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COMPACT REAL HYPERSURFACES WITH CONSTANT
MEAN CURVATURE OF A COMPLEX
PROJECTIVE SPACE

MASAFUMI OKUMURA

Introduction

The differential geometry of hypersurfaces of a Riemannian manifold of con-
stant curvature and complex hypersurfaces of a Kaehlerian manifold has been
studied for a long time. In particular, many global results have been obtained
(for example [1], [3]) since the establishment of J. Simons’ formula [6] for the
Laplacian of the second fundamental form. However, the differential geometry
of real hypersurfaces of a Kaehlerian manifold has not been explored to any
great extent, even in the case where the ambient manifold is a complex projective
space CP™. One of the main reasons for us not to be able to get many results
on a real hypersurface is the lack of enough “words” to describe differential
geometric properties of the hypersurface. For instance, totally geodesic hyper-
surfaces and totally umbilical hypersurfaces characterize respectively hyper-
planes and hyperspheres, when the ambient manifold is a Euclidean space, and
they respectively characterize great and small spheres, when the ambient mani-
fold is a sphere. But if the ambient manifold is a CP™, as a consequence of
Codazzi equation, we know that there exist neither totally geodesic hypersur-
faces nor totally umbilical hypersurfaces (for example, [7]). One way to overcome
such poverty of vocabulary has been established by H. B. Lawson [2] who in-
troduced the notion of generalized equator M¢ , of a CP™. His idea is to con-
struct a circle bundle over a real hypersurface, which is compatible with the
Hopf fibration. Thus we can use many words to characterize remarkable classes
of submanifolds of a sphere. By making use of the second fundamental form
and the fundamental tensor of submersion, the present author [4] gave a con-
dition for the circle bundle over a real hypersurface of a CP™ to be a product
of two spheres.

Keeping this point of view, in this paper we study compact real hypersur-
faces of a CP™ with constant mean curvature.

In § 1, we review necessary results obtained in [2] and [4] for the use in § 3.
In § 2 we compute the Laplacian of the length of the second fundamental form
of a real hypersurface of a CP™.
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Arranging so nicely the terms appeared in the Laplacian that we may use the
results stated in § 1 and § 3, we first prove Lawson’s theorem by a different
method and then prove two theorems which give sufficient conditions for a real
hypersurface of a CP™ to be M; .

1. Submersions and real hypersurfaces of a complex projective space

Let S”*2 be an odd-dimensional unit sphere, CP™*V/* the complex projective
space, and # the Riemannian submersion of S™*Z to CP"*1/? defined by the
Hopf fibration. The almost complex structure J of CP**Y/? is nothing but the
fundamental tensor of the submersion #, and the Riemannian metric G of
CP™+V/2 jg induced naturally from that of S”*2. With respect to (J, G),
CP™*V/2 js a Kaehlerian manifold of constant holomorphic sectional curvature
4. For a real hypersurface M of CP*V/? the circle bundle M over M which is
compatible with the submersion # is a hypersurface of S™*% Thus we have the
following commutative diagram of submersions #, = and imbeddings 7 and i:

M_l» Sn+e

nl lﬁ

M s CP(n+D/2
i

The imbedding 7 is an isometry on the fibres. The diagram implies that for
the unit vertical vector field ¥ of M, (V) is also a unit vertical field of S”+2
and that for any tangent vector field X to M, i(X)* = i(X~), where X” denotes
the horizontal lift of X. For an arbitrary point p ¢ M we may choose a field of
unit normal vectors N to M defined in a neighborhood % of p. Let p be an
arbitrary point of the fibre over p. Then the lift N of N is a field of unit nor-
mal vectors to M defined in a tubular neighborhood over %.

Let D and D be the Riemannian connections of S™*? and CP‘**/? respec-
tively. Then the respective Riemannian connections 77, I and the second funda-
mental forms h, h of M and M are given by

(1.1)  Dyy)i(Y) = i(FzY) + (X, Y),  Dyxi(Y) = i(VxY) + h(X,Y).

