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BOUNDARY BEHAVIOR OF HOLOMORPHIC
FUNCTIONS ON PSEUDOCONVEX DOMAINS

DAVID CATLIN

1. INTRODUCTION
In the theory of several complex variables, one is led to the study of

holomorphic functions on pseudoconvex domains. However, in this general
context, many of the proofs of the basic results do not yield information
about the behavioir of the functions at the boundary of the domain. In this
paper under the additional assumption that the boundary of the domain is
smooth, we show that some of the classical theorems can be stated in terms of
the space of holomorphic functions which are smooth up to the boundary.
Although our results hold on a class of pseudoconvex manifolds with smooth
boundary, for the purposes of this introduction we shall simply state the
results for pseudoconvex domains in C1.

Let Ω be a bounded pseudoconvex domain in C1 with smooth boundary.
Denote by ̂ 4(Ω) the set of holomorphic functions in Ω, and by A °°(Ω) the set

n C°°(Ω). The following theorem is the analogue of the Levi problem

Theorem 33.1. There exists f E A °°(Ω) which does not extend analytically
to a neighborhood of any boundary point.

One can also study holomorphic convexity properties with respect to
A °°(Ω). For K a compact subset of Ω, we define

£={zeΩ; | / (z) | < sup I/I, f€ΞA*>(Q)}.

The set K is clearly a compact subset of Ω, and the holomorphic convexity
properties at the boundary are exhibited by the set K π 6Ω. This set has the
property that it is determined solely by the set K π 6Ω, as is shown by the
following theorem.

Theorem 3.1.7. Let Kx and K2 be compact subsets of Ω. If Kx Π 6Ω = K2

Π bΩ9 then Kλ n bΏ = K2n bti.
This has an immediate corollary.

Communicated by J. J. Kohn, December 1, 1979.
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Corollary 3.1.8. IF K c C Ω, then K c C Ω.
An analogue of the Oka-Weil approximation theorem is also given. How-

ever, instead of using the topology of uniform convergence, we use the
topology given by zΛSobolev spaces. Thus for m a nonnegative integer and
U an open subset of Ω, one defines the norm ||w||m>ί/ by

\\\\m,u Σ [\
\a\<mJU

where dμ represents the standard volume element of Lebesgue measure on C\
Let Hm(U) be the set of all functions u such that ||w||m{/ is finite. One can
now state the approximation theorem.

Theorem 3.2.1. Let K be a compact subset of Ω with K = K. Suppose that
U is an open subset ofΏ with K c U and that f G A(U) Π Hm{U). Then there
is an open subset V with K c V C ί/, and functions fn E Λ°°(Ω) such that

The methods of proof of the above theorems rely on the machinery of the
3-Neumann problem, in particular, on the global regularity theorem of Kohn
[6], and on the techniques of Carleman estimates for the 3-operator intro-
duced by Hormander [4], [5].

The author has recently received new proofs of Theorem 3.3.1 and Theo-
rem 3.1.7. from Hakim and Sibony [3]. In fact, they even show that the
spectrum of the Frechet algebra A °°(Ω) is exactly Ω. It is easy to show that
this implies Theorem 3.3.1.

All of the above results hold if Ω is a complex manifold with smooth
pseudoconvex boundary such that there is a function λ E C°°(Ω) which is
strongly plurisubharmonic in a neighborhood of the boundary of Ω. However,
for simplicity, it will be assumed here that λ is strongly plurisubharmonic on
all of Ω. For the general case, the necessary modifications may be found in

[1].
It is a pleasure for me to thank my thesis advisor, J. J. Kohn, for his

assistance in writing this paper. I would also like to thank Eric Bedford and
John Erik Fornaess, who called my attention to some of the questions
considered here and made several helpful suggestions.

2. THE Θ-NEUMANN PROBLEM WITH WEIGHTS

2.1. Formulation of the 9-Neuniann problem

Let Ω' be a complex hermitian manifold of dimension n9 and let Ω c C Ω'
be an open submanifold of Ω' whose closure Ω is compact. Denote by 6Ω the
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boundary of Ω, and assume that there exist a neighborhood U of bίl and a
real-valued function r 6 C°°(ί/) such that dr φ 0 on bΩ and r(z) = 0 if and
only if z G M2. The sign of r is chosen so that r < 0 in Ω and r > 0 outside of
Ω.

Denote by Cφq) the space of forms of type (0, q) on Ω which are smooth up
to and including the boundary. In terms of local coordinates zv , zn on a
coordinate neighborhood V we can express φ G

where φ, e C°°(F n Ω); / = (jl9 ,^) with 1 < ^ < - <jq < n; dzJ

= dzjχ Λ Λ ^ Λ .
In a coordinate chart F, the hermitian metric has the form Σ hJkdzj ® dzk,

where hjk is a positive definite hermitian matrix with C 0 0 coefficients. We
keep the hermitian structure on Ω' fixed in all that follows. If / is a form of
type (1,0) and / = Σfjdzj in a local coordinate system, we set </,/> =
ΣhJkfjfk, where (hjk) is the inverse of (hjk). Every point in Ω' has a neighbor-
hood U where there are n forms ω1, , ωn of type (1, 0) with C°°
coefficients such that <ωy, ωk} = 8JkJ, k = 1, , n. If we set/ = Σfjoy*, it
follows that </,/> = Σ|jζΊ2. More generally, a differential form of type (0, q)
can be written in a unique way in the form/ = Σm jζ ω y and we can define
</>/> by </,/> = I/I2 = Σ I//I2. This definition is independent of the choice
of the basis ω1, , ωn.

