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THE DIMENSION OF BASIC SETS

JOHN M. FRANKS

Let /: M —> M be a C1 diίϊeomorphism of a compact connected manifold
M. A closed /-invariant set A c M is said to be hyperbolic if the tangent bun-
dle of M restricted to A is the Whitney sum of two D/-invariant bundles, i.e.,
if TΛM = EU(A) Θ E'(Λ), and if there are constants C > 0 and 0 < λ < 1 such
that

\Dfn(V)\ < Cλn \v\ for v e E8, n > 0 ,

\Dj-\V)\ < Cλn \v\ for v € £», n > 0 .

The diffeomorphism / is said to satisfy Axiom A if (a) the non-wandering set
Ω(j) = {xeM:U ft U«>o fn(U) Φ 0 for every neighborhood U of x} of / is
a hyperbolic set, and (b) Ω(j) equals the closure of the set of periodic points
of /. If / satisfies Axiom A, one has the spectral decomposition theorem of
Smale [9] which says Ω(f) = Aγ U U AL where At are pairwise disjoint,
/-invariant closed sets and f\Λ. is topologically transitive.

These At are called the basic sets of /, and it is the object of this article to
investigate restrictions on their dimensions imposed by the homotopy type of
/ and the fiber dimensions of the bundles Es and Eu. In [11] S. Smale showed
that any diffeomorphism can be isotoped to a diffeomorphism satisfying Axiom

* A with all basic sets of dimension zero. This disproved earlier conjectures that
some homotopy classes might contain only diffeomorphisms with a basic set of
positive dimension. Theorem 1 below shows that if one restricts either the fi-
ber dimensions of the bundles Eu or the total number of basic sets for /, then
there are indeed homotopy classes all of whose diffeomorphisms (subject to
these restrictions) have basic sets of positive dimension. In Theorem 2 we in-
vestigate diffeomrphisms with a single infinite basic set, the others being iso-
lated periodic orbits. It is a pleasure to acknowledge valuable conversations
with R. F. Williams.

We consider diffeomorphisms which in addition to Axiom A satisfy the no-
cycle property [10] which we now define. If At is a basic set of / then its
stable and unstable manifolds ([5] or [9]) are defined by

W'UJ = {x eM\d(fn(x), At) — 0 as n -* oo} ,
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Wu(At) = {x <= M\d(f-n(x), Λt) -> 0 as π -> oo} .

One says Λ< < Λ3 if ϊFα(Λ,) Π W8{At) Φ 0. If this extends to a total order-
ing on the basic sets Ai9 then / is said to satisfy the no-cycle property and we
re-index so that Λt < Λj when / < /. If At is a basic set of /: M]-^M then
we define the index ut of At with respect to / to be the fiber dimension of
Eu(Λi). All homology and cohomology will be singular with real coefficients
unless otherwise stated.

Theorem 1. // /: M —> M satisfies Axiom A and the no-cycle property and
Hk(M) Φ 0, then there is a basic set At satisfying dim Ai > \k — ut\ where ut

is the index of At.
Hence, if / has fewer basic sets than nonzero cohomology groups, it must

have a basic set of positive dimension, or equivalently:
Corollary 1. // / has only basic sets of dimension zero, then there is a

basic set At with index ut = k for each k such that Hk{M) Φ 0.
Theorem 2. Suppose f\M->M satisfies Axiom A and the no-cycle pro-

perty and has one infinite basic set A, the others being isolated periodic orbits.
If /* : Hk(M) —» Hk(M) has an eigenvalue which is not a root of unity, then
dim A >\n — 2k\ where n = dimM. It A is an attractor, then dim A >
max {(ft — k), k}.

We note that M. Shub [8] has shown that whenever /* : H*(M) -> #*(M)
has an eigenvalue which is not a root of unity, then / must have at least one
infinite basic set.

In case M is the ^-dimensional torus Tn we can strengthen Theorem 2 be-
cause either /*: Hι(Tn) —> H\Tn) has an eigenvalue which is not a root of
unity or /* : H*(Tn) —» H*(Tn) is quasi-unipotent (i.e., has only roots of unity
as eigenvalues).

Corollary 2. // f* : Tn —* Tn satisfies Axiom A and the no-cycle property
and has only one basic set A which is infinite, then either /* : H*(Tn) —> H*(Tn)
is quasi-unipotent or dim A > n — 2.

It is not difficult to construct difϊeomorphisms on Tn with a single infinite
basic set of dimension ft, ft — 1, but the author does not know if there is a
diίϊeomorphism of Γ3 which is not unipotent on homology and with a single
infinite basic set of dimension one (dimensions 2 and 3 can be realized
in this case). The hypothesis that /* not be quasi-unipotent on cohomology is
necessary since it is easy to construct f\Tn^Tn homotopic to the identity
with a single infinite basic set of dimension zero.

We review briefly the filtrations of [10] associated with a diίϊeomorphism
which satisfies Axiom A and the no-cycle property. It is possible to find sub-
manifolds (with boundary and of the same dimension as M),

M = MιZ) . . . ID Mλ D Mo = 0 ,

such that
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A( = n
mζZ

ί(_! U

= n
WU(Λ{) U Λίt_χ - M ^ U Π

ra>0

Henceforth f:M^>M will be a diffeomorphism of a compact manifold
satisfying Axiom A and the no-cycle property and M = Mt Z) M ^ D Z)
Mo = 0 will be a nitration for /. The proofs of Theorems 1 and 2 use the fol-
lowing proposition which may be of some independent interest.

