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THE GAUSS MAP OF A
THREE-DIMENSIONAL MINIMAL SURFACE

HAROLD R. PARKS

1. Introduction

It is well known that the Gauss map of a connected two-dimensional
minimal submanifold of R? either is an open map or its image is just one
point. This is based on the connection between two-dimensional minimal
surfaces and analytic functions. It is natural to wonder to what extent the
above result can be generalized to a connected three-dimensional minimal
submanifold M of R*. Consideration of simple examples leads to the follow-
ing conjecture: Either M is a portion of a cartesian product (of a two-dimen-
sional minimal surface and a line) or a portion of a cone or the Gauss map of
M is open. We will show this conjecture to be false.

The method of this paper is to derive, using an estimate from [6] and the
assumed truth of the conjecture, certain conclusions about two-dimensional
surfaces of least area. Specifically, we conclude that there is an oriented
surface of least area 7" with boundary R, where R is as in §5(3), such that T is
invariant under the transformation

(xs e Z) - (‘)’, X, —Z).

It is shown in §7 that no such 7 can exist. Thus the conjecture cannot be true.

We state the conjecture in a more convenient form. Let @ C R” (n > 2) be
a connected open set. Suppose f: & — R is of class 2 and satisfies the minimal
surface equation. Define the Gauss map {: @ — S” by requiring, for each
x €Q,

1) $(x) - (e; + Dif(x)e,,) =0, i=1,2,3,---,n,

(i) §(x) - €,4, > 0;
throughout this paper, e,, e, €5, - - ,e,,, will be the standard basis for
R" + l.
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OM,,: Either we have
§(Q) c $(@~K)

for each compact K C  or { is an open map.

Thus OM, is true and we will show OM; can fail to hold. Notice that
whenever the graph of f is a portion of a cartesian product or a portion of a
cone, then we have

$(8) c Q@ ~K)
for each compact K C €.

2. Preliminaries
Except when otherwise stated, we will follow the notation and terminology
of [1].
(1) Let n denote an integer (n > 2) and £ a bounded open uniformly
convex subset of R”. Set

T =Bdry @, T,=a(E"LQ).

(é) For each lipschitzian u: Clos € — R we write
Glul = | |Duldf",
[u] = [ 1Pu
Alu] = [ (1 + |DuP)'/?agr.
[4] = J (1 +DuP)

(3) For each lipschitzian ¢: ' >R we denote by B(¢p) the set of
lipschitzian u: Clos € — R such that u|l' = ¢.

(4) For use in the next proposition, fix ¢y,: I' > R which satisfies the
bounded slope condition (see [5, Definition 1.1]) and u, € B (¢g) with

G[ uo] = 1nf{G[u]: ue %(¢o)}

(u, exists by [6, 3(2)]).

(i) Set

T, = ToL{x: ¢o(x) > r} — A(E"L{x: up(x) > r}),

for a = inf{uy(x): x € Q} <r <b = sup{uy(x): x € Q}.

(ii) For each lipschitzian v: Clos £ — R define

U,: Clos @ >R, N,: Clos £ — A'(R")

as in [6, 4(2)].
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3. Proposition. Suppose || Duy(x)|| > O holds for £* almost every x €
Clos .

(1) For v € B (), Glv] = Glug] implies v = u,
(2) Letw € O(n) be such that
@) (@) = Q,
(i) wyE" = -E",
(i) —¢g ° w(x) = ¢o(x) for x ET.
If 30T N $5'(0)] = O holds, then we have w, Ty = T,
Proof. (1) Suppose v € B () satisfies G[v] = G[ug). By [6, 10(1)] we have

b
S, NGl e = o.
a “u'(r)
Applying [6, 5, 8(2)] we obtain
b [ o
[7 [IZ(LD(o ~ w0 T, 1L} = .
a
By [6, 7(1)] we see that [2, 2] is applicable for £' almost every r, so we have
[° [1o = wlaiT,) a8} =o.
a

Conclusion (1) now follows by applying [6, 5] and [1, 3.2.12].
(2) Using (1) we obtain
~ug ° w(x) = uy(x) for x € Clos Q.
Noting also w,I'y = -T'y, we compute
wyTo = I(E"L{x: ug(x) < 0}) — ToL{x: ¢o(x) < 0},
and hence
Ty — w,To = Tol{x: ¢p(x) = 0} — A(E"L{x: ug(x) = 0}).

