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VECTOR FIELDS OF A FINITE TYPE
G-STRUCTURE

A. M. AMORES

0. Introduction

Let M be a connected manifold, g a Riemannian metric on Λf, and *§

either the set of Killing vector fields or the set of conformal vector fields. The

following theorems are known.

(0.1) Theorem. // U C M is open and I J G f, then X \ U = Y\U implies

X = Y on the whole ofM.

(0.2) Theorem. If M and g are analytic, M is simply connected, and X is a

Killing (resp. conformal) field on U, open subset of Λf, then there is a unique

extension of X to an analytic Killing {resp. conformal) field defined on the whole

ofM.

These theorems were proved in [4] for the Killing case and in [3] for the

conformal case. The aim of this paper is to generalize them, when *% is taken

to be set of vector fields of a finite type G-structure. The precise definitions

and statements of the theorems are in §2 and §3. §4 is devoted to proving

some auxiliary results on fields on a parallelisable manifold. When no

precision is made about the differentiability class of a manifold or map, it will

be understood that the definition or result works for both the category of

manifolds of class infinity and real analytic manifolds.

1. Parallelism fields

Let m = dim Λf, and TΓ be a parallelism on M; that is, a 1-exterior form on

Λf with values in Rm such that for all x E Λf, ττ(x) : TM(x)-+Rm is an

isomorphism. Suppose that I is a vector field on Λf, and { ψ ^ e Λ } the

corresponding pseudogroup of diffeomorphisms. Then we say that X is a

parallelism field if for all t E R, ψ,*ττ = TΓ, or, equivalently, if Lxπ = 0. Let

(w1, , um) be a coordinate system on U. If X is a field on ί/and c: / -> U
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is a smooth curve, / being an interval, we write

X = Σ X*—., Λt) = w' o c(ή for / e /, 1 < i < m,
duι

where {eλ, , em) is the canonical basis of Rm.

(1.1) Lemma. If X is a parallelism field on U, then the curve

(X1 o c(t), , Xm ° c(0) w β solution of the linear system

where

h,k 3 « y " '

ίww/ (pj(x)) is the inverse matrix ofπj(x)for all x G U.
Proof. If is just an easy computation, if we write the equation Lxπ c'(t)

= 0 in local coordinates, c'(t) G TM(c(t)) being the velocity of c at the point

(1.2) Lemma. If X, Y are parallelism fields on M, and X(x0) = Y(x0) for

some x0 E Λ/, then X = Y on M.

Proof. Let x, be an arbitrary point of M, and c: [0, 1]-»M a smooth

curve such that c(0) = x0, c(l) = ^ . We prove that X = Y on c([0, 1]); hence

X(xx) = ^(x!). Certainly, ^(0(0)) = Y(c(0)). The idea-quite standard-is to

show that if X = Y on c([0, T]), with 0 < T < 1, there is ε > 0 such that

X = Y on c([0, T + ε]), and this is done by using (1.1). If (w; U) is a

coordinate system around c(τ), there is ε > 0 such that c([τ — ε, T + ε]) c U,

and the curves (XJ ° c) and (Y' ° c) defined on (r — ε, r 4- ε) are solutions of

the system (1.1). Since they coincide for t = T, they are equal on their domain

of definition. This proves X = Y on c([0, T + ε]).

(13) Lemma. Let M be analytic, and (w; U) a coordinate system such that

u(U) c Rm is convex. Then any parallelism field X defined on an open

connected subset V of U can be extended to a unique parallelism field Y on U.

Proof. The uniqueness of the extension follows from (1.2) or, more easily,

from the fact that if two analytic vector fields coincide on V, they must

coincide in the connected component of V in the domain of definition.

Choose xQ G V. Define cx: [0, 1] -> U for x e U as the curve determined

by the condition u(cx(t)) = (1 - t)u(x0) + tu(x). The map U X [0, 1] -• U,

(x, t) -> cx(t) is analytic. Clearly cx is a curve joining x0 and x. Substitute c

for cx in the formula for &j(t) in (1.1). One gets a family of analytic maps
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&j(x, t), and we have a linear system Sx of equations depending on a

parameter x. For each x G U the solution (ax) with initial condition ax(0) =

u\x0) is defined for / = 1. We define Y = Σ Y'd/du* by the formula Y\x)

= ax(\), and show that Y is the required extension.

There is a neighborhood W of Λ:0 with the following property: If x G W,

then cx(t) G F for all / G [0, 1]. Using (1.1) and the uniqueness of the

solution we get for x e W: X\x) = X\cx(\)) = α ^ l ) = Y\x). Therefore

X\W = Y\W, and this implies, since our fields are analytic, that X = y |K.

