THE GAUSS MAP OF A THREE-DIMENSIONAL MINIMAL SURFACE

HAROLD R. PARKS

1. Introduction

It is well known that the Gauss map of a connected two-dimensional minimal submanifold of \mathbf{R}^{3} either is an open map or its image is just one point. This is based on the connection between two-dimensional minimal surfaces and analytic functions. It is natural to wonder to what extent the above result can be generalized to a connected three-dimensional minimal submanifold M of \mathbf{R}^{4}. Consideration of simple examples leads to the following conjecture: Either M is a portion of a cartesian product (of a two-dimensional minimal surface and a line) or a portion of a cone or the Gauss map of M is open. We will show this conjecture to be false.

The method of this paper is to derive, using an estimate from [6] and the assumed truth of the conjecture, certain conclusions about two-dimensional surfaces of least area. Specifically, we conclude that there is an oriented surface of least area T with boundary R, where R is as in $\S 5(3)$, such that T is invariant under the transformation

$$
(x, y, z) \rightarrow(-y, x,-z)
$$

It is shown in $\S 7$ that no such T can exist. Thus the conjecture cannot be true.
We state the conjecture in a more convenient form. Let $\Omega \subset \mathbf{R}^{n}(n \geqslant 2)$ be a connected open set. Suppose $f: \Omega \rightarrow \mathbf{R}$ is of class 2 and satisfies the minimal surface equation. Define the Gauss map $\zeta: \Omega \rightarrow \mathbf{S}^{n}$ by requiring, for each $x \in \Omega$,
(i) $\zeta(x) \cdot\left(\mathbf{e}_{i}+D_{i} f(x) \mathbf{e}_{n+1}\right)=0, \quad i=1,2,3, \cdots, n$,
(ii) $\zeta(x) \cdot \mathbf{e}_{n+1}>0$;
throughout this paper, $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \cdots, \mathbf{e}_{n+1}$ will be the standard basis for \mathbf{R}^{n+1}.
$O M_{n}$: Either we have

$$
\zeta(\Omega) \subset \zeta(\Omega \sim K)
$$

for each compact $K \subset \Omega$ or ζ is an open map.
Thus $O M_{2}$ is true and we will show $O M_{3}$ can fail to hold. Notice that whenever the graph of f is a portion of a cartesian product or a portion of a cone, then we have

$$
\zeta(\Omega) \subset \zeta(\Omega \sim K)
$$

for each compact $K \subset \Omega$.

2. Preliminaries

Except when otherwise stated, we will follow the notation and terminology of [1].
(1) Let n denote an integer ($n \geqslant 2$) and Ω a bounded open uniformly convex subset of \mathbf{R}^{n}. Set

$$
\Gamma=\text { Bdry } \Omega, \quad \Gamma_{0}=\partial\left(\mathbf{E}^{n} L \Omega\right) .
$$

(2) For each lipschitzian u : Clos $\Omega \rightarrow \mathbf{R}$ we write

$$
\begin{gathered}
\mathbf{G}[u]=\int_{\Omega}|D u| d \varrho^{n}, \\
\mathbf{A}[u]=\int_{\Omega}\left(1+|D u|^{2}\right)^{1 / 2} d \varrho^{n} .
\end{gathered}
$$

(3) For each lipschitzian $\phi: \Gamma \rightarrow \mathbf{R}$ we denote by $\mathscr{B}(\phi)$ the set of lipschitzian u : Clos $\Omega \rightarrow \mathbf{R}$ such that $u \mid \Gamma=\phi$.
(4) For use in the next proposition, fix $\phi_{0}: \Gamma \rightarrow \mathbf{R}$ which satisfies the bounded slope condition (see [5, Definition 1.1]) and $u_{0} \in \mathscr{B}\left(\phi_{0}\right)$ with

$$
\mathbf{G}\left[u_{0}\right]=\inf \left\{\mathbf{G}[u]: u \in \mathscr{B}\left(\phi_{0}\right)\right\}
$$

