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MANIFOLDS WITHOUT FOCAL POINTS

MIDORI S. GOTO

0. Introduction

The behavior of geodesies in Riemannian manifolds without conjugate or
focal points has been discussed by many geometers such as Morse, Hedlund,
Green, Eberlein and others. It is known that the properties, e.g., the topological
transitivity of geodesic flows on certain Riemannian manifolds, are connected
closely to some instability property of geodesies. On a complete simply con-
nected Riemannian manifold without conjugate points, L. Green proved an
instability property of geodesies under the condition that the sectional curvature
is bounded from below. His proof for the higher dimensional case was incom-
plete as was pointed out by Eberlein.

The purpose of this paper is to extend the theory of L. Green in [6], [7] and
[8], reproducing the results there without the condition on curvature assumed
by Green. Consequently our results turn out to be extensions of some funda-
mental notions and results for nonpositively curved manifolds to manifolds
without focal points.

A complete Riemannian manifold M is said to have no focal points if no
maximal geodesic σ of M has focal points along any perpendicular geodesic,
where σ is considered as an imbedded one-dimensional submanifold of M. This
property can be stated as follows: For any geodesic ray γ and any nontrivial
Jacobi field along γ vanishing at t = 0, (d/dtχY(t\ Y(t)} > 0 for t > 0, where
< , > denotes the inner product with respect to the Riemannian metric of M,
see [12].

In this paper we shall be concerned only with Riemannian manifolds without
focal points. In addition manifolds are always assumed to be connected, com-
plete and differentiable (of class C°°). Geodesies are assumed to have unit speed
unless otherwise stated.

In § 1 we introduce the basic results on the Jacobi equations by L. Green for
later use.

In § 2 we prove
Theorem 1. Let M be a complete Riemannian manifold without focal points.

Let γ be a geodesic ray with γ(0) — p € M. If Yx(t) denotes the Jacobi field along
γ with Yx(0) = 0, (Yx)'(0) = x, where x is nonzero vector at /?, then
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lim^ \Y*(t)\ = °°

uniformly on {x e TPM; \X\ = 1}.
In § 3 we modify the technique by Kobayashi, and using it as a tool, we prove

the following instability property of geodesic rays in § 4.
Theorem 2. Let M be a complete simply connected Riemannian manifold with-

out focal points. Then no two geodesic rays with a common origin can be asymp-
totic to each other.

As we mentioned in the beginning we have the following theorem in § 5 using
Theorem 2.

Theorem 3. If M(f) (defined in § 5) has no focal points, then the geodesic flow
of M(f G) (defined in § 5) is topologίcally transitive.

Next, the final goal of § 6 is to prove
Theorem 4. Let M be a complete simply connected Riemannian manifold with-

out focal points. Given a geodesic ray γ and a point p e M, there exists a unique
geodesic ray asymptotic to γ passing through p.

Also from the proof of Theorem 4 we know that, if a and β are geodesic rays
asymptotic to each other, then d(a(t), β(t)) is nonincreasing in /, t > 0, where d
denotes the distance function of M.

In § 7, we define a boundary of a complete simply connected Riemannian
manifold M without focal points, and a topology of the closure M based on
each point of M. The topology is independent of the points in the case where
dim M = 2. But the author does not know whether it is true in the higher
dimensional case. For this purpose one would need to establish a sort of a
uniformity condition. We consider this problem again in § 8.

This paper was written as a portion of author's dictoral thesis, submitted to
the University of Pennsylvania. The author would like to express her hearty
thanks to Professor F. Warner, her thesis advisor, for many valuable discussions
and comments. The author would also like to thank Professors E. Calabi, L.
Green and M. Goto with whom she had helpful conversations.

Lastly, L. Green has informed us of the results by R. Gulliver, which provide
examples of a manifold without conjugate or focal points but with sectional
curvatures of both signs (see Trans. Amer. Math. Soc. 210 (1975) 185-201).

1. Matrix Jacobi differential equation

In this section we shall introduce the basic results on Jacobi differential
equations due to L. Green. Because his proofs are rather concise, we shall give
the details here for later use.

Consider the n X n matrix differential equation in one variable

( J ) X"(t) + K(t)X(t) = 0 ,

where K(t) is a continuous n X n symmetric matrix valued function, and deriva-
tives are taken componentwise.
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For two solutions X, Y of (J) we define the Wronskian: W(X, Y) = X*Ύ -
\ where * denotes the transpose operation. From the definition W(X, Y)

= -W(Y,X)*.
(i ) For two solutions X and Y of (J)
(1) W(X9 Y) = a constant matrix;
(2) if X(c) = Y(c) = 0or X'(c) = Y'(c) = 0 for some c e R, then W(X, Y) = 0
(3) // ^(JT, X) = 0 and det Z =£ 0, then XfXx is symmetric.
Proof (1) From X"* + X*# = 0 and Y" + KY = 0 we have (^(X, y))'

= r̂ * y - x* r r = - X*KY + X*KY = o.
(2) and (3) follow from the definition, q.e.d.
From now on we shall assume the following condition (condition that (J) be

free from conjugate points):
(C) If a nonzero solution X of (J) vanishes at some point, say c, then

det X(t) φOfortφc.
Under (C), a solution of (J) is uniquely determined by its values at any two

distinct points.
Let A denote the solution of (J) with A(0) = 0, A\O) = /, the identity matrix.

By (C), det ,4(0 Φ 0 for t Φ 0, and A\t)A~\t) is a symmetric matrix using (i)
(2) and (3).

Next, we construct another solution B{t) of (J), which is useful for later pur-
poses, as a limit of solutions Bc(t), 0 < c < oo. Let c be any positive constant;
we denote by Bc(t) the solution of (J) with Bc(c) = 0, B'e(c) = —A*-\c).

(ii) In (0, oo), Bc(t) can be written as

and satisfies Bc(0) = I, W(A, Bc) = /.

