = (.y, x, z),

for each (x,y, z) e R3. Note that (μ o T)#E3 = -E 3.
6. Proposition. Suppose OM3 holds,
(\)Letf EL %{F) satisfy

A[f] =inf{A[w]: M

Then \Df(x)\ > dholds for each x e U(0, 1).
(2) Letg£<$) (F) satisfy

G[g] =inf{G[«]:«

Then \Dg(x)\ > d holds for £3 almost every x E U(0, 1).
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Proof. (1) The Gauss map ξ: U(0, 1) -> S3 defined in §1 extends continu-
ously to B(0, 1) (see [4, Lemma 4]). We write R4 = R3 X R and set £ = p o ξ,
where p is projection on the first factor. Using the planes defined by A + and
A_ as barriers (§5(2iii), §5(2iv), and [5, Lemma 2.2]), we see that

D3j[x(\,φ,θ)] >d

holds for 0 < φ < φ0 and π — φ0 < φ < π. Combining this with §5(2i), we
easily see that

(*) \ξ(x)\ > d/(\ + dψ2

holds for x G S2. This implies by OM3 that (*) holds for x G B(0, 1), because,
as is easily checked, for x G S2, if βγ ξ(x) = ̂  £(JC) = 0 holds, then e3 ξ(x)
< 0 holds. The condition (*) clearly implies |/)/(x)| > d.

(2) For k = 1, 2, 3, define Fk: S
2 -^ R by setting

Fk(x) = kF(x).

The conditions of §5(2) hold for Fk with d, A+,A_ replaced by kd, kA+, kA_,
respectively. Let/Λ e ^>(Fk) satisfy

and set gk — k~%. By [5, Propositions 3.1 and 6.2] we have Lip(gΛ) < Λf (M
independent of k), and by (1) we have \Dgk(x)\ > d for each x G U(0, 1). By
the Ascoli Theorem, the proof of [6, 3(2)], and Lemma 4, we obtain g e
Φ(F) such that

G[g]-inf{G[«]:«ea(F)},

and |Dg(x)| > d holds for £3 almost every x G U(0, 1). Conclusion (2) now
follows from Proposition 3(1).

7. Proposition. There exists no absolutely area minimizing T ε ^ ( R 3 ) with
dT= R and

Proof. Suppose such a T exists. Set

Tk = Tl{x(r, φ, θ): 0 < r < 1, 0 < ψ < w,

2-'(k - l)iτ < β < 2 ' ^ } , Λ - 1, 2, 3, 4,

^ = 3r,L{(x,^, z): x = 0,y> 0},

F3 = = dTιl{(x,y, z): x = 7 - 0},

F 4 = 3Γ, - Wy
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Using [1, 4.1.15], we obtain

(μ τ\{Wx +W2) + (μoT° μ\{Wx + W2)

= (σ o τ\(Wλ + W2) + (σ ° τ o μ 2 ) ^ + JΓ2).

From this we see that

r = Tx + (σ o r ) ^ ! + T3 + (σ o T)#Γ 3

is absolutely area minimizing and satisfies dT' = R. We compute

3 r = 2 ^ 3 + 2(σ o τ)sW3 + W4 + (σo T\WA + μ\W4 + (σ o τ o μ

Consequently, we have

and thus 9Γ" = ii 0 - R^^ where

Γ" = T'L{(x,y, z):y > -x) - Γt + (σ o

Note that Γr/ is absolutely area minimizing.
There is but one absolutely area minimizing Q G ^ ( R 3 ) with 3β = RQ -

Rm/2 (see [3, p. 1063]); further, Θ2(||<2||, x) = 1 holds for \\Q\\ almost all
Λ: G R3, spt Q ~ spt dQ is diffeomoφhic to a connected open subset of R2,
and we have

spt Q Π {(x,y, z): xy = 0} c s p t ^ - R^/2).

We conclude that spt Tx c spt Q, since MfΓ"] = MIΓJ 4- M[(σ ° τ)#ΓJ
holds; hence we have

spt dTx c spt (Λo - / ς / 2 ) ,

and, by the constancy theorem (see [1, 4.1.7]), Tx = IQ for some integer /.
This contradicts dT" = Ro - / ς / 2 .

8. Lemma. F/x 0 < ^ < 2"1 α̂ rf 0 < φ0 < 2~V. 77iere exwto α function
f(a, φ), defined and of class oo /or φ 0 < a < π — <j>0 and -oo < φ < oo,
satisfying

(i) -K* ~ a,π -φ)= f(a, φ),
(ϋ) 0 < φ < φ0 implies f(a, φ) = \ — d{ + dx cos φ,

(iii) 7Γ - φ0 < φ < 77 implies f(a, φ) = -1 + rfj + rfj cos φ,

(iv) -1 + dx + rfj cos φ < /(α, φ)

< 1 - dx + ^ cos φ, forO < φ< π,

(v) /(α, α) = 0,
(vi) D2f{a, φ) < - ^ sin φ, forφo<φ <π - φ0.

Construction of such a function is routine.
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9. Theorem. OM3 can fail.
Proof We suppose 0M3 is valid. Let ε > 0 be arbitrary. Choose v: R -» R

of class oo so that

0 < iΏΪ{v(θ): θ <E R}, v(θ + π/2) = m - v(θ\

where v*(θ) = x(\, v(θ), θ). Applying Lemma 8, with φ0 < mi{v(θ): θ e R},
we define F: S2 -» R by setting

for 0 < φ < IT and 0 < θ < 2ττ. One checks easily that i 7 satisfies the condi-
tions of §5(2) (with d = dx sin φ0). Let u e % (F) satisfy

By Proposition 6(2), Propostion 3 is applicable to w, so, replacing ω in
Proposition 3(2) b y μ ° τ and φ 0 by F, we have ( μ ° τ)#Γ = Γ, where

Γ =[3(E3LU(0, 1))]L{JC: F(x) > 0} - 3(E3L{Λ:: U(X) > 0}).

By [6, 7(1)], T E ^ ( R 3 ) is absolutely area minimizing. Clearly,

9Γ = p*tf[o, 2ττ] and M[ T] < 4ττ

hold. Since ε > 0 was arbitrary, the compactness theorem (see [1,4.2.17])
leads to a contradiction of Proposition 7.
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