(u_{0} exists by [6, 3(2)]).
(i) Set

$$
T_{r}=\Gamma_{0}\left\llcorner\left\{x: \phi_{0}(x) \geqslant r\right\}-\partial\left(\mathbf{E}^{n}\left\llcorner\left\{x: u_{0}(x) \geqslant r\right\}\right)\right.\right.
$$

for $a=\inf \left\{u_{0}(x): x \in \Omega\right\}<r<b=\sup \left\{u_{0}(x): x \in \Omega\right\}$.
(ii) For each lipschitzian v : $\operatorname{Clos} \Omega \rightarrow \mathbf{R}$ define

$$
U_{v}: \operatorname{Clos} \Omega \rightarrow \mathbf{R}, \quad N_{v}: \operatorname{Clos} \Omega \rightarrow \Lambda^{1}\left(\mathbf{R}^{n}\right)
$$

as in [6, 4(2)].
3. Proposition. Suppose $\left\|D u_{0}(x)\right\|>0$ holds for \mathfrak{L}^{n} almost every $x \in$ Clos Ω.
(1) For $v \in \mathscr{B}\left(\phi_{0}\right), \mathbf{G}[v]=\mathbf{G}\left[u_{0}\right]$ implies $v=u_{0}$.
(2) Let $\omega \in \mathbf{O}(n)$ be such that
(i) $\omega(\Omega)=\Omega$,
(ii) $\omega_{\sharp} \mathbf{E}^{n}=-\mathbf{E}^{n}$,
(iii) $-\phi_{0} \circ \omega(x)=\phi_{0}(x)$ for $x \in \Gamma$.

If $\mathscr{S}^{n-1}\left[\Gamma \cap \phi_{0}^{-1}(0)\right]=0$ holds, then we have $\omega_{\#} T_{0}=T_{0}$.
Proof. (1) Suppose $v \in \mathscr{B}\left(\phi_{0}\right)$ satisfies $\mathbf{G}[v]=\mathbf{G}\left[u_{0}\right]$. By [6, 10(1)] we have

$$
\int_{a}^{b} \int_{u_{0}^{-1}(r)}\left|N_{v}(x)\right| d \mathscr{F}_{x}^{n-1} d \mathcal{L}_{r}^{1}=0
$$

Applying [6, 5, 8(2)] we obtain

$$
\int_{a}^{b} \int \| \vec{T}_{r}(x)\left\llcorner D\left(v-u_{0}\right)(x)\|d\| T_{r} \|_{x} d \mathcal{L}_{r}^{1}=0\right.
$$

By [6, 7(1)] we see that [2, 2] is applicable for \mathcal{L}^{1} almost every r, so we have

$$
\int_{a}^{b} \int\left|v-u_{0}\right| d\left\|T_{r}\right\|_{x} d \mathcal{L}_{r}^{1}=0
$$

Conclusion (1) now follows by applying [6,5] and [1, 3.2.12].
(2) Using (1) we obtain

$$
-u_{0} \circ \omega(x)=u_{0}(x) \text { for } x \in \operatorname{Clos} \Omega
$$

Noting also $\omega_{\#} \Gamma_{0}=-\Gamma_{0}$, we compute

$$
\omega_{\sharp} T_{0}=\partial\left(\mathbf{E}^{n}\left\llcorner\left\{x: u_{0}(x) \leqslant 0\right\}\right)-\Gamma_{0}\left\llcorner\left\{x: \phi_{0}(x) \leqslant 0\right\},\right.\right.
$$

and hence

$$
T_{0}-\omega_{\sharp} T_{0}=\Gamma_{0}\left\llcorner\left\{x: \phi_{0}(x)=0\right\}-\partial\left(\mathbf{E}^{n}\left\llcorner\left\{x: u_{0}(x)=0\right\}\right) .\right.\right.
$$

Conclusion (2) now follows from [1, 2.9.11].
4. Lemma. Let $f_{1}, f_{2}, f_{3}, \cdots$ be a sequence of class 2 functions on $U \subset \mathbf{R}^{n}$ (U open) which converge uniformly on compact subsets of U to the lipschitzian function f. If there is $d>0$ such that $\left|D f_{k}(x)\right| \geqslant d$ holds for each $x \in U$ and each $k=1,2,3, \cdots$, then $|D f(x)| \geqslant d$ holds for \mathfrak{L}^{n} almost every $x \in U$.