Proof Let D(t) denote the right side of (*). Then setting

P(t)= [° A-χs)A-\s)*ds

and using that (A~1)' = —A~ιAfA~ι, we obtain
Df = A'P - AiA-'A-1*) = A'P - Λ"1* ,

D" = A"P - AΆ-χA-λ* + A-λ*A'*A~ι* .

On the other hand, since W(A, A) = 0, AΆ~ι is symmetric by (i) so D" = A"P.
Hence D" + KD = A"P + KAP = 0, and D is a solution defined in (0, oo).
Since P(c) = 0, we have D(c) = 0 and D\c) == -v41*(c). Hence D = 5C on
(0, oo).

Next, W(Λ, ^c) = (^*Z) - ^*D0(c) - -A*(c)D'(c) = /, and by substitut-
ing t = 0 we have

) - A*(0)D'(0) = I. q.e.d.
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Let S? denote the totality of positive definite symmetric matrices in GL(n, R).
We define a partial ordering in Sf\ Sx > 52 if S1 - 52 e S?. Then S, > 52 if
and only if <x, S.x} > (x, S2x} for each x e Rn — {0}. For any 5 in GL(n, R),
clearly 55*, 5*5 e ^ .

Let 0 < d < c. Then

Bc(t) - Bd(t) = A(t) Γ A-\s)A-\s)*ds .
Jd

From A-l(s)A-\s)* e ¥, it follows that

I
Since ^ ( 0 ( ^ ( 0 ) - B'd(0)) is the solution of (J) with the initial condition
(0, BXO) - B^O)) at 0, we have

Bc(t) - Bd(t) = A(t)(BX0) - Bί(0)) ,

B'M - Bί(0) = Γ A-\s)A-l(s)*ds e
J d

A function F from an interval in R to £f is called (strictly monotone) in-
creasing (resp. decreasing) if F(Q > F(t2) (resp. F^^) < F(t2)) whenever tx > t2.

(iii) (1, oo) 9 c -> 5/(0) — 5/(0) € ĉ 7 w increasing, and there exists U e S?
with U > B'XO) - Bi{ΰ)for each c > 1.

Proof. From the observation above it is clear that c —> 5c

7(0) — 5/(0) is in-
creasing. For c > 0 we set

( # ) 2LXO = Λ(ί)tfβ + Bc(t) , 7VC = - ^ - i ( - l ) 5 c ( - l ) .

Then 5_! is a solution of (J) with 5_i(0)( = 5c(0)) = / and B_1(—l) = 0, and
is independent of the choice of c by (C). By (i), W(B_uB_λ) = W(A,A) =
W(BC, Bc) = 0. Also we know that W(A, Bc) = I = - W(BC, A). Hence

, A)NC + W(Be9 Bc) + N*W(A, Bc) + W(Be9 A)NC ,

and so N* = Nc, i.e., Nc is symmetric.
Differentiating (#) at ί = 0 we have

Nc = BU0) - #(0)

Substituting ? = c in (#) gives B_,{c) = ^(c)7Vc. Indeed, TVf1 = Bzl(t)A{t) for
/ > 0 since c is arbitrary.

Consider £(/) = Bzl(t)A{t) for ί > 0, then E is a symmetric matrix valued
function, and £(0) = 0, ^(O) = Bzl{0)A\O) = I. For any unit vector x,
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<E(t)x, Xs) has the derivative <x, x> = 1 at t = 0. Hence <β(t)x, x> > 0 for
small t > 0. Since the unit sphere is compact, we can find ε > 0 such that
ζβ(t)x, x) > 0 for t e (0, ε) and for all unit vectors x. Therefore E(t) is posi-
tive definite for 0 < t < ε. Since N^1 is symmetric and nonsingular for all
t > 0, we have N;1 = E(t) is positive definite for all t > 0, and hence Nt e Sf
for t > 0.

Since Nc = B^φ) - # ( 0 ) > 0, it follows that

BL^O) - B((0) > BX0) - B((0) for c > 1 .

(iv) (1) l i m c _ (^(0) - 5/(0)) = Q exists.
(2) lim^^ Bc(t) = 5 ( 0 exists {uniformly on any compact set). B(t) is a

solution of (J) with the initial condition

B(0) = I , B'φ) = Q + 2>ί(0) .

Proof (1) follows from (iii).
(2) By (1) limc__ # ( 0 ) = Q + # ( 0 ) . Let 5^(0 be the solution of (J) with

5TO(0) = /, BL(0) = Q + B((0). Then [1, oo] 3 c -> Bc is continuous and hence
lim^^ 5 c(ί) = ^ ( ί ) uniformly on any compact set.

2. Divergence theorem

We assume that M is a complete Riemannian manifold of dimension n + 1
without conjugate points. Let γ be a maximal geodesic in M, and let ex(0> * * •>
en + ι(t) be a system of parallel orthonormal vector fields along γ with en + 1 — / .
If 7(ί) = Σ?=i ^i(0 e i(0 i s a perpendicular vector field on γ, we may identify Y
with the curve t-^(yί(t)9 , j n ( 0 ) m Rn- The covariant derivative Y'(t) —
Σ ? = i ^ ( 0 ^ ( 0 i s identified with the curve t->{y[{t\ ,/ n (0) in /?". Con-
versely, any curve t —> ( ^ ( O J J Jn(0) i n ^ n defines a perpendicular vector
field on γ. For each ί e « let K{t) = (R^t)), where ^ ^ ( 0 = <Λ(ef(ί), /( ί ))/( ί) ,
^j(O)? 1 < ^ 7 ^ w> a n d -R denotes the curvature tensor of M. K(t) is a sym-
metric matrix. Consider the n X n matrix Jacobi differential equation (J) in § 1.
If X(t) is a solution of (J), then for any x e Rn the curve t —> X(0* corresponds
to a perpendicular Jacobi field along γ. If ^4(/) is the solution of (J) with ^4(0)
= 0, ,4'(0) = /, then a perpendicular Jaboci field Y(t) along γ with 7(0) = 0,
Y'(0) ψ 0 is expressed by 7(0 = A(t)Y'(O). Since M has no conjugate points,
A(t) is nonsingular for t Φ 0.

