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REFLECTIVE SUBMANIFOLDS. IΠ.
CONGRUENCE OF ISOMETRIC REFLECTIVE

SUBMANIFOLDS AND CORRIGENDA TO THE
CLASSIFICATION OF REFLECTIVE

SUBMANIFOLDS

D. S. P. LEUNG

Introduction

This note is a sequel to the author's previous notes [3], [4] where we studied
geodesic submanifolds of Riemannian symmetric spaces, which are the con-
nected components of the fixed point sets of involutive isometries and are
called reflective submanifolds. Here we shall prove that two isometric reflec-
tive submanifolds of a simply connected Riemannian symmetric space M are
congruent under the full group of isometries of M. Since the second assertion
in [3, Lemma 2.6] is incorrect, many of the reflective submanifolds of
compact symmetric spaces listed in [4] should be replaced by their ap-
propriate space forms. A list of the reflective submanifolds with the ap-
propriate space form factors is given here. We also discuss in the note some
facts which can be used to determine the connectivity of the fixed point sets
of involutive isometries of a compact symmetric space. In our forthcoming
papers, we plan to use the above results to study the various geometric
significance of the reflective submanifolds. To begin with, we will classify all
the real forms of Hermitian symmetric spaces. For terminologies and notation
related to reflective submanifolds and Lie groups, we follow [4, §§1 and 2]

closely.

1. Congruency of reflective submanifolds

Let M = G/H be a simply connected irreducible compact symmetric
space, M* = G*/ H its noncompact dual, and σ the canonical involution of
M and M*. For technical reasons, we will furthermore assume the Lie groups
G and G* to be simple and simply connected. If g = m + ί) is the canonical
decomposition of Λf, then g* = ixn + ί) C gc, Qc being the complexification of
g or g*. Suppose p is an involutive isometry of M. p induces through adjoint
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action an involutive automorphism of (g, ί), σ), denoted by p; then we have

m = m+ + m~ and ί) = ί)+ + if,, where the superscripts " + " and " - " refer

to the + 1 and -1 eigenspaces of p respectively. Extending by linearity over

C, we have also an involutive automorphism of (g*, ί), σ) and hence an

involutive isometry of M*. In fact all involutive isometries of M* can be so

induced. When confusion is not likely, we will denote all the maps induced by

the isometry p of M again by p. Note that by restricting p to I), we have a

symmetric Lie algebra (ί), ί)+, p). Such symmetric Lie algebras play an im-

portant role in the classification of affine symmetric spaces in [1]. Similarly

there is an involutive automorphism p x of (g, ί), σ) associated with m~ such

that its fixed point set on m is m".

Now assume that M is of type I. It follows from [1, Lemmas 15.1 and 15.2]

that if pj and p2 are two involutive automorphisms of (g*, ί), σ) such that their

associated symmetric Lie algebras (ί), ϊ)*, px) and (ί), ί)2, p^) are isomorphic

under an inner automorphism (resp. automorphism) a of ί), then px is conjugate

to either p 2 or p2 under an inner automorphism (resp. automorphism) which

extends a. It is easy to check that the above statement is also true if g* is

replaced by g. Since G* and G are both connected and simply connected by

our assumption, every automorphism of g (resp. g*) can be extended to an

automorphism of G (resp. G*).

Theorem 1.1. Let M = G/H be a simply connected irreducible symmetric

space of type I or III, and assume that G is connected and simply connected.

Then any two isometric reflective submanifolds Bx and B2 defined by involutive

isometries p, and p2 respectively are congruent by an element of the full group of

isometries of M. Furthermore, if the associated symmetric Lie algebras

(ϊ)> ϊ)i+> Pi) and (ϊ), ί)^", p^) are related by an inner automorphism of ί), Bx and B2

are congruent by an element of G.

Proof. We can assume that Bx and B2 both go through the origin of M.