Proof. Fix $x \in U$ and $\varepsilon>0$ so that $D f(x)$ exists and $\mathbf{B}(x, \varepsilon) \subset U$. By solving the initial value problem

$$
\left\langle\mathbf{e}_{1}, D u(t)\right\rangle=\operatorname{grad} f_{k}(u(t)), u(0)=x,
$$

we see easily that there exists $y_{k} \in \mathbf{B}(x, \varepsilon)$ with $f_{k}\left(y_{k}\right)-f_{k}(x) \geqslant d \varepsilon$, for $k=1,2,3, \cdots$. It follows that there exists $z \in \mathbf{B}(x, \varepsilon)$ with $f(z)-f(x) \geqslant$ $d \varepsilon$. Since $\varepsilon>0$ can be chosen arbitrarily small, we have $|D f(x)| \geqslant d$.

5. Notation

(1) Set

$$
\begin{aligned}
x(r, \phi, \theta) & =(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) \\
v(\phi, \theta) & =(-\cos \phi \cos \theta,-\cos \phi \sin \theta, \sin \phi)
\end{aligned}
$$

(2) For use in the next proposition, fix $0<d, 0<\phi_{0}<\pi / 2, F: \mathbf{S}^{2} \rightarrow \mathbf{R}$ of class 3 , and affine functions $A_{+}, A_{-}: \mathbf{R}^{3} \rightarrow \mathbf{R}$. Suppose
(i) If $\phi_{0} \leqslant \phi \leqslant \pi-\phi_{0}$ holds, then we have, for each $0 \leqslant \theta \leqslant 2 \pi$,

$$
\langle v(\phi, \theta), D F[x(1, \phi, \theta)]\rangle \geqslant d,
$$

(ii) $D A_{+}=D A_{-},\left\langle\mathbf{e}_{3}, D A_{+}\right\rangle \geqslant d$, and

$$
\left\langle\mathbf{e}_{1}, D A_{+}\right\rangle=\left\langle\mathbf{e}_{2}, D A_{+}\right\rangle=0,
$$

(iii) $A_{-}(x) \leqslant F(x) \leqslant A_{+}(x)$, for each $x \in \mathbf{S}^{2}$,
(iv) $F\left|U_{+}=A_{+}\right| U_{+}$and $F\left|U_{-}=A_{-}\right| U_{-}$,
where

$$
\begin{gathered}
U_{+}=\left\{x(1, \phi, \theta): 0 \leqslant \phi \leqslant \phi_{0}\right\} \\
U_{-}=\left\{x(1, \phi, \theta): \pi-\phi_{0} \leqslant \phi \leqslant \pi\right\} .
\end{gathered}
$$

(3) For each $\theta \in \mathbf{R}$, define $f_{\theta}: \mathbf{R} \rightarrow \mathbf{R}^{3}$ by setting

$$
f_{\theta}(\phi)=x(1, \phi, \theta) .
$$

Put

$$
R=R_{0}-R_{\pi / 2}+R_{\pi}-R_{3 \pi / 2}
$$

where

$$
R_{\theta}=f_{\theta \#}[0, \pi] .
$$

(4) Define $\tau, \mu, \sigma \in \mathbf{O}$ (3) by setting

$$
\begin{gathered}
\tau(x, y, z)=(x, y,-z) \\
\mu(x, y, z)=(-y, x, z) \\
\sigma(x, y, z)=(y, x, z)
\end{gathered}
$$

for each $(x, y, z) \in \mathbf{R}^{3}$. Note that $(\mu \circ \tau)_{\#} \mathbf{E}^{3}=-\mathbf{E}^{3}$.
6. Proposition. Suppose OM_{3} holds.
(1) Let $f \in \mathscr{B}(F)$ satisfy