The following theorem was proved by L. Green under the condition that the
sectional curvature of Mis bounded below, see [6], [7] and [1, p. 168]. When the
sectional curvature of M is nonpositive, the conclusion is known to be true.

Theorem 1. Let M be a complete Riemannian manifold without focal points.
Let p be a point in M, and γ a geodesic ray with γ(ϋ) = p. If Yx(t) denotes the
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Jacobifield along γ with Yx(0) = 0, (Yx)'(0) = x, where x is a nonzero vector
at p, then

uniformly on {x G TPM; \X\ = 1}.

For S e GL(n,R\ let | | 5 | | = M a x m = 1 | & 4 We denote by Sf the totality of
positive definite symmetric matrices in GL(n9 R).

Lemma 1. Let S e GL(n,R) and σ — Min1 : C |= 1 |5x|. Then σ2 is the minimum
eigenvalue ofS*S z 5? and \\S-ιS*-ι\\ = \\σ\

Proof. Let Tε y with eigenvalues ax > > an > 0. Then by a suitable

orthogonal change of coordinates we may assume that T = . For
XΛ \° 'J

, Tx} = x*Tx= Σi=ι <*iΆ, and ax<x9 x) = ocx Σΐ=i A > <x, Tx>

A = ^n< ̂ , x}> Therefore

Max | a r I = 1<x, Tx} = a, - | |Γ | | and Mm | J Γ | β l<jc, Tx> = an .

On the other hand, putting S*S = T, where S e GL(n, R), we have <
= <JC, S*Sx} = <Sx, Sx} = \Sx\2. Since for

/1/α.

T1 =

0

0

the proof is completed.
Proof of Theorem 1. Let Y(t) be a nontrivial Jacobi field with 7(0) = 0

along a geodesic ray γ. Note that any Jacobi field Z along γ can be decomposed
as follows; Z = (at + Z?)/ + Z x , where «, ft are real numbers, and Z x is a
perpendicular Jacobi field along γ. Since 7(0) = 0, we have Y(t) = atγ\t) +
YL(t) and | F ( 0 | 2 = a2t2 + \Y±\2. Hence it suffices to prove the theorem in
two cases separately.

Suppose Y is tangent to γ, i.e., Y — aty' for a determined by Y'(0) = aγ'(0).
Then I Y(t)\ = \a\t, and therefore the conclusion is clear.

Next, we suppose Y is perpendicular to γ. Let Λ(t) be the solution of (J) in
§ 1 with Λ(0) = 0, A'(0) = I. Then 7(0 - A(t)Y'(0). We shall prove that
l i m ^ \A(t)x\ = oo for any x e Rn — {0}. Let x e F - {0}. By the property
that M has no focal points, \A(t)x\ is strictly monotone increasing in t. Set F(t)
= A*(t)A(t). Then it follows that <F(t)x, x} = A(t)x\2 is strictly monotone
increasing in t, and hence F'(t) € £f for all / > 0. Therefore (F~\t)x,xy is
strictly monotone decreasing in t. In fact, (F~1)' = —F~ιF'Fι and so
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Yx^x} = -<f-ιF'F~ιx,xy = -(F'(F-ιx\F-ιxy .

Since by § 1 (iii),

[~ A-\i)A*-ι{t)dt

exists, so does

Γ

This, together with the argument above, yields l i m ^ ζA-\t)A*-\t)x, x} = 0.
By Lemma 1, \\A-\t)A*-\t)\\ = \jσ(t)\ where σ(t) = Minlxl=:1\Λ(t)x\. There-
fore l i m ^ l/σ(tf = 0, and l i m ^ σ(t) = oo. Thus l i m ^ |Λ(0* | = °° uni-
formly on {x e TPM\ \x\ = 1}.

Corollary. Let M be a complete Riemannian manifold without focal points.
Let Y be a Jacobi field along a geodesic ray γ in M with Y(0) Φ 0. We denote
by Yu, u > 0, the Jacobi field along γ such that Yu(0) = Y(0) and Yu(u) = 0.
Then I Y(t)\ is bounded from above for t > 0 if and only if Y = l i m , ^ Yu.

Proof If Y is a limit of {Yu} as u —> oo, | Y(t) \ is clearly bounded from above
by I F(0)| for / > 0 since | Yu(t)\ is strictly monotone decreasing in t e [0, u] for
each u > 0.

Conversely, suppose that | Y(t)\ is bounded from above for t > 0. Let X(t)
be a limit Jacobi field along γ of {Yu}, as u —> oo. Then Γ-X is a Jacobi field
along γ with ( r - X ) ( 0 ) = 0. If YφX, lim^^l y - Z | = oo by the theorem. But
\Y — X\<\Y\ + \X\, and | Y\, \X\ are bounded above, a contradiction. Thus
Y= X.

3. A Riemannian geometry on TPM

Let M be a complete simply connected Riemannian manifold without focal
points, and let/7 € M. Using the technique of Kobayashi in [10], we shall modify
the Euclidean metric of Tp = TPM slightly so that Tp is complete and exp =
expp: Tp—> M is distance-increasing.

For we Tp, let 2Fw\ TP->TW(TP) be the canonical isomorphism. Let Sp

denote the unit sphere with center at the origin. We define a map H by H{w)
= inf {\(dexp)ω 8Fwx\\ x e Sp}. By the continuity of eigenvalues, H is continu-
ous in w. Since Sp is compact,

h{t) = Mm{H(tv);veSp}

exists for t > 0. Since M has no focal points and t —> (J exp)ίυ IFtυ(tx) =
t(dexp)tv^tv(x) = r x ( 0 is a Jacobi field with y*(0) = 0 and (Yx)'(0) = x,
th{t) is nondecreasing and lim^^ th{t) = oo, by Theorem 1. The following
lemma is obvious.
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Lemma 2. Let g be a real-valued, nondecreasing function on [0, oo) such
that g(0) = 0, g(t) > 0 for t > 0 and lim^^ g(t) — oo. Then we can find a
nondecr easing function f\ C°° on (0, oo), C1 at t = 0,

= 0 ,

Let/0) be the function obtained from Lemma 2 for our function th(t).
To ίv <= Γp with / > 0, v e 5P, we associate (t, v) € [0, oo) x Sp and call (/, v)

the polar coordinate of tv. The Euclidean metric in Tp is given by

(dty + t\dvf ,

where (dvf is the ordinary Riemannian metric of the unit sphere Sp. Using the
function/(/), we define a new metric {dσf in Tp in terms of the polar coordi-
nate system by

Let us denote by the same notation Tp the manifold Tp equipped with (do)2.
Then we can show that exp is distance-increasing as in Lemma 3 in [10].