Since Bx and B2 are isometric, the associated symmetric Lie algebras

(ί), ϊ)*, ρx) and (ί), ϊ£> Pi) a r e isomorphic and hence related by automorphism

α φ of ϊ). Using results of the previous paragraph we therefore conclude that

there is an automorphism α^ of g, which leaves ί) invariant, such that

px = αJ|tp2«i1. The assumption that G is simply connected implies that a+ is

induced by an automorphism a of G which leaves H invariant. Hence a is an

element of the full group of isometry of M, [6, §8.8].

Therefore we have px = ap2ά~ι as required. The last statement of the

theorem is obvious.

Theorem 1.2. Let M be a simply connected irreducible symmetric space of

type II or IV. Then any two isometric reflective submanifolds of M are congruent

by an element of the full group of isometries of M.
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Proof. We can write M = G/H9 where either G is the product of two
simple compact Lie groups with H as its diagonal or G is a simple complex
Lie group with H as a maximal compact subgroup of G. Furthermore, we will
assume that G is connected and simply connected. It follows that H is
connected and simply connected (cf. [2, Chapter VI]). With this preparation,
it is clear that we only need to prove the theorem at the infinitesimal level.
Let 0 = m + ή be the canonical decomposition, and σ the canonical involu-
tion as usual.

In the compact case, we have g = t + t where t is a simple Lie algebra.
From the proof of [4, Theorem 3.3], we know that every complementary pair
of reflective subspaces of m is determined by an involutive automorphism of
m which is in turn determined by the isomorphic type of its fixed point set.
Therefore the involutive automorphisms of t associated with two isometric
reflective submanifolds must be related by an automorphism of t. An argu-
ment similar to the last part of the proof of Theorem 1.1 finishes the proof in
this case.

When M is noncompact, we have g = /ϊ) 4- ί). Let p be an involutive
automorphism of ί). Extension by linearity over C gives also an involutive
automorphism of (g, ί), σ). Let ί) = ί)+ + if be the decomposition of ϊ) into
eigenspaces with respect to p as usual. It is easy to check that the reflective
subalgebra pair [4, p. 329] associated with p in this case is {(/ί)+ + ϊ)+, ϊ)+, σ),
(/if + ί)+, ί)+, σ)}. By duality, it follows from [4, Theorem 3.3] that every
complementary pair of reflective subspaces (or algebras) can be obtained in
this way. Hence every complementary pair of reflective subspaces of m is
determined by an involutive automorphisms u of ή and u is determined by
the isomorphic type of fixed point set of u. One can now finish the proof as in
the compact case.

2. Corrigenda to [4]

Some of the reflective submanifolds listed in [4] for symmetric spaces of
type I should be replaced by their appropriate nontrivial space forms. We will
next describe how these space form factors can be computed.

Using the methods described in [4, §4] one can obtain the infnitesimal
classification of reflective submanifolds of every noncompact irreducible
symmetric space and hence by duality also the infinitesimal classification in
the compact case. To compute the required space form factors, it is more
convenient to write a given compact simply connected irreducible symmetric
space as M = G/Gσ

9 where σ is the canonical involution, and G is simply
connected and simple. Let B be a reflective submanifold of M through its



170 D. S. P. LEUNG

origin defined by an involutive automorphism p of G which commutes with σ.
Let M* = G* / H be the dual of M, and use here the notation in §1. Using [1,
Table II] and the infinitesimal structure of B, we can determine Q*P. In fact,
using the notation in [4, §§2 and 4], we have Q*P = I* + α where I* is the Lie
algebra of the largest subgroup K* of G* which acts effectively on B*9 the
reflective submanifold of M* determined by p. I* can be determined by the
method described in [4, §4]. By duality we can then obtain QP = f -*- α. Since
G is simply connected by our assumption, this determines Gp which is the
fixed point set of p and is connected [2, Theorem 7.2]. Again using the
infinitesimal structure of B, we can determine the structure of the largest
connected subgroup K of Gp which acts effectively on B. Then B = K/Kσ.
When K is the product of simply connected compact Lie groups, and possibly
also the circle group, using the infinitesimal structure of B we can simply
determine Kσ. When K is the almost product of simply connected Lie groups
and possibly also the circle group, using [4, Lemma 2.7] we can still determine
the structure of K/(Kσ)0, (Kσ)0 being the identity component of Kσ. How-
ever, in general we have Ka = T(Kσ)0 where Γ is a discrete finite subgroup of
Kσ. In this case B = [A:/(A:σ)0]/Γ. To compute Γ, the following observation
is useful.

