THE RIGIDITY OF SUSPENSIONS

ROBERT CONNELLY

1. Introduction

We investigate the continuous rigidity of a suspension of a polygonal curve in three-space. The main result is that all such embedded suspensions are rigid. This is motivated by the old result of Cauchy (in 1813) [4] that all strictly convex polyhedral surfaces are rigid and by the conjecture that all embedded polyhedral surfaces are rigid.

We develop here some techniques which we feel are new to the subject of rigidity and apply them to obtain two results: We suppose that Σ is a suspension which flexes such that the distance between the suspension points changes, but of course all the edges have a constant length.

Theorem 1. The winding number of the curve (equator) about the line through the suspension points is zero (when defined).

For any polyhedral closed (orientable) surface in \boldsymbol{R}^{3} it is possible to define the notion of a generalized volume, which is defined even if the surface is not embedded but only piecewise linearly mapped into \boldsymbol{R}^{3}. It agrees with the ordinary definition of the volume enclosed by the surface, when the surface is embedded.

Theorem 2. For Σ as above, $V(\Sigma)=0$, where $V(\Sigma)$ is the generalized volume. Theorem 2 implies that all embedded suspensions are rigid.
Recall from Gluck [6] that a polyhedron P regarded as a simplicial map, linear on each simplex, into \boldsymbol{R}^{3} is rigid iff any homotopy P_{t} fixing the edge lengths (we call this a flex) is congruent in \boldsymbol{R}^{3} to $P_{0}=P$.

The proofs of the above involve first defining certain structural equations which describe the affine algebraic "variety" of the space of congruence classes of isometric maps of the polyhedral surface. This variety is described by certain extrinsic (variable) and intrinsic (constant) parameters, and in a sense Theorems 1 and 2 are formal consequences of the conditions of flexibility. The generalized volume and the winding number are particularly easy to analyse in the way we have chosen to set up the structural equations.

The analysis is based on the observation that the variety can be complexified in a natural way, and since we are interested when the polyhedron flexes we

[^0]can interpret this to mean that the variety is at least (complex) one-dimensional. It turns out to be convenient to calculate what happens at infinity, and this is used to prove the theorems.

2. The structural equations

2.1. The vector equations. We state a relation which is helpful in describing the final equations.

Let A_{1}, A_{2}, A_{3} be three vectors in \boldsymbol{R}^{3}, where A_{1} and A_{2} are not scalar multiples of $A_{3} \neq 0$. Let A_{3}^{\perp} denote the space perpendicular A_{3}. Let θ be the dihedral angle between the plane determined by A_{1} and A_{3}, and the plane determined by A_{2} and A_{3}. We regard θ as the angle between the orthogonal projection of A_{1} and A_{2} onto A_{3}^{\perp}. It is then an easy exercise to show

$$
\begin{gather*}
e^{i \theta}=\frac{\left(A_{1} \cdot A_{2}\right)\left(A_{3} \cdot A_{3}\right)-\left(A_{1} \cdot A_{3}\right)\left(A_{2} \cdot A_{3}\right)+\left|A_{3}\right|\left[A_{1}, A_{2}, A_{3}\right] i}{\left|A_{1} \times A_{3}\right|\left|A_{2} \times A_{3}\right|} \tag{1.1}\\
\quad\left|A_{j} \times A_{3}\right|^{2}=\left(A_{j} \cdot A_{j}\right)\left(A_{3} \cdot A_{3}\right)-\left(A_{j} \cdot A_{3}\right)^{2}, \quad j=1,2
\end{gather*}
$$

where $[X, Y, Z]=X \cdot Y \times Z$ is the scalar triple product. Let A denote the matrix with rows A_{1}, A_{2}, A_{3}. Then

$$
\begin{align*}
{\left[A_{1}, A_{2}, A_{3}\right]^{2} } & =\left[\operatorname{det}\left(A_{1}, A_{2}, A_{3}\right)\right]^{2} \tag{1.2}\\
& =(\operatorname{det} A)^{2}=(\operatorname{det} A)\left(\operatorname{det}\left(A^{t}\right)\right)=\operatorname{det}\left(\left(A_{j} \cdot A_{k}\right)\right),
\end{align*}
$$

where the superscript t denotes the transpose of a matrix.
2.2. The Parameters describing the fiex. We describe the suspension as follows: Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of the equator in order. Let the north and south poles N, S denote the suspension points. Thus $\left\langle v_{j}, v_{j+1}\right\rangle,\left\langle N, v_{j}\right\rangle$, $\left\langle S, v_{j}\right\rangle(j \bmod n)$ are the edges of the suspension Σ for $j=1, \cdots, n$.