Tp is complete, and in Tp, each geodesic sphere S(t) of radius t > 0, centered
at 0, has constant curvature/(z)"1, which is nonincreasing in t, and approaches
0 as t —> oo. Let d denote the distance function in Tp.

Proposition 1. Let a, β, γ be distinct rays in Tp starting from 0, parametrized
by their arc-lengths. Then:

(1) lim t_rf(α(0,j8(f))= °°,
(2) l im t _rf( α (f), j8)= oo,
(3) if < (a'(0\ βXO)) = < (^(0), r^O)), w teve rf(α(ί), β) = ^ ( 0 , r)
Proo/ (1) Suppose it were not true. Then we can find a sequence {tj} with

lim tj = oo, and a constant c > 0 such that d(a(tj), β(t3)) < c for/ = 1, 2, .

For i;, M> e 5(ί), let vw denote the distance between v and w on S(t). Then

«(0iS(i) = (/W//(l)) α W ) Since l i m ^ / O ) = oo we can find a number
TV > 0 such that

a(t)β(}) > c f o r * > N .

Pick ^ with tj > N + c. Let Λ: [0, 1] —> Γp be a shortest geodesic segment con-
necting α(^) and β(tj). Since length (>ί) = d(a(tj), β(tj)) < c, λ lies outside of
S(N). Let λ be the projection of λ into S(JV), i.e.,

Since ί(,s) > TV,
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as

Jo ds

~-: ώ = length(ί).
ds

On the other hand, length (λ) > a(N)β(N) > c, which is a contradiction.
(2) Otherwise, we can find a number c > 0 and a sequence {t3) with lim ^

= oo, such that

diaitjlβ) <c foτj= 1, 2, .

We can find Sj with d(a(tj)9 β(sά)) = d{a{t3), β) < c. By the triangle inequality,
we have | tj — s3 | < c. Then

diaitjl β(tj)) < diaitjl β(Sj)) + d(β(Sjl β(O) < 2c ,

for all ίj , which is contrary to (1).
(3) Let F be the unit sphere in T0Tp about 0. Let us put a\0) = x, β'(0)

— y, and /(0) = z. Then x, y, z e 5", and <^(x, j ) = <̂ C(x, z) by the assump-
tion. Hence we can find an isometry (orthogonal transformation) μ of J~ such
that μx = x and μy = z.

On the other hand, for an isometry μ of J^, the map β defined by

/5(exp tv) = exp /μC*O t > 0 ,

for t; e ̂ , is an isometry of Tp by the definition of the metric (dσf in Tp, where
exp denotes the exponential map: TOTP -> Γp. Hence

d(a(t), β) = d(μa(t), μβ) = d(a(t), γ) .

4. Geodesic instability

Two geodesic rays αr, /3 are said to be asymptotic if there exists a number c,
0 < c < oo, such that d(a(t), β(t)) < c for all t > 0. In complete simply con-
nected Riemannian manifolds of nonpositive curvature, any two distinct geo-
desic rays starting from a point cannot be asymptotic to each other. In mani-
folds without conjugate points L. Green obtained the same conclusion under
the additional condition that the sectional curvature is bounded from below
(see [6], [7] and also [1, p. 168]).

In this section we shall prove the following theorem.
Theorem 2. Let M be a complete simply connected Riemannian manifold with-

out focal points. Then any two distinct geodesic rays starting from any p € M
cannot be asymptotic to each other.
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Proof. Let, a, β be distinct geodesic rays starting from p. We introduce the
metric (dσf in TPM as in § 3. Note that expp preserves the distance of radial
direction. Let, ά, β be rays in TPM such that expp a(t) = a(t) and expp β(t) =
β{t) for t > 0. We denote by d the distance function in TPM equipped with
(dσf. Because expp is distance-increasing, we have d(ά(t), β(t)) < d(a(t), β(t)),
by Proposition 1(1), l i m ^ d(ά(t), β(t)) = oo. Therefore we have l i m ^ d(a(t),
β(0)= oo.

Proposition 2. Let M be a complete simply connected Riemannian manifold
without conjugate points. Then M has no focal points if and only if for every
maximal geodesic γ of M and every p e M with p $ γ, there exists only one geo-
desic from p to γ, which is perpendicular to γ.

This proposition was proved by L. Green for dim M = 2, and by P. Eberlein
for arbitrary dimension. We shall outline the proof. Suppose that the unique
perpendicular property holds in M. By a first variation argument, the unique
geodesic a from ptoqzγ, the nearest point to;?, is perpendicular to γ. Suppose
that a(0) = q and a(l) = p where / = d(p, q). If there were a focal point a(a)
of γ along a for some a > 0, then d(a(t), r) < t for any t > a. Therefore for any
t > a there exist two perpendiculars from a{t) to γ. Conversely, let M have no
focal points, and γ,p as above. We assume that γ has unit speed and ^(0) is a
point on γ nearest top. Let g(s) = d\p, γ(s)). Then g'(s) = 2(dr(d/dt), dr(d/ds)}
(Us), where r: [0, 1] X R —• M is given by r(t, s) = expptv(s) and v(s) =
cxp~ιγ(s). Hence the unique geodesic from p to γ(s) is perpendicular to γ if and
only if g\s) = 0. By assumption, ^(O) = 0. Also, since M has no focal points,
it is shown that g"(s) > 0. Therefore g'(s) φ 0 if s Φ 0. Thus there is exactly
one perpendicular from p to γ.