Let φ be a smooth real-valued function in Ω. We then define L2

0 ^(Ω, φ) as
the space of all measurable forms/in Ω of type (0, q) such that

(2.1.1)

where dV represents the volume form associated with the hermitian metric.
The operator 3 defines, in the weak sense, closed densely defined operators

T: L2o,O)(Ω, φ) -> L2

0)1)(Ω, φ),

S: L 0̂,i)(Ω, φ) -> L^2)(Ω, φ).

By T* and S* we shall mean the adjoints of T and 5, respectively, with
respect to the norm given by (2.1.1).

If u G C°° and the forms ω1, , ωn are a local basis for forms of type
(1, 0) in an open coordinate patch U> we set

v du ^ du ,
du = 2 T— ω7 + Σ — ω7

dor σαr
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is a definition of the operators θ/θω 7 and d/dcΫ in U. Then we have

and if / = Σ fkω
k, it follows that

where the dots indicate terms in which no fk is differentiated. They occur
because day* and θώ7 need not be zero. After integration by parts, one can
show that if / E Z)^, then

where δjW = eψd(ωe~<p)/doyJ\ and the dots, as before, indicate terms where no
fj is differentiated. Moreover,/satisfies the boundary condition

(2.1.2) Σfi— = 0 on U Π M2.
θω7

We now formulate the d-Newnann problem. In all that follows we shall be
using a fixed weight e~*. We define the space fy0'1 c C (£υ by

« α i - C δ υ Π Z)^.

Thus Θ0'1 can be characterized as the space of smooth forms of type (0, 1),
which satisfy the boundary condition (2.1.2). Since ΰif>Λ c t>r>, we may
define the hermitian form

Q. 600,1 χ όj)O,l ^ C

by

Q(φ,ψ) = (T*φ, Γ*ψ) + (Sφ, 5ψ).

In the case which we shall consider, the following inequality holds:

(2.1.3) Q(φ, φ) > ||φ||2

φ) ψ e 6D° ».

Let Φ0 '1 be the Hubert space obtained by completing ^Φ0'1 under the norm
Q(φ, Φ)1 / 2. By virtue of (2.1.3), there is a natural embedding of ^D0'1 in
Ljp ^(Ω, φ). By well-known arguments in Hilbert space theory, there is a
bounded self-adjoint iV in L(

2

0 ^(Ω, φ) with the following properties:
(i) R(N) c i ) Γ Π Ds,

(ϋ) T(T*N) c Dτ and R(SN) c Z)5*,
(iii) N is one-to-one,
(iv) if a E L(

2

01)(Ω, φ); then

Q(Na, ψ) = (α, ψ) for all ψ E ^D0'1.
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The last statement (iv) implies that [JNa = α, where • is the differential
operator given by TT* + S*S. The operator N is usually called the Neumann
operator, and is the inverse of Q Our interest in the Neumann operator lies
primarily in the following fact:

If a G L(

2

αi)(Ω, φ) and Sa = 0, then TT*Na = α. Thus T*Na is a solution
of Tu = α, and it is uniquely characterized by the fact that T*Na is
orthogonal to the null space of T.

2.2. The basic estimate

In this section we present the basic estimate in Sobolev spaces. In the space
Lφ ^(Ω, φ) the estimate follows immediately from Hormander's estimates [4],
and for higher order Sobolev spaces, the estimate and its proof are quite close
to that of Kohn [6]. We shall therefore only briefly sketch the proof.

In what follows, we shall replace the weight function φ by χ(φ), where χ(τ)
is a smooth real-valued function. For / E Cψ^U) with ω1, , ωn as
above, we shall use the expression ||L/||£(φ) to represent the sum
Σ||9^/9ω*|β(φ). This can be extended in an obvious way by means of a
partition of unity to / e Cjfcifit). Any two sums arising from different
partitions will differ by at most CΊ|/||£(φ), where C is a constant independent
of the function χ(φ).

After using a partition of unity, Proposition 3.1.3. of [4] leads to the
following proposition.

Proposition 2.2.1. Suppose that the manifold Ω is pseudoconvex, and that

there is a function φ G C °°(Ω) that is strongly plurisubharmonic on all of Ω. Let

X be a smooth convex increasing function. Then there is a constant C indepen-

dent of the weight function χ so that for allf E 6ύ0Λ,

(2.2.1) JΛψ)\ϊ\2e-^dV+\\Lf\\\{φ) < C{||ΓV|foφ ) + l|S/|&φ) + ll/ll2}-

We now choose a specific function x, „ depending on two parameters s and
/, and lift the above L2 estimates to higher order weighted Sobolev spaces.
The proof, which follows that of Kohn [6], essentially involves only a
determination of how the constants depend upon the above parameters. First
we must give the precise definition of the weighted Sobolev spaces.

Let ξj,j = 1, 2, , N, be smooth real-valued functions such that Σ ζf =
1, and the support of each function ξ, is contained in a coordinate neighbor-
hood of Ω. We define

Σ Σ Il
y=l \a\<m
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Here Da refers to d^/dx?1 dx?*" for the coordinate neighborhood of
supp ξj. If ψΛ, k = 1, 2, , N\ is another set of functions with the above
properties, then there exist constants Cx and C2, depending only on the
functions ψΛ and ζpj = 1, , N, k = 1, , N\ so that

Σ Σ \\DVIIX(Φ) < cx Σ Σ
7 - 1 |α|<m A:=l |α|<m

<c2Σ Σ \
j*=\ \a\<m

It is therefore enough to use any such partition of unity. Let //m(Ω, χ(φ)) be
the space of all u G L ô?1)(Ω, χ(φ)) such that ||w||m>X(φ) < oo. In a similar way
one can define norms for forms of type (0, q). One simply requires that all
components be contained in Hm(ίl, χ(φ)).