Conclusion (2) now follows from [1, 2.9.11].

4. Lemma. Let f, f,, f5, - - - be a sequence of class 2 functions on U C R"
(U open) which converge uniformly on compact subsets of U to the lipschitzian
Sunction f. If there is d > 0 such that |Df(x)| > d holds for each x € U and
eachk =1,2,3,- - -, then |Df(x)| > d holds for £* almost every x € U.

Proof. Fix x € U and ¢ > 0 so that Df(x) exists and B(x, ¢) C U. By
solving the initial value problem

<ey, Du(t)) = grad fi(u(?)), u(0) = x,
we see easily that there exists y, € B(x, ) with fi,(y,) — fi(x) > de, for

k=1,23,---. It follows that there exists z € B(x, &) with f(z) — f(x) >
de. Since ¢ > 0 can be chosen arbitrarily small, we have |Df(x)| > d.
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5. Notation
(1) Set
x(r, ¢,0) = (r sin ¢ cos 8, r sin ¢ sin 8, r cos ¢),
v(¢, ) = (—cos ¢ cos 8, —cos ¢ sin 8, sin ¢).

(2) For use in the next proposition, fix 0 <d, 0 < ¢, < 7/2, F: S? >R of
class 3, and affine functions 4 ,, 4_: R* > R. Suppose
@) If ¢y < ¢ < 7 — ¢, holds, then we have, for each 0 < 4 < 2,

(olé, 8), DF (1, $,6)]> >4,
(ii)) DA, = DA_,<{e;, DA, ) > d, and
(e, DALY = (e, DA, =0,
(iii) 4_(x) < F(x) < 4,(x), foreach x € S?,
(iv) FIlU, = A,|U, and F|[U_= A|U,,
where
U, ={x(1,9,0):0 < ¢ < ¢},
U.={x(1,¢,0): 7 — ¢ < ¢ <7}.
(3) For each @ € R, define f,: R — R® by setting
Jo(@) = x(1, ¢, 9).
Put
R=Ry— R, + R, — Ry, 5,
where
Ry = fou[ 0, 7]-
(4) Define 7, p, 6 € O(3) by setting
m(x,y,2) = (x, 5, -2),
w(x,»,z) = (-, x, 2),
o(x,,2) = (y, x, 2),
for each (x, y, z) € R®. Note that (p ° 7),E* = -E°.
6. Proposition. Suppose OM; holds.
(1) Let f € B (F) satisfy
A[ f] = inf{A[u]: u € B(F)}.
Then | Df(x)| > d holds for each x € U(0, 1).
(2) Let g € B (F) satisfy
G[ g] = inf{G[u]: u € B(F)}.
Then | Dg(x)| > d holds for ©* almost every x € U(0, 1).
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Proof. (1) The Gauss map ¢: U(0, 1) > S? defined in §1 extends continu-
ously to B(0, 1) (see [4, Lemma 4]). We write R* =R> X Randset{ = p o ¢,
where p is projection on the first factor. Using the planes defined by 4, and
A _ as barriers (§5(2iii), §5(2iv), and [5, Lemma 2.2]), we see that

Dy f]x(1, ¢,0)] >d

holds for 0 < ¢ < ¢y and 7 — ¢y < ¢ < 7. Combining this with §5(2i), we
easily see that
() ()| > d/ (1 + d%'?
holds for x € S2 This implies by OM, that (x) holds for x € B(0, 1), because,
as is easily checked, for x € S?, if e, - §(x) = e, - £(x) = 0 holds, then e; - &(x)
< 0 holds. The condition (*) clearly implies | Df(x)| > d.

(@ Fork=1,2,3,- - - define F,: S>> R by setting

F,(x) = kF(x).
The conditions of §5(2) hold for F, withd, A,, A_replaced by kd, kA ,, kA _,
respectively. Let f, € B (F,) satisfy
A[ ] = inf{A[u]: u € D(F)},

and set g, = k7'f,. By [5, Propositions 3.1 and 6.2] we have Lip(g,) < M (M
independent of k), and by (1) we have |Dg,(x)| > d for each x € U(0, 1). By
the Ascoli Theorem, the proof of [6, 3(2)], and Lemma 4, we obtain g €
% (F) such that

G| g] = inf{G[u]: u € B(F)},

and |Dg(x)| > d holds for £* almost every x € U(0, 1). Conclusion (2) now
follows from Proposition 3(1).