Σ

Fig. 1
Let $x=|N-S|^{2}$. All the equations to follow can be regarded as functions of the "variable" x. Let $A=N-S$, the axis, and let θ_{j} be the angle between
the orthogonal projection of $v_{j}-S$ and $v_{j+1}-S$ into A^{\perp}. Let $e_{j}=v_{j}-S$, $e_{j}^{\prime}=N-v_{j}, e_{j}^{\prime \prime}=v_{j+1}-v_{j}, j=1, \cdots, n$, and call

$$
e_{j j+1}=e_{j} \cdot e_{j+1}=\frac{1}{2}\left(e_{j}^{2}+e_{j+1}^{2}-e_{j}^{\prime \prime 2}\right)
$$

The e_{j}^{2} 's and $e_{j j+1}$'s are intrinsic constant parameters describing Σ, functions of the lengths of the edges.

The structural equation comes from the fact that $\sum_{j=1}^{n} \theta_{j}$ is an integer multiple of 2π. This means that the suspension closes up as one proceeds around the equator. We use (1.1) to describe this fact in terms of the parameter x. With this in mind we define Q_{j} to be the real part of the numerator of (1.1), y_{j} the rest of the numerator, and $H_{j} H_{j+1}$ as the denominator. Explicitly

$$
\begin{align*}
Q_{j} & =e_{j j+1} x-\left(e_{j} \cdot A\right)\left(e_{j+1} \cdot A\right) \\
& =e_{j j+1} x-\frac{1}{4}\left(e_{j}^{2}+x-e_{j}^{\prime 2}\right)\left(e_{j+1}^{2}+x-e_{j+1}^{\prime 2}\right), \\
y_{j} & =|A|\left[e_{j}, e_{j+1}, A\right] i \tag{2.1}\\
H_{j} & =\left|A \times e_{j}\right|
\end{align*}
$$

Note

$$
\begin{aligned}
y_{j}^{2} & =-x \operatorname{det}\left(\begin{array}{ccc}
e_{j}^{2} & e_{j j+1} & \frac{1}{2}\left(e_{j}^{2}+x-e_{j}^{\prime 2}\right) \\
e_{j j+1} & e_{j+1}^{2} & \frac{1}{2}\left(e_{j+1}^{2}+x-e_{j}^{\prime 2}\right) \\
\frac{1}{2}\left(e_{j}^{2}+x-e_{j}^{\prime 2}\right) & \frac{1}{2}\left(e_{j+1}^{2}+x-e_{j}^{\prime 2}\right) & x
\end{array}\right), \\
H_{j}^{2} & =e_{j}^{2} x-\frac{1}{4}\left(e_{j}^{2}+x-e_{j}^{\prime 2}\right)^{2} .
\end{aligned}
$$

Geometrically

$$
\sin \theta_{j}=\frac{1}{i} \frac{y_{j}}{H_{j} H_{j+1}}, \quad \cos \theta_{j}=\frac{Q_{j}}{H_{j} H_{j+1}} .
$$

This shows that

$$
\begin{aligned}
Q_{j} & =\text { a quadratic function of } x, \\
y_{j}^{2} & =\text { a cubic function of } x, \\
H_{j}^{2} & =\text { a quadratic function of } x .
\end{aligned}
$$

Thus by (1.1) we have

$$
\begin{align*}
e^{i \theta_{j}} & =\frac{Q_{j}+y_{j}}{H_{j} H_{j+1}}, \\
1=e^{i \Sigma \theta_{j}} & =\prod_{j=1}^{\pi} \frac{\left(Q_{j}+y_{j}\right)}{H_{j} H_{j+1}} . \tag{2.2}
\end{align*}
$$

We also can write (2.2) as

$$
\begin{equation*}
\prod_{j=1}^{n}\left(Q_{j}+y_{j}\right)=\prod_{j=1}^{n}\left(Q_{j}-y_{j}\right) \tag{2.3}
\end{equation*}
$$

We refer to (2.3) as the basic structural equation of Σ.