It will also be useful to define certain tangential operators defined in a
coordinate neighborhood U of a point z0 G bΩ. Choose real tangential
coordinates (tx,12, , tln_λ, r), where r is the boundary defining function.
Let Dt

a denote the partial derivative d^/dt^ dtfcr{. We denote by At

k

any differential operator which is of order k and supported in such a
neighborhood U, and which is a sum of the operators Dt

a with C 0 0 coeffi-
cients. We now specify a 2-ρarameter family of convex increasing functions
Xy,. For any μ, one can construct a function ψ with the following properties:

(a) ψGΠR);

(2.2.2) (b) ψ is convex and nondecreasing;

(c) ψ(τ) = 0 for T < μ, ψ(τ) > 0 for T > μ.

For each s, t > 0, we set χ,Xτ) = tr 4- 5ψ(τ). The weight functions x,, will
play the role of the weight function x in Proposition 2.2.1. One then has as a
consequence that there is a constant TQ > 0, such that for t > Γo, s > 0, and

We now establish some convenient notation. If A and B are functions on a
set of parameters S, we use the notation A < 5 to mean that for some C > 0,
|i4(σ)| < C|2?(σ)| for all α G S . For the norm associated with the weight
functions x^/φ), we shall write \\f\\2

myStί instead of \\f\\2

mfXttt(ψy and simply
\\f\\ltt if m = 0. It will also be clear from the context that all of the operators
arising in the 9-Neumann problem will be those associated with the weight
function Xy/φ). The estimates for the Neumann operator N are given in the
following proposition.
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Proposition 2.2.2. Under the hypothesis of Proposition 2.2.1 for each integer
m > 0, there exists a constant Tm such that for all t > Tm,s > 0,

N

(2.2.4)

The proof of this proposition is based on (2.2.3) and is a straightforward
but tedious verification that the constants obtained from the method of proof
of Kohn's global regularity theorem [6] do indeed grow as in (2.2.4). In fact,
for all applications we shall need only that there exist constants Cm(t) and an
integer Nm such that for / > Tm,

that is, that the constant for fixed t has polynomial growth with respect to the
parameter s.

By the method of elliptic regularization (see Kohn [6] or Folland-Kohn [2]),
it follows under the above restrictions on t that if • " E Hm(Ώ), then
u = N[Ju E Hm and that the above estimates hold. Moreover, if a is a form
of type (0, 1) with Sa = 0, then v = T*Na is the unique solution of Tv = a
which is orthogonal to the null space of T. By the estimate (2.2.4), we know
that if a E Hm(Ω), then v E Hm_γ(Ω). We now show that v is actually in

Proposition 2.23. Under the hypotheses of Proposition 2.2.1, for each integer
m > 0, there exists a constant Tm > 0 such that for all t > Tm, s > 0, the
following estimate holds:

\l^t + \\Sufm^ < I (1 + s + tf{m-j)\\Uu\\2j^
(2.2.5)

(Ω)

Proof. The proof is similar to that of the estimate for u. In the interior,
one can estimate the derivatives of order m of T*u and Su. As before, one
then estimates the tangential derivatives. The remaining derivatives are con-
trolled by showing that the boundary is non-characteristic with respect to a
certain differential operator.

Let A be a differential operator of order m, supported in the interior of Ω.
Applying A to T*u for u E D gives

\\AT*u\\lt = (ATT*u,Au) + ([T,A]T*u,Au) + (AT*u, [A, Γ*]M).
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After performing the same operation for ||ΛSΐ<||2 and adding both equations,
we get

\\AT*u\\lt + \\ASu\\l, = (AΠu,Au) + ([T,A]T*u,Au)

+ (AT*u, [A, T*]u) + ([S*,A]Su,Au)

+ (ASu,[A,S]u).

Now in each of the last four terms on the right-hand side, on one side of the
inner product there is an mth order differential operator applied to one of Su
or T*u. These mth order operators, which we denote by Bm, arise as
commutators and satisfy the following estimate:

m

\\Bmυ\\lt < Σ (1 + s + t)2im-j)\\υ\\%,r
7=0

Using the estimate |O, j>)| < ε||*l|2 + C(ε)||>>||2, with the ε in front of the
terms BmT*u and BmSu, yields

m

\\AT*u\\lt + \\ASu\\l, < \\Du\\2

miSj + C(ε) Σ
7 = 0

.2.6) m
2(

(1 + * + / ) | | M | |
7 = 0

(2.2.6)

+ ε 2 0
7 = 0

A similar inequality holds for A with support intersecting the boundary,
provided we assume that the operators are tangential. Note that by (2.2.4), the
term C(ε)ΣJLoO + s + t)Άm~J)\\u\\j^t appearing in (2.2.6) is dominated by
the right-hand side of (2.2.5). Therefore, if we can only show how the
nontangential derivatives can be estimated, then the proposition will follow
by taking a partition of unity, adding up the inequalities and then taking ε
sufficiently small to absorb the terms ε|| T*u\\2

mfStt + e||SΊiH^, into the left-
hand side of (2.2.6). (The lower-order derivatives of Γ M and Su can be
controlled by an elementary induction argument.)

Consider the operator L,

L: qg,0)(Ω) θ q§,2)(Ω) -* CSD(Ω) θ C(

cg,3)(Ω),

given by L(v, w) = (dv + ϋw, 9w>).
Since L is elliptic and of first order, one can write (d/dr)(v, w) as a

combination of L(t>, w) and tangential derivatives of (t>, H>). However,

L(Γ*w, Su) = ((JT + S*S)u9 0) = (Πw, 0).
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Therefore as in the proof of Proposition 2.2.3, one gets

(2.2.7)

+ (I + s + t)2[\\T*u\\2

m_lΛl +

After applying (2.2.7) m times, one obtains the estimate for the nontangential
derivatives. By the earlier remark, this completes the proof.

Finally, by using the method of elliptic regularization, we can state the
following theorem.