$$
A[f]=\inf \{\mathbf{A}[u]: u \in \mathscr{B}(F)\} .
$$

Then $|D f(x)| \geqslant d$ holds for each $x \in \mathbf{U}(0,1)$.
(2) Let $g \in \mathscr{B}(F)$ satisfy

$$
\mathbf{G}[g]=\inf \{\mathbf{G}[u]: u \in \mathscr{B}(F)\} .
$$

Then $|\operatorname{Dg}(x)| \geqslant d$ holds for \mathfrak{L}^{3} almost every $x \in \mathbf{U}(0,1)$.

Proof. (1) The Gauss map $\zeta: \mathbf{U}(0,1) \rightarrow \mathbf{S}^{3}$ defined in $\S 1$ extends continuously to $\mathbf{B}(0,1)$ (see [4, Lemma 4]). We write $\mathbf{R}^{4}=\mathbf{R}^{3} \times \mathbf{R}$ and set $\xi=\rho \circ \zeta$, where ρ is projection on the first factor. Using the planes defined by A_{+}and A_{-}as barriers ($\S 5(2 \mathrm{iii}), \S 5(2 \mathrm{iv})$, and [5, Lemma 2.2]), we see that

$$
D_{3} f[x(1, \phi, \theta)] \geqslant d
$$

holds for $0 \leqslant \phi \leqslant \phi_{0}$ and $\pi-\phi_{0} \leqslant \phi \leqslant \pi$. Combining this with §5(2i), we easily see that

$$
\begin{equation*}
|\xi(x)| \geqslant d /\left(1+d^{2}\right)^{1 / 2} \tag{*}
\end{equation*}
$$

holds for $x \in \mathbf{S}^{2}$. This implies by $O M_{3}$ that (*) holds for $x \in \mathbf{B}(0,1)$, because, as is easily checked, for $x \in \mathbf{S}^{2}$, if $\mathbf{e}_{1} \cdot \xi(x)=\mathbf{e}_{2} \cdot \xi(x)=0$ holds, then $\mathbf{e}_{3} \cdot \xi(x)$ <0 holds. The condition (*) clearly implies $|D f(x)| \geqslant d$.
(2) For $k=1,2,3, \cdots$ define $F_{k}: \mathbf{S}^{2} \rightarrow \mathbf{R}$ by setting

$$
F_{k}(x)=k F(x)
$$

The conditions of $\S 5(2)$ hold for F_{k} with d, A_{+}, A_{-}replaced by $k d, k A_{+}, k A_{-}$, respectively. Let $f_{k} \in \mathscr{B}\left(F_{k}\right)$ satisfy

$$
\mathbf{A}\left[f_{k}\right]=\inf \left\{\mathbf{A}[u]: u \in \mathscr{B}\left(F_{k}\right)\right\}
$$

and set $g_{k}=k^{-1} f_{k}$. By [5, Propositions 3.1 and 6.2] we have $\operatorname{Lip}\left(g_{k}\right) \leqslant M(M$ independent of k), and by (1) we have $\left|D g_{k}(x)\right| \geqslant d$ for each $x \in \mathbf{U}(0,1)$. By the Ascoli Theorem, the proof of [6, 3(2)], and Lemma 4, we obtain $g \in$ $\mathscr{B}(F)$ such that

$$
\mathbf{G}[g]=\inf \{\mathbf{G}[u]: u \in \mathscr{B}(F)\}
$$

and $|D g(x)| \geqslant d$ holds for \mathfrak{L}^{3} almost every $x \in \mathbf{U}(0,1)$. Conclusion (2) now follows from Proposition 3(1).
7. Proposition. There exists no absolutely area minimizing $T \in \mathscr{R}_{2}\left(\mathbf{R}^{3}\right)$ with $\partial T=R$ and