3. The geometric properties of the extrinsic parameters, and generalized volume

3.1. Determination of y_{j}. Note that y_{j} is a function of the vectors e_{j}, e_{j+1}, $e_{j}^{\prime}, e_{j+1}^{\prime}, e_{j}^{\prime \prime}$ and A, and no other part of the suspension. We claim

Property 1. $y_{j}^{2}=\frac{1}{4} e_{j}^{\prime 2} x\left(x-b_{j}\right)\left(x-b_{j}^{\prime}\right)$, where b_{j} and b_{j}^{\prime} are the real maximum and minimum values of x such that the two triangles $\left\langle N, v_{j}, v_{j+1}\right\rangle$ and $\left\langle S, v_{j}, v_{j+1}\right\rangle$ can be embedded in R^{3} with $x=|N-S|^{2}$.

Proof. From the definition, y_{j} is only 0 when x is 0 , or the two triangles above are planar, and this must occur when $x=b_{j}$ or b_{j}^{\prime}. By the definition of y_{j} and (1.2) we see $y_{j}^{2}=x$.quadratic. Thus the roots of the quadratic are b_{j} and b_{j}^{\prime}.

From (2.1) we see that the coefficient of x^{3} is $\frac{1}{4} e_{j}^{\prime / 2}$. Note

$$
e_{j}^{\prime \prime 2}=\operatorname{det}\left(\begin{array}{lll}
e_{j}^{2} & e_{j j+1} & 1 \\
e_{j j+1} & e_{j+1}^{2} & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Fig. 2
3.2. Determination of Q_{j} and H_{j}.

Property 2. Q_{j} and H_{j}^{2} are quadratic functions of x with leading coefficient $-\frac{1}{4}$, and the other coefficients are polynomials in the squares of the edge lengths. (The main point is that they have the same leading coefficient).
3.3. Topological and geometric properties. Let $w(\Sigma)=w$ denote the winding number of the equator about the N, S axis as mentioned in the introduction. Then from (2.2) we have

Property 3.

$$
w=\sum_{j=1}^{n} \theta_{j}=\sum_{j=1}^{n} \frac{1}{2 \pi i} \log \frac{Q_{j}+y_{j}}{H_{j} H_{j+1}},
$$

where the θ_{j} and \log are chosen such that $-\pi<\theta_{j} \leq \pi$.

Next we observe that the scalar triple product can be regarded as $\frac{1}{6}$ of the volume of the tetrahedron spaned by the three vectors. Thus,

Property 4. The volume of $\left\langle S, v_{j}, v_{j+1}, N\right\rangle$ is

$$
\frac{y_{j}}{6 i \sqrt{x}} .
$$

The volume is considered as a signed quantity.
3.4. Generalized volume. Associated to any simplical oriented surface linearly mapped into \boldsymbol{R}^{3} is a number which will turn out to be the volume enclosed by the surface in case it is embedded.

Let v_{1}, v_{2}, \cdots be the vertices of the surface M in \boldsymbol{R}^{3}, and let $\left\langle v_{j}, v_{k}, v_{l}\right\rangle$ be a typical positively oriented 2 -simplex of M. It is well-known that the volume of the tetrahedron spaned by $0, v_{j}, v_{k}, v_{l}$ is

$$
\frac{1}{6}\left[v_{j}, v_{k}, v_{l}\right]=\frac{1}{6} \operatorname{det}\left(v_{j}, v_{k}, v_{l}\right)
$$

where as before [, ,] is the scalar triple product, and implicit is that the volume may be + or - . We define the volume "enclosed" by M as

$$
V(M)=\frac{1}{6} \Sigma\left[v_{j}, v_{k}, v_{l}\right]
$$

where the sum extends over all the 2 -simplices of M, and the indices are chosen so that the orientation agrees with some orientation of M.