Using perpendiculars we can also restate the divergence property of intersect-
ing geodesies as follows:

Theorem 2'. Let, a, β be distinct geodesic rays starting from a point p 6 M.
Let γt: [0, 1] —> M be the unique geodesic from a(t) = γt(0) to β, perpendicular
to β. Then the length ofγt is strictly monotone increasing in t and approaches oo
as t —> oo.

Proof For a fixed u > 0, we define a curve ψu\ [0, 1] —> TVM by ψu{s) =
^ ) ! , and a C°°-variation fu: [0, oo) x [0, 1] -> M by

) = expp t(d(p, γu(s))lu)ψu(s) .

For each fixed s, the variational vector field Yu(t, s) = dfjβjds) is a Jacobi field
along the geodesic ray t -+fu(t, s), and Yu(0, s) = 0. Since M has no focal
points, I YJjt, s) I is strictly monotone increasing in t. For ux < u2, we put (̂.y) =
Λ2Oi> s) Then ^(0) = a{u,), and ^(1) lies on β. Hence

length( rJ < length(λ) = f | YUiί(uu s)\ds
Jo

< fVltl(ι/2,j)|ώ = length(γj .
Jo
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Therefore the length of γt is strictly monotone increasing in t. The rest of the
proof follows from Proposition 1(2) and the fact that expp is distance-increasing
after introducing the metric {dσf in TPM as before.

5. Topological transitivity of certain geodesic flow

In this section, we shall give an application of our Theorem 2.
We specialize the manifold M to the unit open disk D in Rn endowed with

a metric

( * ) {dsf = 4(/(x))2 Σ?=i dxtdxj(l - Σ?=i XtXiY ,

where / is a differentiable function in D = M such that there exist constants
a9b with 0 < a <f(x) < b. Let M(f) denote the Riemannian manifold thus
obtained.

Let G be an isometry group of M(f) with properties :
(1) G is properly discontinuous, has no fixed points, and ceases to be pro-

perly discontinuous at every point of the boundary 3D of D
(2) Each element of G leaves invariant the hyperbolic metric, the metric

given by (*) with/(x) = 1.
We denote by M(f G) the Riemannian manifold M(f)/G. Let us define the

geodesic flow of M(f G). We denote by SM = SM(f, G) the unit tangent
bundle over M(f G). For v e SPM = {w e TVM\ \w\ = 1}, let γv(t) denote the
geodesic parametrized by arc-length with γυ(0) = p and ^;(0) = v. For a real
number t, we define a map Tt by

Tt(v) = γ'v(t) e SW)M .

The one-parameter group Tt of transformations of SM is called the geodesic
flow of M(/, G) (or in SM). If there is v e SM such that the orbit {Tt{v)\
t e (— oo, oo)} is dense in SM, the geodesic flow is said to be topologically
transitive.

The spaces M(f, G) and their geodesic flows have been studied by M. Morse,
G. Hedlund, W. R. Utz, and L. Green. Here we shall only give a remark that
from the proof of Theorem 4 in [7] (cf. [1, p. 168]) and our Theorem 2, follows

Theorem 3. If M(f) has no focal points, then the geodesic flow of M(f G)
is topologically transitive.

6. The existence of asymptote

Let M be a complete simply connected Riemannian manifold without focal
points. Let p e M and let γ be a geodesic ray in M with ^(0) = q e M. Let v =
exp"1/? and let a(s) = expqsv. Our purpose is now to construct a geodesic
asymptotic to γ passing through a(s) for each s in (0, 1].
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For s e [0, 1] and u > 0 we join a(s) and γ(u) by the unique geodesic σf. σf
are parametrized proportionally to arc-lengths, ranged in [0, u]. For a fixed u,
we have a two-dimensional surface {σf(t); 0 < t < u, 0 < s < 1}. We put
fu(t, s) = < ( 0 Then Yu(t, s) = dfu(d/ds)(t, s) are Jacobi fields along <τs

M vanish-
ing at ί = w. Since Λf has no focal points, | Yu(t, s) | is strictly monotone decreas-
ing in t ζ. [0, ύ\. Therefore, for each t ς. (0, u),

d(q, Φo)) = Γ I Yu(P, s)\ds> P I Yu(t, s)\ds> </«(/), r(0)
Jo Jo

Next, we fix t > 0 arbitrarily. We carry over the situation above to the limit
a s w ^ o o , where u > t. By the result of L. Green in § 1, there is a limit Jacobi
field Y with 7(0) - v of {yα(ί, 0); w > t} as w ^ oo. The diίferentiable vari-
ation of γ corresponding to Y would consist of limit geodesies γs of sequences
of geodesies {σf; u > t}. Actually we shall prove the existence of diίferentiable
variation of γ corresponding to Y. Let us start from some preparations.

Let M be a complete C-Riemannian manifold and let π: TM -> M be the
projection. Let w e ΓM. The kernel of (J^),,: TW(TM) -• ΓΪU)M is called the
vertical subspace of TW(TM). A connection map K: T(TM) —• 7"M is defined
geometrically as follows: For £ e TW(TM), let JT: (—5, δ) -• ΓM be a C°°-curve
with initial velocity f, and let a = π X. Define #(<?) = X\0), where ^'(O)
denotes the covariant derivative of X along a evaluated at t = 0. Clearly,
^ w : TW(TM) —• Γ I ί ΰM is a linear map. The kernel of Kw is called the horizontal
subspace of TW(TM). More detailed description of Γ̂ is in [9, pp. 43-46].

We define an inner product ((,)) on TM by letting

for f, 27 e TW(TM). Then the horizontal and vertical subspaces of TW(TM) are
orthogonal to each other.

If w <Ξ ΓM and £ e TW(TM) are given, the Jacobi field Y along the maximal
geodesic γw9 defined by γw(t) — expπw tw, with initial condition 7(0) = dπ ξ and
77(0) = Kξ (by interchanging the order of differentiation) is determined natu-
rally, and vice versa. Therefore there is a linear isomorphism between TW(TM)
and the set of all Jacobi fields along γw for any w e TM.