We denote the Weingarten maps corresponding to h and h by H and H respec-
tively, that is, /(X,Y) = g(HX, Y)NZ, i(X,Y) = g(HX, Y)N. On the other
hand, the fundamental equations of submersions # and = are given by

Dy X" = (Dy.X)! + GUY', X)Hi(V) ,

(1.2) r 2
VylXt = Py X)* + g(FY, X)'V,

where F is the fundamental tensor of the submersion =.
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For the second fundamental tensors of M and M, we have the following
identities [4]:

(1.3) gHX™, YL) = g(HX, Y)*,
(1.4 (i)t = {(FX)* — g(HV, XN~ ,
(1.5) HX: = (HX): + g HX:, V)V,
(1.6) trace H = (trace H)” ,

1.7 gHV,V)=0.

Furthermore in [4] we proved

Lemma 1.1. In order that the Weingarten map H of M be covariant constant,
it is necessary and sufficient that the Weingarten map H of M commutes with the
Jfundamental tensor F of x.

Now we consider the transforms Ji(X) and JN of i(X) and N by J at a point
p € M. Then from the skew symmetric property of J and (1.4), we may put

Ji(X) = i(FX) + uX)N, JN = —i(U),
for some U e T,(M). Using (1.4) again, we get
(1.8) gHV,X") = —g(U, X)",
(1.9) u(X) = g(U, X) .

Making use of (1.5) and (1.8), we can easily prove

Lemma 1.2. Let X be an eigenvector of H corresponding to an eigenvalue 2.
If X is perpendicular to U, X* is an eigenvector of H corresponding to the
eigenvalue 2.

By iterating the operator J on i(X) and N, we obtain

(1.10) F'X = —X + u(X)U,
(1.11) FU=0,
(1.12) gU,U)=1.

As to the covariant derivatives of F and U, we have
(1.13) VyF)X = W(X)HY — g(HX, Y)U ,
(1.14) VyU = FHX ,

because of the fact that J is a covariant constant.
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2. Laplacian for the length of the second fundamental form

Let M be a real hypersurface of CP**V/2 with constant mean curvature, that
is, (trace H)/n is constant. If trace H vanishes identically on M, M is said to
be minimal. Since the curvature tensor of CP**V/? is given by

R(X', Y)Z' = G(Y',Z)X' — G(X", Z")Y' + G(JY’,Z"JIX'

2.1
@D —GUX',Z"\JY' — 2GJX’, Y)JZ' ,

where X', Y/, Z’ are tangent vector fields on CP**V/2, the Gauss equation for
the curvature tensor R of M and the Codazzi equation become, respectively,

R(X, Y)Z = g(Y,Z)X — g(X, Z)Y + g(FY,Z)FX — g(FX, Z)FY

2.2
22) —2¢(FX, Y)FZ + g(HY, Z)HX — g(HX, Z)HY ,

(23)  (FyH)Y — (TyH)X = u(X)FY — u(Y)FX — 2g(FX, Y)U .

Now we consider the function f = trace H?, which is globally defined on M,
and will compute its Laplacian 4 f. Denoting the restricted Laplacian for H by
A’H, we have

) 34f =¢g(’H,H) + ¢g("H,VH) ,

where we have extended the metric g to the tensor space in the standard fash-
ion. Since the mean curvature of M is constant, making use of (1.11), (1.12),
(1.13), (1.14), (2.3) and computing in entirely the same way as in [3], we obtain

25 AH = 3, [R(E;, X), H]E,

+ 3FHFX + 3(trace H)u(X)U — 3u(HX)U ,

where {E,, - - -, E,} is an orthonormal frame at a point p € M.
Substituting (2.2) in the right-hand side of (2.5) gives
('H)X,, = 3. {R(E, X)HE, — HR(E,, X)E}