Theorem 2.2.4. Let Ω be a pseudoconvex manifold with smooth boundary.
Suppose that φ E C°°(Ω) is strongly plurisubharmonic on all of Ω, and that
Xstiφ) is a 2-parameter family of weight functions constructed as in (2.2.2).

Suppose that a is a 9- closed form of type (0, 1) and that a E #m(Ω). Let v be
the solution of Tv = a, which is provided by the d-Neumann problem with
weight XsXφ). Then there exist positive constants Tm and Cm such that for all
t > Tm and alls > 0 , ϋ £ # m (Ω) and satisfies

(2.2.8) IMI2^,, < CJ\ + s + /)2m||c

3. APPLICATIONS TO BOUNDARY BEHAVIOR
OF HOLOMORPHIC FUNCTIONS

3.1. Holomorphic convexity at the boundary

In this section we shall study the holomorphic convexity of pseudoconvex
manifolds, with special emphasis given to the convexity properties at the
boundary. We shall define the holomorphic hull with respect to the holomor-
phic functions which are smooth up to the boundary, denoted by Λ°°(Ω).
Thus A °°(Ω) is defined by

Since functions in A °°(Ω) have smooth boundary values, we can allow both K
and K to have boundary points as well.

Definition 3.1.1. If K is a compact subset of Ω, we define the hull K by

K = f z E Ω; |/(z)| < supl/l,/
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For the class of manifolds we shall consider, it will be shown that if AT is a
compact subset of the interior, then the above holomorphic hull and the one
taken with respect to A(Ώ) coincide. It will also be useful to consider the hull
KP, taken with respect to P°°(Ω), the set of functions φ G C°°(Ω) which are
plurisubharmonic in Ω.

Definition 3.1.2. For K a, compact subset of Ω, the hull KP is given by

kP = (z GΩ φ(z) < sup φ, φ G P°°(Ω)).

Assumption 3.13. It will be assumed in all which follows that Ω is a
pseudoconvex manifold with smooth boundary, and that there is a function
φ G C°°(Ω) such that φ is strongly plurisubharmonic on Ω.

We shall make frequent use of the following density theorem.
Theorem 3.1.4. Let f be α function in A(Ώ) Π # m ( Ω ) , where m is α

nonnegαtiυe integer. Then for any ε > 0, there exists g G A °°(Ω) with \\g — f\\m

<e.
Proof. Using the function φ given by Assumption 3.1.3, we apply the

estimate given by Theorem 2.2.3 for s = 0, and / any number larger than Tm.
First let UJyj = 0, 1, , k, be a finite collection of open sets with the
following properties.

(1) Ω = U*_, Up

(2) Uo c C Ω,
(3) On each Uj,j = 1, 2, , k, there are holomorphic coordinates

z{, • • , zJ

n with dr/dxJ

n > 0, where z{ = x{ + iyj

n.
Let ξj,j = 0, 1, , k, be a partition of unity subordinate to the covering

{ Uj). For sufficiently small 8 > 0, let/s be given by

/•ω = u * ) / ω + Σ WH •••'zJn + δ )

Observe that/5 e C°°(Ω),

lim H/δ - / | L = 0, lim||a/β||m = 0.

Let m7, / = 1, 2, , be an increasing sequence of positive integers with
mx > m. Choose tλ > max(Γm, Tm). Let vδ be the solution of dvδ = 3/δ which
is obtained from Theorem 2.2.4 with / = tι and s = 0. Since /, > Tmχ, it is
clear that vδ G Hmι(ίϊ) and since tι > Tm, vδ satisfies

Hence lim δ^ 0 | | t ; δ | |^ = 0. Setting uδ = fδ - vδ, it follows that uδ G Hmχ and
|Mδ —/| | m = 0 Therefore there exists gλ = uδχ G i/Wl(Ω) such that
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II £i - film < ε /2 By the same reasoning, for every / there exists a holomor-
phic function gι such that \\gι - ^/_1 | | < 2~'ε. Set g = limg7. Clearly, g E
A°°(Ώ) and || g - f\\m < ε. The proof is complete.

We now apply the above theorem to show that the two hulls defined above
are identical. The idea of the proof has been taken from Theorem 5.2.10 of
[5]

Theorem 3.1.5. If K is a compact subset of Ω, then K = KP.
Remark. Hakim and Sibony [3] have strengthened this theorem by show-

ing that the above result holds also if one takes the hull with respect to
plurisubharmonic functions which are only continuous on Ω.

Proof of Theorem 3.1.5. Since it is obvious that Kp c K, it is sufficient to
prove the opposite inclusion. So assume A' is a compact subset of Ω and
z0 & Kp. It follows that there is a function φ E P °°(Ω) with ψ(z0) > sup^ φ.
We can assume that φ is strongly plurisubharmonic on Ω, for if not consider
<p' = φ 4- εφ for sufficiently small ε > 0, where φ is any smooth strongly
plurisubharmonic function. We shall construct a family of functions gs E
Λ°°(Ω) such that limM 0 0 gs(z0) = 1, and l im^^ gs(z) = 0 for all z with
φ(z) < φ(z0), z Φ z0. Thus for large s, \ gs(z0)\ > sup^l gs\, and hence z0 £ K.

Since φ is strongly plurisubharmonic at z0, there exist a neighborhood V,
z0 E F, and a function u0 E A°°(V) with wo(zo) = 0 and such that Re wo(z)
< 0 whenever z satisfies z E V, φ(z) < /AQ, Z ̂  z0. Choose a function ξ E
C0°°(K) such that f(z) = 1 for z in a neighborhood of z0. It follows that there
exists numbers a and μ' with a > 0 and μf > JL̂  such that

(3.1.1) Re wo(z) < -a if z E supp dζ and φ(z) < μ'.