The field Y is a parallelism field because Lγπ\ v = L^ir = 0 implies, using

analyticity once more, that Lγπ = 0 on U.

2. The uniqueness theorem

Let/?: & -» M be a G-structure, and P the corresponding pseudogroup of

transformations. By definition a diffeomorphism f: U -> V; U, V open

subsets of Λf, is in P if and only if the natural lift f+ to the frame bundle

sends & \ U into & \ V. If / G P, we denote this natural restriction of /^ by /0,

and we still call it the natural lift. If X is a vector field on Λf, and { ψ p / 6 / ? }

the corresponding pseudogroup induced by X, we say that X is an & -field if

for all t G #, ψ, G P. If this is the case, JT has a natural lift to a field Xo on #

which projects on X. The pseudogroup determining Xo is just {(ψ,)0; / G /?}.

We denote the set of & -fields by Φ. If £/ c M is open, then % will denote

the set of &\^-fields. Let θ be the canonical 1-form on & with values in Rm.

It is well known that./£0 = θ for/ G P, and 1^0 = 0 for X G ^ .

We now quote some facts about Sternberg prolongations. The reader

interested in details should go to [1], whose notation we keep as much as

possible. If § is the Lie algebra of G, we denote by §k the A:th prolongation of

g, and write Ek = Rm θ g θ Qx θ θ g f c .

We collect the necessary facts in the following theorem:

(2.1) Theorem. There is a sequence of manifolds &k (k > 0), maps pk:

&k -> &k_x (k > 1) and groups Gk {k > 0) such that the following hold:

(a) (SQ = 6E, Go = G, α«ί/ G^ w isomorphic to the vector group §k for k > 1.

(b)/^: ^ -> &k-ι is a Gk~structure. All the maps pk admit global sections',

hence, these principal bundles are trivial.

(c) Ifθk is the canonical \-form on &k, then θk takes values in Ek_v

(d) // X G f, one can define inductively a lift Xk of X to a field in &k for

each k > 0. Xo is defined as in the paragraph above, and Xk = (Xk-χ)0 for

k > 1.

We give two more elementary lemmas; the first is a simple exercise, the

second is in [2, VI.2.1].
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(2.2) Lemma. Let q: X —> Y be a quotient map of topological spaces {this is

the case if q is continuous, open and onto). If q~\y) is connected for ally E Y,

and Z c Y is open and connected, then q~xZ is connected.

(23) Lemma. If Xo is the natural lift of X EL <$, then it has the following

properties:

(a) For all g E G, g*X0 = Xo,

Q>)Lx0-0,

(c) Xo projects on X.

Conversely, if Y is a field on an open subset U of &, satisfying (a) and (b),

then Y is projectable onto a field X onpU and Y = X0on U.

We get from this lemma that if X E 3F, then Lxθk = 0 for all k > 0. We

make from now on the hypothesis that § is of finite type; hence there is

k > 1 such that §k_x ^ 0 and §k = 0. In this case θk is a parallelism on &k,

and Xk is a parallelism field for θk if X E 3\

(2.4) Proposition. // M is connected, and I j e ί are such that for some

ak E &k, Xk(ak) = Yk{ak), then X = Y.

Proof We get from (2.1)(a), (2.1)(b) and (2.2) that the connected compo-

nents of &k are the sets (px ° ° pk)~ιC = Ck where C is a component of

&. If ak E Q , then Xk = Ŷ  on Q by (1.2). Since these fields project on X

and Y and {p ° px° ° />*)Q = M, we get A" = Y.

(2.5) Theorem. // M is connected, and X, Y E f are JWCA ίλα/ Λ^ί/ =

y I (7/or 5ow^ open U C M, then X = Y.

Proof. By definition of a λ -lift, if X\U = Y\U then X* = Yk on

(/? o . . . o pk)~lU c ΦΛ, and the theorem follows from (2.4).

This generalizes (0.1) since the Lie algebras of the orthogonal group and

the conformal group are of finite type [1, 1.2].

3. The extension theorem

(3.1) Proposition. Let the structure & be analytic, and Z a vector field on

an open connected subset W of &k. Let V c M be open, and X E %v such that

Xk = Z on W n (p ° ° Pk)~xV. Then Z is projectable on a field Y E

%, with ί/ = ( r pk)W, Y = X on U Π V, and Yk\ W = Z.