=1

+ 3FHFX + 3(trace H)u(X)U — 3u(HX)U
= 6FHFX 4 3(trace H)u(X)U — 3u(HX)U + (n + 3)HX
— (trace H)X — (trace H®)HX — 3u(X)HU + (trace H)H*X .
Thus it follows that

g(d’H, H) = trace (A’ H)H
= 6 trace (FH)? + 3(trace H)u(HU) — 6u(H*U)
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+ (n + 3) trace H? — (trace H)* — (trace H?)
+ (trace H)(trace H®) ,

from which we obtain

$4f =6 trace (FH)* + 3(trace H)u(HU) — 6u(H*U)
(2.6) + (n + 3) trace H? — (trace H)* — (trace H?)
+ (trace H)(trace H*) + g(VH,VH) .

In order to translate the conditions imposed on M into those on M we have to
change (2.6) to a more favorable form. For this purpose we calculate the length
of HF — FH. Since HF — FH is a symmetric linear transformation on T,(M),
it follows that

g(HF — FH, HF — FH) = trace (HF — FH)?
2.7 = 2 trace (HF)* — 2 trace H*F*
= 2 trace (HF)* + 2 trace H* — 2u(H*U) ,

because of (1.10). From the last two equations, we have

$4f = 3g(HF — FH, HF — FH) + (n — 3)(trace H?)
2.8) + 3(trace H)u(HU) — (trace H)* — (trace H?)
+ (trace H)(trace H®) + 2(n — 1) + g(ﬁH, ﬁH) ,

where we put

VyH)X = PyH)X + u(X)FY + g(FY,X)U .

3. Theorems on compact real hypersurfaces of CP"*1/2

Before we state our results we should explain the models which will appear in
our theorems. In $™** we have the family of generalized Clifford surfaces M, ,
= 8? X S where p + g = n + 1. By choosing the spheres to lie in complex
subspaces we get fibrations S* — M, ,, 50, — M , compatible with the Hopf
fibration, where p 4+ ¢ = n. In the special case p = 0, this surface is diffeo-
morphic to the sphere.

Remark. In [1] and [2], M, , always means S? X S? which is immersed in
S™*! minimally, and so the radius of S? and S? are respectively p/(n + 1) and
q/(n + 1). But here we do not necessarily need the condition that M is minimal.

We begin with

Theorem 3.1 (H. B. Lawson). Let M be a compact n-dimensional real mini-

mal hypersurface of CP™*V/* oyer which the second fundamental form satisfies
the inequality
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trace H2<n— 1.

Then trace H* = n — 1 and M = M , for some p and q.
Proof. The right hand side of (2.8) becomes

3g(HF — FH, HF — FH) + {(trace H?) + 2}{(n — 1) — trace H%}
+ (trace H){(Bu(HU) — (trace H) + (trace H?)} + g(ﬁ H, v H).

Thus, if M is minimal and trace H> < n — 1, from Bochner’s lemma 4f = 0
and consequently trace H> = n — 1 it follows that HF = FH. Hence, because
of Lemma 1.1, M has parallel second fundamental form. This and a result of
Ryan [5] show that M is a sphere S™*! or a product of two spheres. Since the
fibration z: M — M is compatible with the Hopf fibration, we have M = M, ,
for some p, ¢q. This completes the proof.

In order to get further results, we need

Lemma 3.2. On a real hypersurface M of CP**V/* the inequality

3.1 (trace H)? < (n — 1)(trace H?) + 2u(HU)(trace H)

holds.
Proof. For any X ¢ T, (M), set

(3.2) KX = HX +

1 I (trace H)u(X)U .
n —

Since K is a symmetric linear transformation on 7,(M), we have
n trace K? > (trace K)*,
which implies (3.1).
Theorem 3.3. Let M be a compact real hypersurface of CP™*V/* with con-
stant mean curvature on which the second fundamental form is semidefinite. If

trace H* < n — 1, thentrace H* = n — 1 and M = M;, ,.
Proof. By means of Lemma 3.2, (2.8) becomes