Lemma 2.1. Let K be a compact Lie group, N a finite subgroup of the

centralizers of K, and a an involutive automorphism of K such that its fixed

point set Kσ is connected and σ(N) = N. Then σ induces an automorphism of

K = K/N. The number of components of K° is equal to the number of cosets of

NKa in K of the form gNKσ, where σ(g) = ng with n E N.

When exceptional Lie groups, which are not easily representable in terms
of matrices, enter into the description of the group K, the following lemma
will be useful in the computation of the group Γ. In the following lemma we
use the terminology in [5] and recall it briefly here. Let G be a compact
simple Lie group with involution σ. Then M = G/G° is global symmetric
space of the compact type. Let g = m + ί) be its canonical decomposition,
and t a maximal abelian subalgebra of Q such that u = t n m is a maximal
abelian subspace of m. Let ΛQ(G), Λ(G) and Aλ(G) be respectively the root
lattice, unit lattice and central lattice of G in t, and put

Λ0(M) = Λo(G) Π u, Λ(M) = Λ ( G ) n u and Λ,(Jf) - Λ,(G) n u.

It is proved in [5] that the center Z(M) of M is isomorphic to Aι(λf)/A(λf)9

and the fundamental group of M is isomorphic to A(M)/AQ(M).

Now let L be a simple and simply connected compact Lie group, N be a
subgroup of the center of L and L = L/N. Let σ be an involution of L
leaving N invariant, and denote the involution induced on L also by σ. Then
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Z(L/Lσ) is a subgroup of the center Z(L) of L (cf. [5]).
Lemma 2.2. The fundamental group πx(L/Lσ) of L/Lσ is isomorphic to

Z(L/Lσ) n N.
Proof. Put M = L/L° and M = L/Lσ. Then we have πx(M) =

Λ(Λf )/Λ0(Λ/). Since M and G are simply connected, Λ^M) = Λ(M) and
Λo(G) = Λ(G). We also have exp AX(M) = Z(M), exp Λ(G) = ΛT, and
exp Λ(Λf) is isomorphic to πx(M). Now

Λ(G) n AX(M) = Λ(G) n Λ^G) n u = Λ(G) Π u - Λ(M).

Therefore we have

exp Λ(M) = exp Λ(G) n exp Λ^M) = # n Z(M).

Remark 23. Let L° = (L σ ) 0 Γ. We can compute the finite group Γ as
follows. Using [4, Lemma 2.7] we can compute the discrete group f such that
Lσ/(Lσ)0 = (L/Lσ)/T where f = πx(Lσ/(Lσ)0). Then Γ = πx(M)/f.

We now list below all the isometric types of reflective submanifolds of
dimension greater than zero in a simply connected compact irreducible
symmetric space of Type I. Note that because of the results of §1 and duality,
the list in fact gives a classification of reflective submanifolds of irreducible
simply connected symmetric spaces of Type I and III up to isometries. For
notation on compact Lie groups we follow [6]. We denote by Zp the multi-
plicative group of the pth roots of unity; for every pair of positive integers p
and q, we put m(p, q) = pq/(p, q)2, where (p, q) is the greatest common
divisor of p and q. We also use the following notation for the Grassman
manifolds:

r>r+sy ' SO(r) X SO(s) ' r'r+sy ' O(r) X O(s) '

G (C) = SU(<r+ J> G ( β ) Sp(r + S)