Proof. Consider the 1-forms Lzθk and Lxθk; they coincide on W Π

(p o . . . o pk)~xV, and by (2.3)(b) the second form is 0 there. Thus the

analytic form Lzθk = 0 on W which is connected. Analogously one proves

that for all gk E Gk, (gk)*Z - Z = 0 on W. Using (2.3) once more, we get

that Z projects on a field Zx defined onpk(W) c ^ _ i , and (Zx)0 = Z on W.

It is easy to construct with these ideas a sequence of fields Zh defined

on (pk_h+x o . . . o pk)W c &k-h which coincide with Xk-h on
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(Pk-h+ι ° °Ptϊ)W Π (p ° * pk-h)~ιV, and on the common domain

of definition Zh equals the p-\iϊt of Zh+p. This construction can be carried

down to M with the convention &_x = M and/?0 = /?. It is immediate that the

field Y = Zfc+j has the required properties.

(3.2) Proposition. Suppose that & is analytic of finite type k. Let (M; U) be

a chart such that u(U) c Rm is convex. If V c 1/ w opew ΛAU/ connected, then

any X G Sy A&s α unique extension to afield Y E: <SU.

Proof. The uniqueness is clear from analyticity or (2.5). We prove the

existence, assuming first that G is connected. Take a chart (w'; U') on G such

that u'(U') is convex. We get easily from (2.1)(a) and (2.1)(b) that there is an

open set W c &k diffeomorphic to the convex set u(U) X w'(£/') X §x

X xβfc which projects onto £/. On the other hand (p © . . . °/?A:)~1F

C 6B* is connected by (2.2), since G is connected. Now by applying (1.3) we

obtain a field Z on W equal to Λ^ on W π (/> ° ° PιXλV> which is

connected. By (3.1) Z projects on Y defined on U, and so is the required

extension.

If G is arbitrary, let C c & be a connected component of 6E, and let H be

the connected component of the identity in G. It is clear that C is an

//-structure on M of finite type k. If <%l is the set of C-fields, we proved in the

preceding paragraph that there is a field Y E ^'υ which extends X. We only

need to show that 7 6 ^ . Let {ψ,; / G i ? ) be pseudogroup of Y. Then

7 e % if for all / G Λ and a e ffi, (ψ,)oα G £ . Writing a = eg with c G C

and g G G we get (ψ,)oa = (ψ,)0(cg) = ((ψ,)oc)g G Cg c ft. This ends the

proof.

(33) Theorem. (Generalization of (0.2)). Let M be a connected simply

connected manifold, and & an analytic G-structure on M of finite type. If U is

an open connected subset of M and X G (^u, then X has a unique extension to a

field y e l

Proof. The uniqueness of the extension follows from analyticity or (2.5).

The idea for proving the existence of the extension is a standard one in

algebraic topology, and therefore we just give a sketch of the proof. Fix

x0 G U. For each XXEL M choose a continuous curve c: [0, 1]->M with

c(0) = χ0 and c(l) = xx. One shows: (a) There are a neighborhood ΛT of

c([0, 1]) and a field Z G ̂ N which coincides with X in a neighborhood of x0.

(b) If c0, cι are curves joining x0 and xι and if Z o, Zx are fields constructed as

in (a), then Z o = Zx on a neighborhood of Xj. It follows from (a) and (b) that

if we define the field Y on Λf by ί^*!) = ZQ(xx) = Z^Xi), then Y is well

defined and Y G 9\

To prove (a) one considers the set S of ^ G [0, 1] such that there are a

neighborhood M of c([0, s]) and a field Z G ̂ N which coincides with X in a
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neighborhood of x0. We want to show that S = [0, 1]. This follows from the

fact that 0 E S, S is an interval open in [0, 1], and sup S G S by (3.2).

The proof of (b) is analogous. If (s, t) -» cs(i) is a homotopy between c0 and

Cj, consider S, the set of s E [0, 1] such that there are a neighborhood N of

{cr(t): 0<r<s,0<t< 1} and a field Z £% which coincides with X on

a neighborhood of Λ;0. One shows that 0 E S, S is an interval open in [0, 1]

and sup S E S. This last fact requires (3.2) for its proof. It follows then that

S = [0, 1] proving (b).

Remark. Our main results (2.5) and (3.3) are also valid when M is the

family of infinitesimal transformations of a linear connection ω o n a G-struc-

ture A. If θ is the fundamental form on A, then IT = θ Θ ω is a parallelism on

A with values on Rm ® §, and the natural lift of I is a field of the

parallelism π [1]. The reader may check easily that the methods of proof of

(2.5) and (3.3) work in this new situation.
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