Choose μ and /Xo < JU, < μ\ and let ^^(φ) be the 2-ρarameter family of weight
functions constructed as in (2.2.2). Set m = n + 2 and fix t0 > Tn+2. Then the
hypotheses of Theorem 2.2.4 are satisfied and it follows that, for all s > 0,
one can solve the 9-equation so that the estimate (2.2.8) holds.

Let u be an analytic function in V and set as = d(ξueτsu°), where T is a
constant whose value is yet to be determined. Denote by Vs the solution of
9J/ = as, given by the 3-Neumann problem with weight Xs>ίo(φ). By Theorem
2.2.4, vs satisfies

(3.1.2) ||ty2

Λ+2,,,,0 < Cn+2(l + t0 +

Since supp as c supp dξ, it follows that for some constant C independent

of s,

_ C(l + 5 + τs)«n+\xp(2τsu0 -
supp dξ
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We wish to show that there exist positive numbers δ and r such that for

sufficiently large s,

Re(2τ«io - Xs,ίo(δ))(z) < -&, z E supp dξ.

Toward this end, set

Mι= sup (Rewo(z)}, M2 = sup {-^(φXz)}.
z G supp dξ s> 0,z e supp ϋ£

Recall from (2.2.2) that χ, ,o(φ) = /oφ + sψ(φ(z)), where ψ is a convex increas-

ing function with ψ(τ) > 0 for r > μ. Suppose that φ(z) > μ'. Then we have

Xs,to(ψ) > tot1' + ί ψ ί r t a n d consequently

Fix T > 0 so that 2τMι - ψ(μ') < 0. Then for large s, Re(2τsu0 - χ,fίo(φ)Xz)
approaches -oo if φ(z) > /x'. If on the other hand, φ(z) < μ', then by (3.1.1),
Re wo(z) < -α, and hence

Re(2τM0 - χ,f/o(φ)) < -2aτs + M2.

Thus we see that δ > 0 can be chosen so that, for large s,

Re(2τsu0 - χy,,0(φ))(z) < -δs, z E supp 5f.

Hence by (3.1.3), for a new constant C,

IIa II2

llall

Since this also decreases exponentially to zero, it follows by (3.1.2) that

By the Sobolev Lemma and the fact that the weight functions χ,jί()(φ) are
independent of φ f or φ < μ,

sup{\D«Vs(z)\) < C | | F J | 2

+ 2 ^ o .
zeΩ,φ(z)<μo>l«l<i

If we now set gs = ξueτsu° - Vs9 then it is clear that gs G Λ(Ω) n Hn+2 and

for z with φ(z) < /IQ, Z φ z0. If we set u = 1 in V, then the existence of such
functions gs immediately implies that K c KP9 except for the fact that the
functions gs are in Hn+2(Ώ) and not necessarily in C°°(Ω). But then after
approximating gs sufficiently closely (Theorem 3.1.4), the result follows.

Remark. If we choose local holomorphic coordinates zv , zn in V,
which vanish at z0, and in the above proof set u = zk, k = 1, 2, , n, then
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the corresponding function gs

k has the property that

Jkn> dgs

k(z0) = dzk(z0).

Hence for large s their differentials are linearly independent. As before the
functions gk are in Hn+2(®\ a n ( i it remains only to approximate them by
functions fk E A°°(Ώΐ). This means that for every point z0 E Ω, there exist n
functions fl9 - - ,fn G A°°(Ώ,) such that their differentials at z0 are linearly
independent. This fact will be needed later.

We now give a construction with plurisubharmonic functions which is
useful for studying convexity properties at the boundary.

Proposition 3.1.6. Suppose that φ E C °°(Ω) is strongly plurisubharmonic in

a neighborhood of 6Ω. Then for all sufficiently small a > 0, there exist smooth

strongly plurisubharmonic functions φa on Ω which satisfy the following proper-

ties:

(b) φa < φ,

(c)for all z E Ω, limα^0+ ψa(z) = -oo uniformly on compact subsets of to.

Proof. The proof is just a slight twist of Theorem 3.7 of Kohn [6]. This
theorem states that for sufficiently large C, the function μ = —log|r| + Cφ is
strongly plurisubharmonic in Ω near Z>Ω. (r is the boundary-defining function
of Ω). Hence if we set s(z) = -e~μ, then s(z) is a new boundary-defining
function such that the level sets of s are pseudoconvex near Z>Ω. With both a
and b > 0, set λab = -log(α — s) + bφ. By imitating the proof of Theorem
3.7 in [6], it follows that if b is chosen sufficiently large, say b = b0, then for
all a > 0, the functions λab are strongly plurisubharmonic in a neighborhood
U of the boundary, where U is independent of α. Observe that there is a
constant γ independent of a, such that if λab (z) > γ, then z E U. Let χ be a
smooth convex function such that χ(t) = γ + 1 for t < γ and χ(t) = t for
t > γ + 2. Set

Since χ is convex and nondecreasing, the functions ζa are plurisubharmonic
on Ω. They satisfy the conclusions of the proposition except that they may fail
to be strongly plurisubharmonic in the interior of Ω. An examination of the
proof of Theorem 3.7 and the above formula for ξa shows that there is a
neighborhood V (in the relative topology of Ω) of 6Ω such that the eigenval-
ues of the complex Hessian of ξa are bounded below in V by a fixed positive
constant independent of a. Let ψ E C0°°(Ω) be chosen so that ψ(z) = 1 for all
z &V. Set
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where φ is any smooth strongly plurisubharmonic function on Ω. For suffi-
ciently small δ, say δ = δ0, the functions ψa = φaδo are strongly plurisub-
harmonic on Ω and satisfy the conclusions of the proposition.

Proposition 3.1.6 is the main step in the following theorem.
Theorem 3.1.7. Let Kl9 K2 be compact subsets of Ω such that Kx n bΩ =

K2 Π bΩ. Then Kx n bΩ = K2 n bΩ.