In our notation Grr(F) = Go r(F), where F = R, C or Q, is simply a single
point. Let Mx and M2 be two Riemannian manifolds, Γ be a finite discrete
group, and ix\ Γ —»I(MX), i2: Γ -» /(Mj) be two monomoφhism of Γ into the
group of isometries of A/\ and Λf2 respectively. The quotient space (Mx X
Λf^/Δί/^Γ) X /2(Γ)), Δ(ix(Γ) X /2(Γ)) being the diagonal of the product ix(T)
X /2(Γ), is called the almost product of Mx and Λf2. For simplicity the above
almost product is usually denoted by (Mx X Λf^/Γ. Mx and Λ/2 are both
naturally embedded in (Mx X M^/Γ with their images intersecting at a
finite number of points.
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AI SU(n)/SO(n)

(l r) {[(SU(r)/SO(r)) X (SU(n - r)/SO(n - r))]/Z2 X S'}/Zm ( Γ ) ( )_ r

0 < r
(2r) G ^ , O < r < / l ;
(3) Sp(n/2)/U(n/2);

(4) Sί/(«/2), ((3) & (4): n even).
Complementary pairs: {(lr), (2r)} and {(3), (4)}.

A II SU(2n)/Sp(n), n > 1

(lr) {[(SU(2r)/Sp(r)) X (SU(2n - 2r)/5/»(n - r))] X S1}/^,,,-,),
0 < r

α ) Gryn(Q),O<r<n;
(3) SO&n)/U(n).

(4) SC/(n).

Complementary pairs: {(lr), (2r)} and {(3), (4)}.

A III SU(p + q)/S(U(p)X U(q))

(hj Gr,r+ΛQ X C > - r , + , - r - . ( Q . " ^= 0, 0 < r < [ ^ / 2 ] , 0<s<q;
(2) G£+,(R);
(3) (/>, q e\ea)Gp/2χp+q)/2(Q);

(4) SO(2p)/U(p);

(5) Sp(p)/U(p);

(6) [Sί/(/>) X S VZ,. ((4), (5) and (6): p = 9).

Complementary pairs: {(lr^), (I,,,.,)}, ? =̂ 2ί, and {(4), (5)}.

Self-complementary spaces: (\rJ),p =2r oτ q — 2s, (2), (3) and (6).

B.D.I. SO(p + q)/SO(p) X SO(q),p + q > 4

(1Γ>J) [G£(R) X G;_^+?_Γ_ ί(R)]/Z2) 0 < r < [/>/2], 0 < 5 < ί ;

Oft.) < w + ? - , ( R ) . 0 < ί < ? ;

(W ς,°-v+,-,(R), 0 < r < [/>/2];
(2) (p, q even): Gp/2jϋ>+q)/^C);

(3) (/» = 9): {[SC/(/»)/5O(/»)] X Sι)/Zp;

(4) (p = q): SO(p).

Complementary pairs: {(1^), (I,,,.,)}, ? ¥• 25, and {(3), (4)}.

Self-complementary spaces: (lΓjJ), p — 2r or q = 2s, and (2).

D i l i SO(2n)/U(n), n >2

(l r) [5O(2r)/ U(r)] X [SO(2w - 2r)/ U(n - r)], 0 < r < n;

(2r) GΓ>;,(Q, 0 < r < n;

(3) SO(n);

(4) {[5l/(«)/5Jp(n/2)] X S '}/Zn (n even).

Complementary pair: { (1 r), (2r) }.

Self-complementary spaces: (3) and (4).
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CI Sp(n)/ U(n), n > 2.

( U [Sp(r)/ ί/(r)] X [Sp(n - r)/ ί/(r)], 0 < r < n;

(2r) Grn(Q,O<r<n;

(3) {[SU(n)/SO(n)) X Sι)/Zn.

(4) (n even) Sp(n/2).

Complementary pair: {(1Γ), (2Γ)}.

Self-complementary spaces: (3) and (4).

C II Sp(p + q)/Sp(p) X Sp(q),p + q > 2.