33) 34f > 3g(HF — FH, HF — FH) + (trace H)(trace H®) — EtracS H??
+ (trace H)u(HU) + 2{(n — 1) — (trace H)} + g(VH -VH) .
Since the second fundamental form is semidefinite, it follows that

(3.4 HF = FH ,

3.5 (trace H)(trace H®) = (trace H?)?,

(3.6) uHU) =0,
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3.7 trace H* =n — 1.
3.9) VyH)X = —u(X)FY — g(FY,X)U .
Let a,, - - -, a, be eigenvalues of H. Then (3.5) becomes

2 aaa; — a;))) =0,

i<
which, together with the fact that CP™*V/% has no totally umbilical real hy-
persurfaces, implies that H has exactly two eigenvalues and one of them must
be zero. Moreover (3.4) and (3.7) sahow that U is one of the eigenvectors corre-
sponding to zero, i.e., HU = 0. Differentiating covariantly this equation and
making use of (1.11), (1.14) and (3.8), we obtain

HX — X+ uX)U=0,

so that only the vectors in the direction of U correspond to eigenvalue zero of
H. Thus from (3.7) it follows that with repect to the orthonormal frame formed
by the eigenvectors, H takes one of the following forms:

0

( (0
|1

— |
|

0 ]l 0
l
|

1 or (H):’ - —1 K
0 T 0 T
. l =

Hence, because of (1.6) and Lemma 1.2, it follows that with respect to a suita-
ble orthonormal frame H of M takes one of the following forms:

(* 0

]
—a |
1 { or (H) =

o

| 0
= |

| 0
L 1

e
(=)
L —

—1

Since the respective unit eigenvectors X, ¥ of H corresponding to & and —e
can be written in the form

X =Vcosh + UrLsind, Y= —Vsinf + ULcosb,
we have

HVcos0 + HU sinf = aV cos + aU~ sin 6 ,
—HVsing + HUL cos§ = aVsinf — aUL cos @ .

~ M
Il

I

T
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Computing the inner product g(HX, V) and making use of (1.7), (1.8), we
get @« = —tan . On the other hand computing g(HX, UZ) gives « = —cot 6.
Thus « = +1 and

(—1 (1
7 1 0 _ -1 0
( ) - O N . ) or (H ) = 0 )
1 -1

In both cases we have M = S' X S™ and consequently M = M e D=
%(n — 1). This completes the proof.

Theorem 3.4. Let M be a compact real hypersurface of CP™*V/ with con-
Stant mean curvature such that the second fundamental form is semidefinite. If
(trace HY < (n — 1)%, then M = M ,, p = ¥(n — 1).

Proof. From (2.8) and Lemma 3.2, we have

34f > 3g(HF — FH, HF — FH) + (trace H)(trace H®) — (trace H??
+ 2 - i’(trace H)u(HU) + 2 I {(n — 1)* — (trace H)?} .

J— n —

If (trace H < (n — 1)%, we get (3.4), (3.5), (3.6), (3.8) and (trace H)? =
(n — 1)%. Thus we can prove the theorem in entirely the same way as we proved
Theorem 3.3.

Bibliography

[1] S.S. Chern, M. do Carmo & S. Kobayashi, Minimal submanifolds of a sphere
with second fundamental form of constant length, Functional analysis and re-
lated fields, Springer, Berlin, 1970, 60-75.

[21 H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential
Geometry 4 (1970) 349-357.

[3] K. Nomizu & B. Smyth, 4 formula of Simons’ type and hypersurfaces with con-
stant mean curvature, J. Differential Geometry 3 (1969) 367-377.

[4] M. Okumura, On some real hypersurfaces of a complex projective space, Trans.
Amer. Math. Soc. 212 (1975) 355-364.

[51 P. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971)
251-259.

[6] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968)
62-105.

[7]1 Y. Tashiro & S. Tachibana, On Fubinian and C-Fubinian manifolds, Kodai Math.
Sem. Rep. 15 (1963) 176-183.

SartaMA UNIVERSITY, JAPAN