Lemma 1. If M is embedded, then $\pm V(M)$ is the volume of region inside M.
Proof. From the definition of $V(M)$ we see that each summand of $V(M)$ is just the volume of the cone over some 2 -simplex σ of M with the sign chosen so that if the normal pointing away from the solid enclosed by the surface is on the opposite side of the plane determined by σ, then the sign is + and is - otherwise. This is compatible with some orientation of M.

Then it is easy to see that the volume enclosed by M is the sum of the volumes of the cones in some subdivision, where the signs are chosen + or as above. Since $V(M)$ is invariant under subdivision the result follows.

Fig. 3

Remarks. 1. $\quad V(M)$ is independent of where the origin is chosen.
2. If M is immersed and bounds an immersed 3-manifold, then $V(M)$ is \pm the volume of this 3-manifold. In particular $V(M) \neq 0$.
3. In the differentiable case the above formula is analogous to the Minkowski type formula

$$
V(M)=\frac{1}{3} \int N \cdot X d A
$$

where X describes the surface, and N is the outward pointing unit normal.
4. In case M is a suspension Σ, we can calculate $V(M)$ in terms of previously defined variables by taking the origin at S and using Property 4. For $x \neq 0$,

$$
V(\Sigma)=\frac{1}{6 i \sqrt{ } x} \sum_{j=1}^{n} y_{j}
$$

4. Proofs of Theorems 1 and 2

4.1. The winding number theorem.

Proof of Theorem 1. From Properties 1 and 2 we see that θ_{j} is an analytic function of x, being the \log of an algebraic function. The crucial observation is that θ_{j} is only a function of that part of the suspension which involves v_{j} and v_{j+1}, namely x, the five edge lengths, and the sign of y_{j}.

We next observe that if we consider x as complex and take the limit of θ_{j} as x goes to infinity along some path, in the complex plane, which avoids all the singular points of θ_{j}, we see that θ_{j} approaches some multiple w_{j} of 2π. This is because of Properties 1 and 2 that the highest degree of x (in a power series expansion about ∞ say) in the numerator and denominator is 2 , and the leading coefficients are the same. Thus $e^{2 \pi w_{j} i}=1$, and w_{j} is some integer. It is clear that,

$$
\sum_{j=1}^{n} w_{j}=w(\Sigma)
$$

But w_{j} depends continuously on the intrinsic parameters and thus can be computed for any particular case, and they all must be the same number. It is then clear that each $w_{j} \equiv 0$, and thus $w(\Sigma)=0$.
4.2. Reducing the structural equation. Before we can show that $V(\Sigma)=0$, we must investigate more thoroughly the nature of the structural equation (2.3). In particular we must show how it reduces or splits up into "disjoint" equations of the same sort. To this end we recall the b_{j} 's and b_{j}^{\prime} 's of property 1 for y_{j}. We say $y_{j 1}$ is equivalent to $y_{j 2}$ (more precisely we should say j_{1} is equivalent to j_{2}) iff $b_{j}=b_{j 1}$ and $b_{j 2}^{\prime}=b_{j 1}^{\prime}$. Alternatively $y_{j 1}$ is equivalent to $y_{j 2}$ iff $y_{j 1} / y_{j 2}$ is constant, as a function of x.

Lemma 2. Let Σ flex with variable x, and let C be an equivalence class of indices described above. Then

$$
\begin{equation*}
\prod_{j \in C}\left(Q_{j}+y_{j}\right)=\prod_{j \in C}\left(Q_{j}-y_{j}\right) \tag{4.1}
\end{equation*}
$$

Proof. Let b, b^{\prime} correspond to the b_{j} 's and b_{j}^{\prime} 's in the definition of C. Let C_{0} be the set of indices corresponding to those y_{j} 's which have $b_{j}=b$. We wish to show first that

$$
\begin{equation*}
\prod_{j \in C_{0}}\left(Q_{j}+y_{j}\right)=\prod_{j \in C_{0}}\left(Q_{j}-y_{j}\right) \tag{4.2}
\end{equation*}
$$