$$
T=(\mu \circ \tau)_{\#} T
$$

Proof. Suppose such a T exists. Set

$$
\begin{aligned}
& T_{k}=T\llcorner\{x(r, \phi, \theta): 0<r \leqslant 1,0<\phi<\pi, \\
& \left.\quad 2^{-1}(k-1) \pi \leqslant \theta<2^{-1} k \pi\right\}, \quad k=1,2,3,4, \\
& \quad W_{1}=\partial T_{1}\llcorner\{(x, y, z): y=0\}, \\
& W_{2}=\partial T_{1}\llcorner\{(x, y, z): x=0, y>0\}, \\
& W_{3}==\partial T_{1}\llcorner\{(x, y, z): x=y=0\}, \\
& W_{4}=\partial T_{1}-W_{3} .
\end{aligned}
$$

Using [1, 4.1.15], we obtain

$$
\begin{aligned}
(\mu \circ \tau)_{\sharp}\left(W_{1}+\right. & \left.W_{2}\right)+\left(\mu \circ \tau \circ \mu^{2}\right)_{\sharp}\left(W_{1}+W_{2}\right) \\
& =(\sigma \circ \tau)_{\sharp}\left(W_{1}+W_{2}\right)+\left(\sigma \circ \tau \circ \mu^{2}\right)_{\sharp}\left(W_{1}+W_{2}\right) .
\end{aligned}
$$

From this we see that

$$
T^{\prime}=T_{1}+(\sigma \circ \tau)_{\sharp} T_{1}+T_{3}+(\sigma \circ \tau)_{\sharp} T_{3}
$$

is absolutely area minimizing and satisfies $\partial T^{\prime}=R$. We compute
$\partial T^{\prime}=2 W_{3}+2(\sigma \circ \tau)_{\#} W_{3}+W_{4}+(\sigma \circ \tau)_{\#} W_{4}+\mu_{\#}^{2} W_{4}+\left(\sigma \circ \tau \circ \mu^{2}\right)_{\#} W_{4}$.
Consequently, we have

$$
W_{3}+(\sigma \circ \tau)_{\sharp} W_{3}=0
$$

and thus $\partial T^{\prime \prime}=R_{0}-R_{\pi / 2}$ where

$$
T^{\prime \prime}=T^{\prime} L\{(x, y, z): y>-x\}=T_{1}+(\sigma \circ \tau)_{\#} T_{1}
$$

Note that $T^{\prime \prime}$ is absolutely area minimizing.
There is but one absolutely area minimizing $Q \in \Re_{2}\left(\mathbf{R}^{3}\right)$ with $\partial Q=R_{0}$ $R_{\pi / 2}$ (see [3, p. 1063]); further, $\Theta^{2}(\|Q\|, x)=1$ holds for $\|Q\|$ almost all $x \in \mathbf{R}^{3}$, spt $Q \sim \operatorname{spt} \partial Q$ is diffeomorphic to a connected open subset of \mathbf{R}^{2}, and we have

$$
\text { spt } Q \cap\{(x, y, z): x y=0\} \subset \operatorname{spt}\left(R_{0}-R_{\pi / 2}\right)
$$

We conclude that spt $T_{1} \subset \operatorname{spt} Q$, since $\mathbf{M}\left[T^{\prime \prime}\right]=\mathbf{M}\left[T_{1}\right]+\mathbf{M}\left[(\sigma \circ \tau)_{\#} T_{1}\right]$ holds; hence we have

$$
\operatorname{spt} \partial T_{1} \subset \operatorname{spt}\left(R_{0}-R_{\pi / 2}\right)
$$

and, by the constancy theorem (see [1, 4.1.7]), $T_{1}=l Q$ for some integer l. This contradicts $\partial T^{\prime \prime}=R_{0}-R_{\pi / 2}$.
8. Lemma. Fix $0<d_{1}<2^{-1}$ and $0<\phi_{0}<2^{-1} \pi$. There exists a function $f(a, \phi)$, defined and of class ∞ for $\phi_{0}<a<\pi-\phi_{0}$ and $-\infty<\phi<\infty$, satisfying

