A SINGULAR MAP OF A CUBE ONTO A SQUARE

R. KAUFMAN

An example is given of a transformation F of class C^1 on a cube in R^3 , of rank at most 1 everywhere, onto a square. With merely verbal changes, the example operates from R^{n+1} to R^n for n=3, 4, 5... The construction begins with a Cantor set $C(\beta)$ in R^3 ; $C(\beta)$ can be found by the standard method but the one outlined in the first paragraph leads quickly to a system of boundaries $B(n_1, \ldots, n_k)$, the main geometrical curiosity of this example.

We learned of this kind of problem from Kevin Grasse and Felix Albrecht; it was stated by M. Hirsch (*Differential topology*, Graduate Texts in Math. Vol. 33, Springer, Berlin, 1976, p. 74).

A system of cubes. For each number β in (0, 1/2) we define a method of constructing 8 subcubes in each cube in R^3 . Let the larger cube be defined by the inequalities $|x_i - c_i| \le L/2$, $1 \le i \le 3$. Then the subcubes are defined by $|x_i - c_i| \le L/4$, so there are 8 in all; any two have a distance $\ge L/2 - \beta L$, and all have a distance $\ge L/4 - \beta L/2$ from the boundary of the large cube.

Beginning with the cube I_0 : $|x_i| \le 1$, we define cubes $I(n_1, \ldots, n_k)$, wherein $I(n_1)$ are the 8 cubes obtained from I_0 , etc., and each $n_k = 1$, 2, ..., 8. Distinct cubes $I(n_1, \ldots, n_k)$ and $I(n'_1, \ldots, n'_k)$ have a distance at least $\beta^{k-1} - 2\beta^k$. In the case of cubes $I(n_1, \ldots, n_k)$ and $I(n'_1, \ldots, n'_j)$ with $k \le j$, the situation is more complicated. When the cubes are disjoint we have the lower bound $\beta^{k-1}(1-2\beta)$ found above; when the larger contains the smaller, the distance between their boundaries exceeds $\beta^k(1/2-\beta)$. We denote the boundary of I_0 by I_0 , and the boundary of I_0 , I_0 ,

A mapping of $C(\beta)$. Let R_0 be any closed cube in R^2 , and the rectangles $R(n_1, \ldots, n_k)$ be defined by this variant of the process used above. When k is even (or $R = R_0$) we divide $R(n_1, \ldots, n_k)$ by 7 vertical lines into 8 congruent rectangles; when k is odd we divide by horizontal lines. Thus $R(n_1, \ldots, n_k)$ has diameter $\leq C2^{-3k/2}$.

Communicated by S. Sternberg, March 24, 1978.

We specify that $C(\beta) \cap I(n_1, \ldots, n_k)$ be mapped into $R(n_1, \ldots, n_k)$ by our transformation Φ of $C(\beta)$ onto R_0 , and we shall now prove

$$\|\Phi(x) - \Phi(y)\| \le C' \|x - y\|^{\lambda}, \lambda = -3\ln(2/2\ln\beta) > 1.$$

Indeed, if k is the largest integer such that x and y belong to the same cube $I(n_1, \ldots, n_k)$, then $||x - y|| \ge \beta^k (1 - 2\beta)$ and

$$\|\Phi(x) - \Phi(y)\| \le C(2^{-3/2})^k = C' [\beta^k (1 - 2\beta)]^{\lambda} \le C \|x - y\|^{\lambda}.$$

Extension of the mapping. This is accomplished in two stages; in the first (easy) one we define F on each $B(n_1, \ldots, n_k)$; on each boundary F is constant and its value is in $R(n_1, \ldots, n_k)$. In the second stage we define F in the sets $I(n_1, \ldots, n_k) - \bigcup I(n_1, \ldots, n_k, n_{k+1})$ and $I_0 - \bigcup I(n_1)$. To avoid excessive notation we write J_0 for a large cube, J_m ($1 \le m \le 8$) for its progeny, and $a_m = F(J_m)$, $0 \le m \le 8$.

Let f be a mapping of the interval T=[0,1] into R_0 , with $f(m/8)=a_m$. Moreover f is of class $C^1(T)$ and $||f'|| \le 9 \max ||a_m-a_{m+1}||$, $0 \le m \le 7$. (We can confine f to the convex hull of a_0, \ldots, a_8 , and construct f by an explicit formula to obtain the estimate for f'.) Let g be a mapping of class $C^1(R^3)$ so that g=m/8 on a neighborhood of ∂J_m , $0 \le m \le 8$, $g(R^3) \subseteq T$, and $||Dg|| \le C''\beta^{-k}$. This can be accomplished first for $I_0 = J_0$, and for smaller cubes by the similarity of I_0 and I_0 in the ratio I_0 . Finally we set $I_0 = I_0 = I_0$ in the set $I_0 = I_0 = I_0$.

Clearly the mapping F is of class C^1 on $I_0 - C(\beta)$, since DF = 0 on all the boundaries. Moreover, $||DF|| \le ||Dg|| \cdot ||f'|| = 0(\beta^{-k}\beta^{\lambda k})$ on $I(n_1, \ldots, n_k) - C(\beta)$, so ||DF|| tends to 0 on approach to $C(\beta)$, while f is a continuous extension of Φ to I_0 . To conclude that DF = 0 at $C(\beta)$ we use the inequality on $||\Phi(x) - \Phi(y)||$ found before for x, y in $C(\beta)$.

Now plainly DF has rank 0 on $C(\beta)$ and the boundaries $B(n_1, \ldots, n_k)$, and in the intermediate regions $DF = Df \circ Dg$ has rank at most 1 by construction.

University of Illinois, Urbana