7. Proposition. There exists no absolutely area minimizing T € R,(R>) with
dT = Rand

T=(po1)T.
Proof. Suppose such a T exists. Set
T, = TL{x(r,$,0):0<r<1,0<¢<m,
21k — )7 <0 <2%n), k=1,234,
W, = 9T\L{(x,y,2): y = 0},
W, =T \L{(x,y,2): x =0,y > 0},
W, ==0T\L{(x,y,2): x=y = 0},
W, =T, — W,
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Using [1, 4.1.15], we obtain
(pon)y(W, + W) + (l" °eTe “'2)1:(W1 + W)
= (0 o )y(W, + Wy) + (0 o 70 p2) (W, + W)).
From this we see that
T =T, +(0or)Ty+ T3+ (0 ° )75
is absolutely area minimizing and satisfies 37" = R. We compute
AT =2Wy + 20 o 1)y W+ W+ (co )W, + p> W+ (0ore 1)y W
Consequently, we have
Wi+ (o°1)W;=0,
and thus 07" = Ry, — R, /, where
T = T'L{(x,y,z):y > -x} =Ty + (6 o 7)4T.

Note that 7" is absolutely area minimizing,.

There is but one absolutely area minimizing Q € R,(R’) with 8Q = Ry —
R,/ (see [3, p. 1063]); further, 0%(J|2|l, x) = 1 holds for ||Q| almost all

x € R, spt Q ~ spt 9Q is diffeomorphic to a connected open subset of R%,
and we have

spt Q@ N {(x,5,2): xy =0} Cspt(Ry — R, /5).

We conclude that spt 7, C spt Q, since M[T"] = M[T,] + M[(o ° 7),T}]
holds; hence we have

spt 3T C spt (Ry — R, /),
and, by the constancy theorem (see [1, 4.1.7]), T; = IQ for some integer /.
This contradicts 07" = R, — R, ),. :

8. Lemma. Fix 0 <d; <2 and 0 < ¢y < 27'n. There exists a function
fa, ¢), defined and of class oo for ¢y <a <m — ¢y and —o0 < ¢ < o0,
satisfying

@ fm —a,7—¢)=fla, ¢),

(ii) 0 < ¢ < ¢q implies fla, ) = 1 — d; + d, cos ¢,

(iii) T — ¢p < ¢ < wimplies f(a, ) = ~1 + d, + d, cos ¢,

(iv) -1+4+d,+ d coso < f(a, ¢)

<1—d +dcosp, for0< ¢ <,

) fa, a) =0,

(vi) D, f(a, ¢) < —d,sin ¢, foréy < ¢ <7 — ¢,

Proof. Construction of such a function is routine.
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9. Theorem. OM, can fail.
Proof. We suppose OM; is valid. Let ¢ > 0 be arbitrary. Choose »: R > R
of class oo so that
0 <inf{»(0): 0 €R},v(0 + 7/2) =7 — »(9),
653(0, 1)(R - V*“[O, 271']) <eg,
where v*(0) = x(1, »(#), ). Applying Lemma 8, with ¢, < inf{»(8): § € R},
we define F: S — R by setting
Fx(1,¢,0)] = f[»(9), ¢]
for 0 < ¢ < 7 and 0 < # < 27. One checks easily that F satisfies the condi-
tions of §5(2) (with d = d, sin ¢,). Let u € B (F) satisfy
G[u] = inf{G[v]: v E QB(F)}.
By Proposition 6(2), Propostion 3 is applicable to u, so, replacing w in
Proposition 3(2) by u ° 7 and ¢, by F, we have (u ° 7),T = T, where
T =[3(E*LU(0, 1)) JL{x: F(x) > 0} — 3(E’L{x: u(x) > 0}).
By [6, 7(1)], T € R,(R®) is absolutely area minimizing. Clearly,
oT = »*4[0,27] and M[T] < 4w

hold. Since ¢ > 0 was arbitrary, the compactness theorem (see [1, 4.2.17])
leads to a contradiction of Proposition 7.
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