From Properties 1 and 2 we see that each factor of (2.3) is a nice algebraic function of x with no finite poles and only two branch points at b_{j} and b_{j}^{\prime}. Start a path at any x not at any of the branch points, and proceed once around b and not around any of the other b_{j}^{\prime} 's or b_{j}^{\prime} 's, (unless they are equal to b). Only the sign of the y_{j} 's for $j \in C_{0}$ will change on both sides of (2.3). Thus

$$
\begin{equation*}
\prod_{N-C_{0}}\left(Q_{j}+y_{j}\right) \prod_{C_{0}}\left(Q_{j}-y_{j}\right)=\prod_{N-C_{0}}\left(Q_{j}-y_{j}\right) \prod_{C_{0}}\left(Q_{j}+y_{j}\right), \tag{4.3}
\end{equation*}
$$

where $N=\{1,2, \cdots, n\}$.
Dividing (2.3) with (4.3) and cross-multiplying we get

$$
\left[\prod_{C_{0}}\left(Q_{j}+y_{j}\right)\right]^{2}=\left[\prod_{C_{0}}\left(Q_{j}-y_{j}\right)\right]^{2} .
$$

Thus (4.2) holds up to \pm.
If (4.2) holds with a minus sign, then we compute the coefficient of the highest power of x on the left and right (i.e., divide both sides by $x^{2 m}, m$ being the number of elements in C_{0}, and take the limit as $x \rightarrow \infty$). On the left it is $\left(-\frac{1}{4}\right)^{m}$ and on the right it is $-\left(-\frac{1}{4}\right)^{m}$, since the leading coefficient of Q_{j} is $-\frac{1}{4}$. Thus (4.2) must hold with a + .

Finally we repeat the above argument with (4.2) replacing (2.3), C replacing C_{0}, C_{0} replacing N, and b^{\prime} replacing b. (4.1) then follows.
4.3. The proof of Theorem 2. By Lemma 2 and Remark 4 after Lemma 1 it is sufficient to show that

$$
\sum_{j \in C} y_{j} \equiv 0 .
$$

Since all the y_{j} 's in C differ by a multiplicative constant, write $y_{j}=c_{j} y=$ $c_{j} x(x-b)\left(x-b^{\prime}\right)$. Thus we must show $\sum_{j \in C} c_{j}=0$.

Expand (4.1) by the binomial theorem and collect the terms which do not cancel,

$$
\begin{equation*}
\left(2 \prod_{c} Q_{j}\right) \sum_{c} \frac{y_{j}}{Q_{j}}+\cdots=0 \tag{4.4}
\end{equation*}
$$

where the terms left out involve higher powers of the y_{j} 's and lower powers of the Q_{j} 's. The order of x is $3 / 2$ in y_{j} and is 2 in Q_{j}. Thus we see that the coefficient of the highest power of $x^{1 / 2}$ in (4.4) is

$$
\left(-\frac{1}{4}\right)^{m-1} \sum c_{j} .
$$

Thus $\sum c_{j}=0$ and applying the above argument for each equivalence class shows that $V(\Sigma)=0$ proving Theorem 2 .

4.4. The main result.

Corollary. If Σ is a suspension which is immersed bounding an immersed 3 manifold, then Σ is rigid.

Proof. If Σ is not rigid, it flexes by the definition of rigidity. If x varies during the flex, then $V(\Sigma) \neq 0$ by Remark 2, but this contradicts Theorem 2.

If on the other hand x is constant, we may regard Σ as being the union of n rigid tetrahedra $\left\langle N, v_{j}, v_{j+1}, S\right\rangle$ since all the edges are fixed during this flex. (Recall $x=|N-S|$.) The only way Σ can flex without extending to a congruence of \boldsymbol{R}^{3} is for at least 2 of the v_{j} 's to be situated on the north-south axis. But then Σ is immersed at neither N nor S. Thus in either case we obtain a contradiction, and Σ must be rigid.

5. Conjectures and related results

5.1. Conjectures. It is natural to conjecture that all immersed surfaces are rigid, but this is false (see [5]). The strongest conjecture along these lines which we can imagine is the following.

Conjecture 1. If M^{2} is a immersed 2-manifold in \boldsymbol{R}^{3} bounding an immersed 3-manifold, then M is rigid.