Remark. Hakim and Sibony [3] have recently found a new proof of
Theorem 3.1.7.

Proof. By Theorem 3.1.5, it suffices to show that KlP n bΩ = K2P n bΩ.
By symmetry, it suffices to show that Kιp n bΩ c K2P Π bΩ.°°(Ω)

Suppose then that z0 £ KlP, z0 E Z>Ω. Then, as in the proof of Theorem
3.1.5, there exists a smooth strongly plurisubharmonic function g with g(z0)
> 1, sup^ g < 1. Since Λ\ π £Ω = AΓ2 π bΩ, there exists a set K c C Ω with

K2(ZKU ( z G Ω g(z) < 1}.

By Proposition 3.1.6, one can choose a sufficiently small such that ga(z) < 1
for z E K. But since ga < g, this implies that ga < 1 on AΓ2. On the other
hand, gα(z0) = g(z0) > 1. Thus z0 ^ J^p This completes the proof.

A simple but important special case of Theorem 3.1.7 is when ^ c c Ω
and K2 = 0 . Then we have Kγ n bΩ = K2 n bΩ = 0 . This gives

Corollary 3.1.8. If K CGΩ, then K c C Ω.
Remark. The hypothesis that the boundary of Ω is smooth is essential.

Sibony [7] has constructed a bounded pseudoconvex domain in C 2 with
nonsmooth boundary such that K^, defined as the holomorphic hull with
respect to the bounded holomorphic of the domain, does not satisfy the
conclusions of Corollary 3.1.8.

Remark. Using an approximation theorem, Theorem 3.2.1, and Corollary
3.1.8, one can easily show that the definition of K given here and the usual
definition coincide if AT c C Ω.

3.2. An approximation theorem

In this section we shall prove, for the Sobolev spaces Hm, an approximation
theorem of the Oka-Weil type, the main feature of this theorem is that the
region on which the approximation takes place is allowed to intersect the
boundary of the domain. In order to measure the Hm-noτm of a function /
restricted to a given open set G, we define the norm || | |m > σ by

G = Σ Σ ( \Dj\2dv.
j \a\<mJVjΠG
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where Vpj = 1, 2, , TV, is any covering of G by coordinate neighbor-
hoods, and Da refers to the derivative Da in the coordinate chart V . The
topology defined by this norm is independent of the covering. In [5],
Hόrmander gave a proof of the Oka-Weil theorem, based on estimates for the
solution of the 3-equation in an infinite family of weighted spaces. This idea
is also used in the following approximation theorem.

Theorem 3.2.1. Let Ω be a complex manifold satisfying Assumption 3.1.3.
Suppose that K is a compact subset of Ω and that K = K. Let G be a
neighborhood of K in the relative topology of Ω. Suppose that f G Λ(Ω n G)
and that | |/| |m > G < oo. Then there exist a sequence of functions fn G A°°(Ωΐ) and
an open subset G' with K c C Gr C C G such that l im^JI/, , - / | |m > σ, = 0.

Proof. Since K = KP = K, there exist a function φ, which is strongly
plurisubharmonic and smooth on Ω, and a number μ such that φ(z) < μ for
z G K, and (z G Ω; φ(z) < μ] c C G. Let x^/φ) be a 2-ρarameter family of
weighted functions constructed as in (2.2.2). Fix t0 > Tm, where Tm is the
constant given by Theorem 2.2.4. We may choose ψ G C™(G) so that ψ = 1
in a neighborhood of {z G Ω; φ(z) < μ}. Set a = 3(ψ/). Since φ(z) > μ o n
supp α, there exist positive constants C and b, independent of s, so that

(3.2.1) |m,,,,0

where \px G C£°(G) is chosen so that ψj = 1 on supp ψ.
Let Ps denote the projection of L2(Ω) onto L2(Ω) n Λ(Ω) with respect to the

norm || \\stQ. Then PJUf) = ψ/~ K5, where K, is the solution of 3F5 = a
given by Theorem 2.2.4. By (3.2.1) and (2.2.8),

Set Gf = {z G Ω; φ(z) < μ}. The weight functions χ,jίo(φ) are independent of
^ in G'. By (3.2.2) and the fact that ψ = 1 in G', this gives

(3.2.3) \\PMf) ~ f\\2m,G> < Cm(l + * + / 0) 2 m * Ce-*Mif\\2

m.

Since the right-hand side of (3.2.3) approaches 0 as s approaches oo, the
functions Ps(4f) clearly satisfy the conclusions of the theorem, except that
Ps(4f) are in Hm(Ώi) and not necessarily A °°(Ω). However, by Theorem 3.1.4
we may approximate Ps(4f) arbitrarily closely by fs G A °°(Ω). The proof is
then complete.
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33. Domains of existence for A °°(Ω)

We now apply the method of the above approximation theorem to show
that if Ω is a complex manifold satisfying Assumption 3.1.3, then there is a
function u E A °°(Ω) which cannot be extended analytically to a neighbor-
hood of any boundary point. A new proof of this fact has recently been
found by Hakim and Sibony [3]. I would like to take this opportunity to
thank Professor E. Bedford, who originally suggested this problem to me, and
who pointed out the possible approach of studying the points on the
boundary around which the Levi form has constant rank. As in Corollary
3.1.8, the assumption of certain minimal smoothness properties of the
boundary would appear to be essential, for Sibony has constructed in [7] a
bounded pseudoconvex domain Ω c C2 such that if / e H°°(Ώΐ), the set of
bounded holomorphic functions in Ω, then / extends analytically to a larger
domain.