0, , ) Gr,r+s(Q) X Gp_,,+q_,_tiQ), rsφO,O<s< [p/q], 0 < r < q;

(2) Gpj>+9(C);

(3) {[SU(2p)/Sp(p)} X S'l/Z^;

(4) Sp(p),((β)nnd(4):p = q).

Complementary pairs: {(lr^), (1,,,.,)}, ί φ 2s and {(3), (4)}.

Self-complementary spaces: (\rJ),p = 2r or q = 2s, and (2).

E l E6/{Sp(4)/Z2}

(1) Λ/US/Kl) X Sp(3)]/Z2);
(2)
(3)

(4) ^
(5) [JW4)/ t/(4)]/Z2;

(6) {[(5t/(6)/5O(6))/Z3] X [51/(2)/SO(2)]}/Z2.

Complementary pairs: {(1), (2)}, {(3), (4)} and {(5), (6)}.

E II A<KEJ/{<[SU(<S)/ZA X SUCWZJ

(1) 50(10)/1/(5);

(2) G4°10(R);

(3) G2 ) 6(Q;

(4) {G3fi(Qx[SU(2)/SO(2)]}/Z2;

(5) Glj4(β);
(6) F4/{[Sp(l)xSp(3)]/Z2);

(7) [S/>(4)/ί/(4)]/Z2.
Complementary pairs: {(2), (3)} and {(5), (6)}.

Self-complementary spaces: (1), (4) and (7).

E III £6/{[Spin(10) X Tι]/Z4)

(1) /-4/Spin(9);

(2) <?2°10(R);

(3) G2 ) 6(Q;

(4) Gί4(Q)/Z2;

(5) G1>6(Q X
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(6) SO(\0)/U(5).

Complementary pair: {(5), (6)}.

Self-complementary spaces: (1), (2), (3), and (4).

EIV EJF4

(1) [SU(6)/Sp(3)]/Z3;

(2) GlA(Q);

(3) {[SO(10)/SO(9)] X S }/Z4.

(4) F4/Spm(9).

Complementary pairs: {(1), (2)} and {(3), (4)}.

EV EΊ/{SU{%)/Z2)

(1) SO(12)/U(6);

(2) E6/{[(SU(6)/Z3) X 5t/(2)]/Z2};

(3) {G£l2X

(4) G4jg(Q/Z2;

(5)
(6) {[Ej(Sp{Λ)/Z2)] X

Complementary pairs: {(1),(2)}, {(3), (4)} and {(5), (6)}.

Self-complementary space: (7).

EVI £7/{[Spin(12) X SU(2)]/Z2}

(1) £6/{[Spin(10) x 5O(2)]/Z2};

(2) G4°12(R);

(3) <?4,8(Q/Z2;
(4) G2>8(Q;
(5) E6/{[(SU(6)/Z3) X 5l/(2)]/Z2};

(6) [SO(12)/ί/(6)]X[St/(2)/5O(2)].

Complementary pairs: {(4), (5)}.

Self-complementary spaces: (1), (2), (3) and (6).

EVΠ Ad(EΊ)/{[E6xSO(2)]/Z3)

(1) [SU(%)/Sp(4)]/Z2;

(2) {G2°12(R) X [SU(2)/SO(2)])/Z2;

(3) £6/{[Spin(10) X Tl]/Z2);

(4) C72jg(Q;

(5) SO(12)/ί/(6);

Complementary pairs: {(2), (3)} and {(4), (5)}.

Self-complementary spaces: (1) and (6).
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EVIII EJSO{\6)

(1) £ 7/{[Spin(12) X 5ί/(2)]/Z2};

(2) G8«16;

(3) SO(16)/ί/(8)
(4) {(£ 7/[(SC/(8)/Z2)]) X [SU(2)/SO(2)])/Z2.

Complementary pair: {(3), (4)}.
Self-complementary spaces: (1) and (2).

E IX ES/{[E7 X SU(2)]/Z2).

(1) SO(16)/U(S);

(2) G4«16;

(3) £7/{[Spin(12) X SU(2)]/Z2).