$$
\begin{equation*}
-f(\pi-a, \pi-\phi)=f(a, \phi) \tag{i}
\end{equation*}
$$

(ii) $0 \leqslant \phi \leqslant \phi_{0}$ implies $f(a, \phi)=1-d_{1}+d_{1} \cos \phi$,
(iii) $\pi-\phi_{0} \leqslant \phi \leqslant \pi$ implies $f(a, \phi)=-1+d_{1}+d_{1} \cos \phi$,
(iv) $\quad-1+d_{1}+d_{1} \cos \phi \leqslant f(a, \phi)$

$$
\begin{aligned}
& \leqslant 1-d_{1}+d_{1} \cos \phi, \text { for } 0 \leqslant \phi \leqslant \pi \\
& \quad f(a, a)=0
\end{aligned}
$$

(vi)

$$
D_{2} f(a, \phi) \leqslant-d_{1} \sin \phi, \quad \text { for } \phi_{0} \leqslant \phi \leqslant \pi-\phi_{0}
$$

Proof. Construction of such a function is routine.
9. Theorem. OM_{3} can fail.

Proof. We suppose $O M_{3}$ is valid. Let $\varepsilon>0$ be arbitrary. Choose $\nu: \mathbf{R} \rightarrow \mathbf{R}$ of class ∞ so that

$$
\begin{gathered}
0<\inf \{\nu(\theta): \theta \in \mathbf{R}\}, \nu(\theta+\pi / 2)=\pi-\nu(\theta), \\
\mathscr{F}_{\mathbf{B}(0,1)}\left(R-\nu_{\#}^{*}[0,2 \pi]\right)<\varepsilon,
\end{gathered}
$$

where $\nu^{*}(\theta)=x(1, \nu(\theta), \theta)$. Applying Lemma 8 , with $\phi_{0}<\inf \{\nu(\theta): \theta \in \mathbf{R}\}$, we define $F: \mathbf{S}^{\mathbf{2}} \rightarrow \mathbf{R}$ by setting

$$
F[x(1, \phi, \theta)]=f[\nu(\theta), \phi]
$$

for $0 \leqslant \phi \leqslant \pi$ and $0 \leqslant \theta \leqslant 2 \pi$. One checks easily that F satisfies the conditions of $\S 5(2)$ (with $d=d_{1} \sin \phi_{0}$). Let $u \in \mathscr{B}(F)$ satisfy

$$
\mathbf{G}[u]=\inf \{\mathbf{G}[v]: v \in \mathscr{B}(F)\}
$$

By Proposition 6(2), Propostion 3 is applicable to u, so, replacing ω in Proposition 3(2) by $\mu \circ \tau$ and ϕ_{0} by F, we have $(\mu \circ \tau)_{\#} T=T$, where

$$
T=\left[\partial\left(\mathbf{E}^{3}\llcorner\mathbf{U}(0,1))\right] L\{x: F(x) \geqslant 0\}-\partial\left(\mathbf{E}^{3}\llcorner\{x: u(x) \geqslant 0\})\right.\right.
$$

By $[6,7(1)], T \in \mathscr{R}_{2}\left(\mathbf{R}^{3}\right)$ is absolutely area minimizing. Clearly,

$$
\partial T=\nu_{\#}^{*}[0,2 \pi] \quad \text { and } \quad \mathbf{M}[T] \leqslant 4 \pi
$$

hold. Since $\varepsilon>0$ was arbitrary, the compactness theorem (see [1, 4.2.17]) leads to a contradiction of Proposition 7.

References

[1] H. Federer, Geometric measure theory, Springer, New York, 1969.
[2] _, A minimizing property of extremal submanifolds, Arch. Rational Mech. Anal. 59 (1975) 207-217.
[3] W. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc. 7 (1956) 1063-1074.
[4] H. Jenkins \& J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968) 170-187.
[5] M. Miranda, Un teorema di esistenza e unicità per il problema dell'area minima in n variabili, Ann. Scuola Norm. Sup. Pisa, Ser. III, 19 (1965) 233-249.
[6] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977) 519-534.