The proof below of Theorem 3.3.1 has roughly two parts. In the first part,
holomorphic functions are constructed in a neighborhood of a boundary
point where the rank of the Levi form is locally constant. These functions
satisfy certain inequalities which essentially show that the theorem is true
locally. In the second part, one then uses the argument of Theorem 3.2.1 to
approximate the locally defined functions by globally defined functions for
which similar inequalities still hold. From these inequalities the result follows
in a straightforward manner.

Theorem 33.1. Let Ω be a complex manifold satisfying Assumption 3.1.3.
Then there exists a function u G A °°(Ω) which cannot be extended analytically
to a neighborhood of any boundary point.

Before giving the proof of Theorem 3.3.1, we shall prove a lemma which is
useful in the local part of the proof.

Lemma 33.2. Let z0 be a boundary point of an n-dimensional complex
manifold with smooth pseudoconvex boundary. Suppose that there is an l-dimen-
sional complex manifold γ C 6Ω, with z0 (Ξ γ, and that the rank of the Levi
form at z0 is n — I — 1. Then there exists a coordinate neighborhood V of z0,
with holomorphic coordinates zl9 , zn satisfying the following properties'.

(1) V C γ = {z G V; zι+k = 0, k = 1, 2, , n - /}.
(2) Writing z'-(zly , zj) and z" = (z/+1, , zΛ), the Taylor expansion

of the boundary-defining function r(z) in the variables z" has the form

r(z) = r(z', z") = ^-{z', 0)zn + ^{z\ 0)zn + O(\z"\f.
0Zn OZn

(3) For z e V n Ω
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2 Re zn - \Imzn\ + \ "jf \zk\
2 < r(z) < \ Re zn + |/mzj + 2 " Σ k*l2-

Pra?/. Choose complex coordinates wv , wn in a neighborhood W of
z0, such that

W n γ = {z E W; w/+* = 0, * = 1, 2, - - , n - /}.

Writing w = (w\ w") as above, we take the first-order Taylor expansion of
the boundary-defining function r(w) in the variables W around the point
« 0):

rM= Σ i τ « ° K + Σ ^ K , o κ + o(κf).

Let M = {w E fΓ; Σ ^ β / + 1 θr/θH^w', 0 ) ^ = 0}. We claim that M is a
complex manifold of dimension n — 1. To see this we must show that for

j = 1, > n,

at all points of M. Fory = / + 1, , n this is obvious. Fory = 1, , /
and Wj E M9 we note that Σ ^ = / + 1 w θ̂/θvv̂  is a tangential vector of type
(1, 0) at the point (w\ 0) and that Σn

k^ι+ι(d2r/dwjdwk)(w\ 0)wk is simply

i.e., the Levi form of r at the point (w\ 0) evaluated at the vectors
Σ £ = / + 1 w^θ/θwj.) and Θ/ΘM .̂ Since d/dwj is in the null space of the Levi
form at (w\ 0), and the Levi form is positive semi-definite, we conclude that

Therefore M is an (n — l)-dimensional complex manifold which is tangent to
bΏ at each point of γ π W. If we take coordinates zl9 , zn in a neighbor-
hood K of z0 such that M is given by {z E K; zrt = 0} and γ is given by
{z E V; zι+k = 0, k = 1, , n — /}, then the Taylor series of r(z) with
respect to the variables z" has the form (2).

Finally, by making coordinate changes only in the variables z", and
assuming, as we may, that the point z0 is mapped to the origin, we can write
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the second-order Taylor series of r(z) in the variables z" around z0 in the
form

Under this coordinate change, properties (1) and (2) still hold. It is then
trivial to show that after possibly shrinking V somewhat, property (3) holds.

Proof of Theorem 3.3.1. Let z0 be a point in 6Ω such that for some
neighborhood Vo of z0, the Levi form has constant rank n — I — 1 on
Vo π bΩ. The heart of the proof of Theorem 3.3.1 is contained in the
following claim.

Claim. For any neighborhood U of z0, and any integer m > 0, there exists
an infinite family of functions^ E 4̂°°(Ω), δ > 0, such that

lim HΛIL = 0, l i m | | / δ | | m + u / = +oo.
o—*0 δ—•()

Proof of Claim. We wish to construct a weight function φ which behaves
like \z — zo\

2 near z0. Let gl9 , gN E A°°(Ώ) be constructed as in the
remark following Theorem 3.1.5 so that gk(z0) = 0, k = 1, , N, and n of
their differentials are linearly independent at every point of Ω. Let ξ E
C°°(Ω) be constructed so that ζ = 0 near z0, and ξ(z) > 0 at all points
z,zφ z0, where gk(z) = 0 for all k, k = 1, 2, , N. Then for sufficiently
small ε > 0, the function

φω= ί i&ωp + rfu)
k=\

vanishes only at z0 and is strongly plurisubharmonic on all of Ω. Suppose that
μ > 0 and that χ^/φ) is the 2-parameter family of weight functions con-
structed as in (2.2.2). Then the hypotheses of Theorem 2.2.4 are satisfied.

By a well-known result, since the Levi form has constant rank n — I — 1
near z0, there exists a neighborhood VQ of z0 such that 6Ω n VQ foliates into
complex manifolds. In particular, there is an /-dimensional complex manifold
passing through z0, and the hypotheses of Lemma 3.3.2 are satisfied. Hence
there is a coordinate neighborhood V of z0 with coordinate functions
z1? , zn such that properties (1), (2), and (3) hold in V.

Let ψ E C0°°(F) with ψ == 1 in a neighborhood of z0. It follows that there
exists μ > 0 so that ψ(z) = 1 for all z in a neighborhood of {z E Ω; φ(z) <
μ}. This μ will now be fixed in all that follows. For δ > 0, we define a
function uδ in V by
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The function ψuδ may be considered as a smooth function on all of Ω if we
set (ψuδ)(z) = 0 for z £ V. Let U be any neighborhood of z0 with U c V
such that φ(z) < μ f or z E U. Then by using property (3) of the lemma, one
easily verifies that for any integer m > 0, there exists a constant Cw, indepen-
dent of 8, such that

(3.3.1) HψifriL < c jμ δ | | m ) C / ,

(3.3.2) l|90K)IL <

(3.3.3) lim—-—π = .+ oo.