Now we retain the notation in § 1. If we put b = | |£'i(0) — B&0)\, then

<b fori/>l
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by § 1 (iii), where ||2?|| denotes the operator norm (maximum eigenvalue of a
positive definite symmetric matrix B).

We fix u > 1, and decompose a\s) and Yu(t, s) into the tangential parts and
the orthogonal parts to the geodesic σ%9 respectively:

Yu(t,s) = c (l - £ ) «y(0

where c is a constant. Since (yJ0'(O, s) = ^(OVC?) 1, we have

Putting

α = Max {| 7/(0, *)| ί e [0,

we have

I ^ ( 0 , ^) < I rί(0, s)\ + \

Let ww(^) = (σ?)'(0). As we observed before, to the Jacobi field Yu(t9 s) there
corresponds a vector ξu(s) in TwU(s)(TM) uniquely, and [0, 1] 3 ,y —> wu(s) is a
curve in ΓΛf, starting at v. Since f"^) is the tangent vector of the curve wu(s),
the length of the curve wu(s)9 s e [sί9 s2], is given by

Γ ((ξu(s),ξu(s)))ι/2ds = Γ
J S2 J Si

= Γ(irB(oJ
J Sl

Therefore, for any ε > 0, there exists δ > 0 such that | ^ — ^1 < δ implies
distance (WM(5Ί), WU(S2)) < ε, for all u > 1. Namely, {wM; w > 1} is a family of

equicontinuous maps. Next, because

\wu(s)\ = d(α(j), r(i/))/« < (iι + d(p, q))ju < 1 + rf(p, q) ,

wM are considered as maps from [0, 1] to the compact set {z e TM; π(z) e {α(j);
s e [0, 1]} and |z| < 1 + d(p9 q)}. By virtue of Ascoli's theorem, for each
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sequence {uj} in (1, oo), there is a subsequence {v3} so that {wvή converges to
a continuous map w uniformly on [0, 1].

We recall that wu(s)' = (F/ds)wu = Y'u(0, s). Since (Y'u(0, s)V = B'u(0)(aXs)y,
\(a'(s)y\<\v\,and

lim \\B'U1(O) - 2»ί,(0)|| = 0

by § 1 (iv), (Y'u(0, s))1^ converges uniformly on [0, 1].
Nrxt, let 1 < ux < u2 < be a sequence with l im,^ ujf = oo, and let {v5}

be a subsequence of {ιιΊ} such that

lim wVj = w uniformly .

Then the tangential part of 7^.(0, s) to wVj(s) converges uniformly. Therefore
{wVJ(s)'} converges uniformly. The uniform convergences of {wVj} and {wvj/} im-
plies easily that lim^^ wVj(s)' = w(s)', and in particular w(s) is of class C1.

Let f(t, s) = γ£t) = expα(s) tw(s), and Y(t, s) = df(d/ds)(t, s). The function
f{t, s) is of class at least C1 in 51 and C°° in t. Since

1 - λd(q, φ)) < -diais), γiu)) = | w-(̂ ) | < 1 + Irffo, φ ) ) ,

we have |VV(J)| = 1, and we see that γs are parametrized by arc-lengths.
Now we are ready to prove the following theorem :

Theorem 4. Let M be a complete simply connected Rίemannian manifold
without focal points. Given a geodesic ray γ and a point p e M, there exists the
unique geodesic ray asymptotic to γ passing through p.

Proof Let us fix t > 0. Then YVj(t, s) converges uniformly to y(ί, s). Also
I YU(U s)\<\ YUΦ, s)\ = Itf'COl = 1̂ 1- Hence by Lebesque convergence theorem
we have

Γ\Y(t9s)\ds = lim Γ\Yυj(t,s)\ds.

for each s0e[0,l]. Therefore

d(q9 a(s0)) = Γ° I r(0, s)\ds = lim Γ° | YΌJ(0, s)\ ds

> lim Γ\YVj(t,s)\ds= Γ\Y(t,s)\ds
y-oojo Jo

> diγit), r,0(0)

Thus γs is asymptotic to γ for all s z [0, 1].
The uniqueness follows from Theorem 2.
Remark. By the uniqueness of w(s), we have
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lim wu(s) = w(s) , lim wu(s)' = w(s)'

uniformly in s.
From Theorem 4 and its proof we easily have
Corollary 1. Let a(t) and β(t\ t <= [0, oo), be geodesic rays asymptotic to each

other. Then d(a(t), β(t)) is non increasing in t.
Corollary 2. Let p be a point in M, and a a geodesic ray. For t G [0, oo), let

ϊpa(t) denote the geodesic ray starting from p and passing through γ(t). If γpa{oo)

denotes the unique geodesic ray from p, asymptotic to a, then

7. A boundary of M and a topology on M

Let M be a complete simply connected Riemannian manifold without focal
points. A point at infinity is defined as an asymptote class of (oriented) maximal
geodesies of M. Let M(oo) denote the totality of points at infinity of M, and let
M be the set theoretic union of M and M(oo). We shall call M the closure of
M.

Let a:(— oo, oo) —• M be a geodesic. Let α(oo) be the asymptote class of a
and let a(— oo) be that of the reversed geodesic: t —• a(—t). The resulting map
a: [— oo, oo] —• M is called the asymptotic extension of a.

Now we would like to construct a suitable topology of M which makes M
homeomorphic to the closed unit disk in Rn, n = dim M. Let Dp = {v e TPM;
\v\< 1 } , / ? G M .

We pick a point p z M arbitrarily and fix it. We choose a homeomorphism
r: [0, 1] -> [0, oo], r(0) = 0, and define a map ψp: Dp-> M by ψ.p(<ι;) =
expp (r(| t; |)/| i; \)v for v ^ 0 and ψp(0) = ^, where expp (oov) denotes the asymp-
tote class containing the geodesic t^>expptv. By Theorem 4 in §6, ψp is
one-to-one and onto. Hence we can define a topology of M from that of Dp

via the map ψ p . Obviously, the relative topology of M in M coincides with the
original one, and any asymptotic extension of a maximal geodesic passing
through p is continuous.