In view of Theorem 2 the following also seems natural.
Conjecture 2. If M^{2} is a simplical orientable 2-manifold linearly mapped into \boldsymbol{R}^{3}, then $V\left(M^{2}\right)$ is constant during any flex.
5.2. Classifying flexible suspensions. The basic structural equation and particularly Lemma 2 can be used to give a geometric or algebraic geometric description of flexible suspensions. Property 1 can be regarded as defining y_{j} so that x and the y_{j} are elliptic functions of a single parameter. The group action defined on the elliptic curves defined by property 1 can then be used to generate many examples of flexible suspensions.

Each factor of (4.1) gives rise to four points on the elliptic curve, the roots of $Q_{j}+y_{j}$. The equation is to be interpreted as saying that the collection all the points is symmetric about the x-axis. It then becomes a combinatorial problem to find the ways of chosing such a collection of points. A flow graph with a flow in the elliptic group is helpful here.
5.3. The octahedron. The simplest nontrivial suspension is when $n=4$, the octahedron, which can be viewed as a suspension in three ways. The analysis described in $\S 5.2$ can be carried out in this case to give a complete description
of all flexible octahedra. It turns out that there are three classes. The two simpler classes are described in [5].

However, in 1896 Bricard [2] also classified all flexible octahedra by a somewhat different approach. We thank Brank Grunbaum for pointing this reference and related ones out to us [1], [3], [7], [8].

We also wish to point out that Theorem 1 cannot be used to prove the corollary, even in the case of the octahedron. The following is a picture of an embedded (therefore rigid) octahedron with the property that if it is regarded as a suspension in any of the three ways, then the winding number of the equator about the north-south axis is zero.

Fig. 4
5.4. More general suspensions. It is possible to generalize the above analysis of suspensions to the case where the equatorial curve is piecewise-smooth instead of piecewise-linear. One obtains by a similar analysis a formula analogous to (2.2) where an integral replaces the product. However, one must be a bit careful about what one means by rigidity here, for it is possible to have the suspension of an arc rigid if one does not allow a subdivision at a critical point on the arc. If one does allow subdivisions of this sort, the situation is quite similar to the piecewise-linear case. In fact it is possible to prove a winding number theorem with proof and statement similar to Theorem 1. We do not know how to show the analogue of Theorem 2.

The author would like to thank the Institiut des Hautes Études Scientifiques at Bures-sur-Yvette, France, for inviting him as a visitor and the many people there for their encouragement and stimulation.

Added in proof. Conjecture 1 and the rigidity conjecture mentioned in the introduction are now known to be false; see [9] or [10].

References

[1] G. T. Bennett, Deformable octahedron, Proc. London Math. Soc. (2) 10 (1912) 309-343.
[2] R. Bricard, Mémoire sur la théorie de l'octaedre articulé, J. Math. Pures Appl. 5 (1897) 113-148.
[3] O. Bottema, Flexible hexagons, Indag. Math. 29 (1967) 151-155.
[4] A. L. Cauchy, Sur les polygones et polyedre, Second memoire, J. École Polytech. 19 (1813) 87-98.
[5] R. Connelly, An immersed polyhedral surface which flxes, Indiana Univ. J. Math. 25 (1976) 965-972.
[6] H. Gluck, Almost all simply connected closed surfaces are rigid, Geometric Topology, Lecture Notes in Math. Vol. 438, Springer, Berlin, 1975, 225-239.
[7] A. Kokotsakis, U Uber bewegliche Polyeder, Math. Ann. 107 (1933) 627-647.
[8] N. Lebesque, Octaèdres articulés de Bricard, Enseign. Math. (2) 13 (1967) 175-185.
[9] R. Connelly, A counterexample to the rigidity conjecture for polyhedra, Inst. Hautes Études Sci. publ. Math. No. 47, 1978, 333-338.
[10] --, A flexible sphere, Math. Intelligencer, 1 (1978) 130-131.

Institut des Hautes Etudes Scientifiques Bures-sur-Yvette

[^0]: Received December 20, 1974 under the titles "An attack on Rigidity. I, II", and, in revised form, November 22, 1976. This research was partially supported by National Science Foundation Grant GP-33 960 X.