Proceeding exactly as in Theorem 3.2.1, we show that the functions uδ can be
approximated by globally defined functions gδ such that

/i o Λ\ i ll&llm+l.ί/

(3.3.4) lim —-—r-^- = + oo.
«o || &||

Fix t0 > Max(Γm, Tm+ι), where Tm and Tm+ι are the constants given by
Theorem 2.2.4. Denoting by Ps the projection operator of L2(Ω) into L2(Ω)

with respect to the norm || ||5>,, we observe that

where vδs is the solution of dvδ5 = 9(ψwδ) given by Theorem 2.2.4. Since
ψ(z) = 1 for all z in a neighborhood of {z E Ω; φ(z) < μ}, it follows that
φ(z) > ]Lt when z E supp 3(ψwδ). Hence there exist constants b > 0, C" > 0
such that

(3.3.5) o

Combining the estimates in (2.2.8), (3.3.2), and (3.3.5), one obtains that

\\ps(ψuδ) - Ή H 2

m + l A , o = l l»%X + i , A

< C m + I ( l + s + ίo) 2 m + 2 | | 3(<H)| | 2

m + w 0

< C ' C m + 1 ( l + 5 2 + V 2

< C m + 1 C ' C m + 1 ( l

Since φ(z) < μ for z ε U, the weight functions χ,<0(φ) are independent of
for z E U. Since ψ(z) = 1 on U, we obtain, for new constants C and b' > 0,

- «\\2

»\\m+ι,u

Now choose s = J 0 SO that Ce~*ίo < 1/4. By the triangle inequality, we have
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Both s0 and t0 are now fixed. Since the norm || | | m v W o is equivalent to || \\m, we
have

+ HJL

<C'(so,to)\\uδ\\mM,

where the last inequality follows by (3.3.1) and (3.3.2).
Thus we have constructed an infinite family of holomorphic functions

w h i c h s a t i s f y

,--,, ,. ll#δllm+i,t/^ 1 r ll"δllm+i,c/ ^
(3.3.6) hm —-—-^— > —— - hm — — = + oo.

δ o | | a l L 2C'(s0, t0) δ^o \\uδ\\mMWe use Theorem 3.1.4 to approximate the functions gδ byfδ G A°°(ίϊ) so that
(3.3.6) still holds for the functions fδ. After normalizing the functions ap-
propriately we have

This proves the claim.
We now proceed to construct the functions u G A °°(Ω). By elementary

continuity considerations, one can choose a sequence of points zk G bΩ such
that {zk, k = 1, 2, } is dense in bίl, and such that the Levi form has
constant rank near each point zk. Let U{ be a sequence of neighborhoods of
zk such that d(z, zk) < \/j, where z Eί//. Choose sequences j(m) and k(m)9

m = 1, 2, such that each neighborhood is represented exactly once in
the sequence £/$$. Suppose that/is a function in Λ°°(Ω) and that there exists
a neighborhood V (in the ambient space Ω') of a point w E ί Ω such that /
extends analytically to Ω u V. Since {zk, k = 1, 2, } is dense in bΏ, there
exist an integer k0, a constant C > 0, and an open set F ' c c K such that
zko G F' and | |/HW ) F, < m\Cm for all m = 1, 2, . Therefore if we con-
struct a function u G A °°(Ω) such that for each pair of postive integers (J, k)
there exists an integer m such that | |«||w,^nΩ ^ ^L/"1* then the theorem will
be proved. Since there is a one-to-one correspondence between the pairs
(J, k) and the positive integers m, given byj = j(rn), k = k(m\ it will suffice
to construct a function u EL A °°(Ω) satisfying

(3-3.7) ll»IL ( [/ j ί f t !nΩ>'«!0 ('"))m

By the claim proven above, for each integer m > 0 and δ > 0 there exists a
function/ίm such that
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Choose δ(l) sufficiently small so that for ux = / ^ i , we have

Assume inductively that we have chosen 8(1) for / < m — 1 so that the
following two conditions are satisfied.

(1) 11"/ " K/-1II/-1 < 2"7, where u, = ΣUi/*(„),„>
(2) H"/L,^inΩ > HO'W) for ^ = 1, . - . , / .

We seek um in the form um = um_x + /δ(w),m, where δ(m) is yet to be
determined. There are three conditions which must be satisfied.

(a) IK - «U-ilL-i < 2-".
Since um -um_λ = fδ(m)>m and limβ_Λ | |/β fJ| l l l-1 = 0, this is accomplished by
taking δ(m) sufficiently small.

C>) I K L ^ g n Q > " ! O W for v = 1, , m - 1.
Since um = um_γ = fδ(m)ftn and we have I K _ i L f L Ϊ B n M l > H 0 W and
lim^oll/g^ll^.! = 0, and since the norm || \\m_λ dominates || | | r for v =
1, , m — 1, (b) is also satisfied by taking 8(m) sufficiently small.

(c) | K _ ! + / δ ( w ) , w | L , ( / ^ j n Ω > m!0Xm)Γ.
This follows immediately since um_x is already fixed and
l im δ ^ 0 | | / δ m | | m ί / ^ j n Ω = + 0 0 . Thus if we choose 8 = 8{m) sufficiently
small, then the inductive step is complete.

By (1), u = lim^QQ w7 exists and is in^4°°(Ω). By (2), the function u satisfies

By the remarks preceding (3.4.6), the above inequalities imply that u does not
extend analytically to a neighborhood of any boundary point. This completes
the proof.
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