Next we compare the topologies thus obtained based on different points.
Proposition 3. Let p, q be distinct points in M. Let Φ = ψ'1 ψ p : Dp —• Dq.

Then
(1) Φ is one to one and onto,
(2) the restriction of Φ into Dp is a homeomorphism,
(3) lim^i Φ (tv) = Φ(v)for v e Sp.

(3) implies that an asymptotic extension of a maximal geodesic is continuous with
respect to any topology defined above.

Proof. (1) and (2) are obvious. (3) follows from Corollary 2 of Theorem 4.
q.e.d.
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That Φ is a homeomorphism is known for M with nonpositive curvature.
Here we shall give a proof for the two-dimensional case.

Theorem 5. Let M be a complete simply connected Rίemannίan manifold of
two dimensions without focal points. Then the topology of M constructed above
is independent of the choice of p.

The author does not know when M satisfies the conclusion of Theorem 5 for
higher dimensional case. (We can construct an example which shows that the
conclusion of Theorem 5 does not hold for higher dimensional case even if Φ
satisfies (1), (2) and (3) in Proposition 3.)

Proof Let x0 and x1 be distinct points of Sp9 and let a: [0, 1] -• Sp be one
of the arcs of Sp from x0 = a(0) to xλ = a{\). Let β: [0, 1] -• Sq be the arc of
Sq from Φ(x0) = β(0) to Φ(x,) = β(l) passing through Φ{a(%)). We suppose
that a and β are parametrized proportionally to arc-lengths. Let γ be the curve
in Dp given by

_ ί(l - 2t)x0 , 0 < t < i ,

" 1(2* - 1) , i < t < 1 .

By (3), δ(t) = Φ(γ(t)) is a Jordan curve in Dq with δ(0) = Φ(x0) and δ(l) =
Φ(xj). Using Jordan's curve theorem we see that δ divides Dq into two connected
components C and C"; Dq = δ U C U C (disjoint union). Since β° = {β(s);
0 < s < 1} is connected and does not intersect with δ, β° is contained in one of
the connected components, say C. Then C is bounded by the curves β and δ.
Let β' be the complementary arc to β in Sq. Then C/ is bounded by the curves
β' and d.

We put A = {ta(s); t e (0, 1], 5-6(0,1)}. Then Φ(A) is connected and
Φ(y4) 3 Φ(a(%)). Hence Φ(Λί) C C. Since C Π S ? = /3°, we can find a function
/; [0, 1] -> [0, 1] such that Φ(α(j)) = J8(/(J)).

Let 0 < s1 < s2 < 1. In a similar way as above, we h a v e / ^ ) e (/fe), 1], that
is,/is monotone increasing.

Let a: [0, 1] —• 5 P be the arc of Sp complementary to a, with ^^O) = x0 and
α'(l) = Xj. Put ^ 7 - {rα7(j); ί € (0, 1], s e (0, 1)}. Then Dq = Φ(A) U Φ(A*) U 3
(disjoint union). Since Φ(A') is connected, we have Φ(A') c C7, which im-
plies that Φ(Λ) = C, so that Φ induces a surjective map from # to β. Thus/is
surjective, and is a homeomorphism. Therefore Φ \Sp is a homeomorphism.

Next we shall prove the compatibility of the homeomorphism Φ \Dp and the
homeomorphism from Sp onto Sq obtained above. Let yt e Sp, tt € [0, 1] and
l i m ^ tίyί = yea. Then lim,__ | Φ ( ^ ) | = 1 and l i m ^ Φ(y%) = φ(y). Suppose
that Φ(y) = β(u), 0 < u < 1. Let ε be a positive number such that 0 < u — ε,
u + ε < 1. We put f~\u — ε) = sx and /"^w + ε) = s2, and set 5 = {ta(s);
0 < t <1, s1 < s < s2}. Then Φ(Bε) is a closed set bounded by the curves
{ t Φ i a i s J ) ; t e [0 , 1]}, {tΦ(a(s2)); t € [ 0 , 1]} a n d {β(s); se[u-ε,u + ε]}. M o r e -
over Φ(Bε) contains almost all Φ(tty^).
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Suppose that some subsequence of {Φ(^jγ)} converges to z e Dq. Since
l i m ^ \Φ(Uyύ\ = 1, we have z e Sq. Hence z e Φ(Bε) Π Sq = {/3(»; J ε [w - e,
u + e]} for any sufficiently small ε. Therefore z = β(u) = Φ(j)

8. Continuation

Let M be a complete Riemannian manifold of dimension n + 1 without focal
points. Here we recall the metric of T(SM) defined in § 6. Let {Tt} be the
geodesic flow of M. {Tt} is said to be of Anosov type if it satisfies the condition:

For each v e SM

TV(SM) = X*(v) + X*(v) + RV(v) ,

where V is the flow vector field, and there exist positive numbers a, b, c such
that

( i ) for any ξ e X*(v)

\\dTtξ\\ < ae~ct \\ξ\\ for t > 0, > be~ct \\ξ\\ for t < 0 ,

(ii) for any ^ e X*{v)

\\dTtη\\ < aect \\η\\ for t < 0, > όecί | | 7 | | for ί > 0 ,

(iii) dim X*(v) = dim X*(v) = Λ.

A more general definition is given in [4].
We denote by γυ the geodesic starting at π(v) in the direction of v9 where

π: SM—> M is the projection. We set

Xs(v) - {? 6 ΓV(^M); ((f, K(v)» = 0, fu - , f as II -> oo} ,

= 0, fu -> f as i/ - • - ex,

where ξU9 u > 0, denotes the unique vector corresponding to the Jacobi field Yu

along the geodesic γυ such that Yu{u) = 0, 7M(0) = ί/τr f. It is known that X8(v),
XJv) are vector subspaces of Tυ(SM) and dimZX'v) = dimZM(t;) = n, see [4].