(4) {(£ 7 /[(£ 6 X SO(2))/Z3])} X {[SU(2)/SO(2)])/Z2.

Complementary pairs: {(2), (3)}.

Self-complementary spaces: (1) and (4).

FI F4/{[Sp(ί)XSp(3))/Z2}

(1) G4°9(R);

(2) G1 3(Q);

(3) {[5Jp(3)/ί/(3)]X[S'(/(2)/5O(2)]}/Z2.

Complementary pair: {(1), (2)}.

Self-complementary space: (3).

F I I F4/Spin(9)
(1) SO(9)/S0(8);

(2) Gi,3(δ)
Self-complementary spaces: (1) and (2).

G G2/SO(4)

\Λ.) [*3 X »̂  J/ 2*

Self-complementary spaces: (1).

Remarks. (1) The assertion of [4, Lemma 2.6] is not true in general.

Neither is the assertion about the connectivity of Qx and Q2 [4, p. 335] true in

general.

(2) The compact Lie group Sp{ή) has been left out in [4, Theorem 3.3] (see

[4, erratum]).

(3) In the table for [4, Theorem 3.3], (3) and (4) of E6 should be (3):

{[Spin(lO) X SO(2)]/Z4] and (4) £6/{[Spin(10) X 5O(2)]/Z4} respectively;

(1) and (2) of EΊ should be (1): {Spin(12) X SU(2)}/Z2 and (2):

£7/{[Spin(12) X SU(2)]/Z2} respectively.

(4) In [4, Lemma 3.2] as well as in its proof, "5ί/(n) X Γ 1 " should be

"[SU(n) X Tι]/Zn".
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3. Connectivity of fixed point sets of involutive isometries

Now we make a few observations which will be useful when needed in

determining the structures of the fixed point set of involutive isometries of

Riemannian symmetric spaces.

Lemma 3.1. Let M be a noncompact Riemannian symmetric space. Then the

fixed point set Mp of an involutiυe isometry p of M must be connected.

Proof. Suppose Mp is not connected. Let Bx and B2 be two disjoint

component of Mp. Let a: [0, b] -» Λf, α(0) G Bx and a(b) G B2, be a unit

speed geodesic which realizes the distance between Bx and B2. Since M is

simply connected and of nonpositive sectional curvature, there is only one

unit speed geodesic joining α(0) and a(b) such that p(α(0)) = α(0) and

p(a(b)) = a(b). Therefore α([0, b]) is left pointwise fixed by p, contradicting

our assumption on Bx and B2.

Lemma 3.2. Let M = G/H be a compact irreducible simply connected

Riemannian symmetric space. For / = 1, 2 let L, be the largest connected

subgroup of G which leaves the reflective submanifold Bt of M invariant. If Bx

and B2 are left fixed by the same involutive isometry, then Lx and L2 must be

isomorphic.

Proof. Suppose Bx and B2 are left fixed by the involutive isometry p (also

considered as involutive and automorphism of G). It follows from the proof

of Theorem 2.1 [4 that the Lie algebras of Lx and L2 are both isomorphic to

gp. Therefore Lx and L2 are both isomorphic to Gp.

Lemma 3 3 . Let M = G/H as in Lemma 3.2 with G simply connected. Let

B be a reflective submanifold of M through the origin defined by an involutive

isometry p (also an involution of G). For g G G, gB belongs to the fixed point

set of p if and only if g~ιp(g) lies in the subgroup of G which leaves B pointwise

fixed.

Proof. Let B = K/Q, where K is the largest connected subgroup of G

which leaves B invariant and acts effectively on it. K is left fixed by p. Now

suppose g G G is such that gB is also left fixed by the isometry p. Then

p(gkH) - gkH

for all k G K. Therefore we have

Π k~ιHk.

The subgroup Γ\kE:K k~ιHk of course leaves B pointwise fixed. Conversely,

suppose g = g~ιp(g) leaves B pointwise fixed. Then

p(gkH) = gqkH = gkH

for all k G K. Therefore gB is left fixed by p.
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