If ξ e X?(v), the corresponding Jacobi field 7 along ^ is bounded for t > 0
by the definition. Therefore ξ € Zβ(ι;) by Corollary of Theorem 1. Thus Xs(v)
= X*(v), and Xu(v) = X*(v) for each v e SM. Also Xs(v) Π Jrβ(v) - 0. Con-
sequently, when the geodesic flow is of Anosov type, it follows that M admits
no nontrivial perpendicular Jacobi field Y along a maximal geodesic such that
I Y(t)\ is bounded above for all t e R.

From now on we further suppose that M is simply connected and that the
geodesic flow of M is of Anosov type.

Lemma 1. Let p, q e M. Given ε > 0, there exists a number t0 > 0 such that

d{a(t\ β(t)) < ε for t > t0 ,
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where, a, β are geodesic rays starting from p, q (resp.) asymptotic to each other.
Proof. We may assume that p φ q. Join p and q by the geodesic γ. We

construct a differentiable 2-dimensional surface f(t, s) consisting of geodesic
rays asymptotic to β passing through each point of γ as in § 6. Let Y(t, s) be
the associated Jacobi fields. Then using the notation in § 1

I Y(t, s)\ < ae-«Q 7(0, * ) | 2 + | Γ ( 0 , s)\ψ*

< ae~ctd(p, q)(2 + (\\\Q\\\ + \\\B{(0)\||)2)1/2 ,

where || | | | | denotes the operator norm, and a, c are constants. Since

d(a(t), β(t)) = [\Y{t,s)\ds,
Jo

the proof is completed.
From Lemma 1 we immediately have
Lemma 2. Let p, q e M. We introduce the metric (dσf, defined in § 3, in

TqM. IfΦ:Dp^Dq is the map defined in § 7, then it furthermore satisfies that
for any ε > 0, there exists a number T, 0 < T < 1, such that

\Φ(tv) - tΦ(v)\ < ε for t, T< t < 1

for every v e Sp, where \ | denotes the distance with respect to (dσ)2.
To prove that the topology defined in § 7 is independent of base points we

shall prepare the following:
Proposition 4. Let Dt, i = 1, 2, be the unit disks in Rn + ι with boundaries St.

Let Φ be a map from Dx to D2. Suppose that Φ satisfies properties,
(1) Φ is one to one and onto,

(2) Φ \Dί-sι is a homeomorphίsm,
(3) for any ε > 0, there is a number T,0< T < 1, such that

\Φ(tv) — tΦ(v)\ < ε for t> T and every v e 5Ί

where | — | denotes the Euclidean distance.
Then Φ is a homeomorphism.
Proof First we shall prove that Φ is continuous on Sx. Let {v J be a sequence

in Sί converging to vQ € Sv For simplicity we put Wj = Φ(v3), j = 0, 1, 2, .
Given ε > 0, by (3) there exists a number T > 0 such that

\Φ(tvx)- twt\< — ε for t> T .

Since Φ is a homeomorphism on Dγ — Sx by (2), {Φ(tvt)} converges for 0 < t
< 1. Therefore there is an integer N > 0 such that

\Φ(tvt) - Φ(tvk)\ < — ε f o r i,k>N.
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Hence for t > Tfor Lk>N

t\Wi - wfc| < \Φ(tvt) - twt\ + \Φ(tvt) - Φ(tvk)\ + \Φ(tvk) - twk\ < ε .

Thus {wt} converges to, say, w e S2. But for i > TV and for t > Γ

ί |w - wo\ < \Φ(tv0) - two\ + \Φ(tv0) - Φ(tVt)\

+ \Φ(t<vx) - twt\ + ί|w, - w\< 2ε .

Since ε is arbitrary, w = w0.

Another application of (3) gives that Φ is a homeomorphism.

Remark. In Proposition 4 we treated the Euclidean metric. However the

proposition holds for the metric (dσ)2 in § 3 as well.

Theorem 6. Let M be a complete simply connected Riemannίan manifold of

dimension n + 1, without focal points. Suppose the geodesic flow of M is of Λnosov

type. Then the topology of M constructed in § 7 is independent of the choice of

base points.

Added in proof. The problem considered in §§ 7 and 8 has been completely

solved by the author without further assumption see her forthcoming paper

to appear in this journal.

References

[ 1 ] P. Eberlein, Geodesic flow in certain manifolds without conjugate points, Trans.
Amer. Math. Soc. 167 (1972) 151-170.

[ 2 ] , Geodesic flows on negatively curved manifolds. I, Ann. of Math. 95 (1972)
492-510.

[ 3 ] , Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc.
178 (1973) 57-82.

[ 4 ] , When is a geodesic flow of Λnosov type! I, J. Differential Geometry 8 (1973)
437-463.

[ 5 ] P. Eberlein & B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
[ 6 ] L. W. Green, Surfaces without conjugate points, Trans. Amer. Math. Soc. 76 (1954)

529-546.
[ 7 ] , Geodesic instability, Proc. Amer. Math. Soc. 7 (1956) 438-448.
[ 8 ] , A theorem of E. Hopf, Michigan Math. J. 5 (1958) 31-34.
[ 9 ] D. Gromoll, W. Klingenberg & W. Meyer, Riemansche Geometric im Grossen,

Lecture Notes in Math. Vol. 55, Springer, Berlin, 1968.
[10] S. Kobayashi, Riemannian manifolds without conjugate points, Ann. Mat. Pura

Appl. 53 (1961) 149-155.
[11] M. Morse & G. Hedlund, Manifolds without conjugate points, Trans. Amer. Math.

Soc. 51 (1942) 362-386.
[12] J. J. O'Sullivan, Manifolds without conjugate points, Math. Ann. 210 (1974) 295-

311.
[13] W. R. Utz, Almost periodic geodesies on manifolds of hyperbolic type, Duke Math.

J. 18 (1951) 147-164.

UNIVERSITY OF PENNSYLVANIA