Proposition 1. Suppose f:M-+M satisfies Axiom A and the no-cyclic
property and Λi

(Z.Mi — Mt_x is a basic set of f. Let S = {k\f$ : Hk(Mif Mt_^)
—> Hk(Mi, M^J /zίtf a nonzero eigenvalue}. Then dim ^ > max S — min 5.

We procede now with a sequence of lemmas leading to the proofs of the re-
sults above. We will use closed local stable and unstable manifolds of a point
x € A, denoted Wf(x) and W%x) (see [5] or [9]).

Since it is not in general true that dim (X x Y) = dim X + dim Y it is ne-
cessary to use the concept of cohomological dimension over R [3] defined as
follows : If X is a compact Housdorff space, then diniβ X = sup {k \ Hk(X, A R)
Φ 0} where A runs over all closed subspaces of X and Hk is Cech cohomology
with real coefficients. By a result of [7, p. 152] dim^ X < dim X.

Lemma 1. Suppose At C Mt — Mi_1 is a basic set for f and M ί ? Mt_λ are

the elements of a filtration for f. If k > dim^ W?(Ai)9 then the map ff :

#*(M i? M^J -> #*(M,, Λf^J w nilpotent.
Proof. This is essentially the same as [4, Lemma 6] which drew heavily

on [1]. Let X = WU(Λ%) U M ^ and let if* denote Cech cohomology with real
coefficients. We use the closed local unstable manifolds of [5], The inclusion
(»?(Λ), dW?(Ai)) -> (X, W) is a relative homeomorphism where W =

0^(4)). Hence by a standard result [12, p. 266],

6k(W?(At), dW?(At)) = Hk(X, W)

By definition of

when k > dim^ W?(At). Since PF is compact and X c {Πn^o/~
U Λi it follows that /m(fF) c M^ for some m > 0. The diagram
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commutes. Thus the map (/m)* : Hk(X, Mt_0 -> Hk(X, M ^ ) factors through
Hk(X, W) so that (/»)* = (/*)- = 0 when k > dim^ Wu(Λt).

Now if /* : Hk(Mi, M^J -• Hk{Mt, M^.J is not nilpotent, there is a sub-
space V Φθ with f*(V) = V. By [1, Lemma 1], the map A* is one-to-one on
V where Λ* : # f c(M,, M ^ ) = 6*(Mi9 Mt_J -> #*(X, M ^ ) is induced by the
inclusion h : (AT, M ^ ) —• (Mi9 M ^ J . Thus we have a commutative diagram

Λ*

But, (/*)m/ϊ*(F) = Λ*(/*)mF = A*(F) =£ 0, which is a contradiction if A >
dimBW

u{Λi\ since (/*)w: # * ( Z , M^) -» ϊϊk(X, Mt_J is zero in this case.
Thus it must be the case that /* : # f c (M i ? Mt_x) -> Hk(Mi9 M^) is nilpotent
when k > dim^ Wu{Λτ). q.e.d.

If Λ is a basic set and x e Λ, we let ^;(JC) = PFfO) Π J and ^?(JC) = W?(x)

Π J . While it is true [9] that x e Λ has a neighborhood homeomorphic to
W\(x) X W%x), it appears to be an open question whether or not dim A =
dim W%x) + dim W*(x). For the cohomological dimension over R however
we have the following.

L e m m a 2 . Suppose Λ is a basic set for f , u = fiber d i m £ w ( y l ) , and s =
fiber dim £S(Λ). ΓΛen

(a) dim^ W?(Λ) = dim,, Ws

e(x) + u,
(b) dim^ W AΛ) = dim,, ^ ( Λ ) + s,
(c) dim^ ί̂ = dim^ Wu

e{x) + dim
where x is any point of A and ε > 0 is sufficiently small.

Proof. We will use the following results from [13, Theorem 2.2 and Lem-
ma 2.1]. If X and Y are compact Hausdorfϊ spaces, then (1) dim^ (X x Y) =
diniβ X + dim^ Y, and (2) if w = dim^ X, there exists a point p e X such that
if U is any sufficiently small neighborhood of p in X, then Hn(X, X — U) Φ 0.

Also if y is a compact subset of Â , then consideration of the exact sequence
of the triple (X, Y, A), where A is a closed subset of Y,

Hn(X, A) > Hn(Y, A) -ί-> Hn+\X, Y) ,

shows that dim^ X > dim^ Y.
We begin the proof of (a) by showing that dim^ Ws

ε(x) is independent of
x e A. If y € A, then using the canonical coordinates [9, p. 781] for A and the
fact that Ws(oτb (y)) is dense in A it is easy to show that Ws

ε(x) is homeomor-
phic to a compact subset of fm(Ws

e(y)) for some m. This implies Ws

ε(x) is ho-
meomorphic to a subset of Ws

ε(y) since fm is a diffeomorphism. Thus dim^ ^
iB Ws

ε(y) and the same argument shows dim^ Ws

ε(y) < dimΛ Wl(x).
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By results of [6] there is a continuous map ψ: A —» Emb (D, M) such that
φ(z)(P) = W?(z) where D is the disk of dimension u. The map ψ:Ws

ε(x) X
D —> W™(A) given by ψ(y, i) = φ(y)(t) is a homeomorphism onto a compact
neighborhood Kx of * in ϊF*C4). But it is not possible that dimΛ TFf(Λ) >
dim Kx because the sets Kx cover W?(A) and by (2) above together with exci-
sion at least one of them must have dimension over R equal to that of W?(A).
Thus dun?;, WU

S(A) = dimΛ WSXX) + u for all x e A and (a) is proven. Applying
this result to f~ι proves (b).

To prove (c) we consider the canonical coordinate map p: WsXx) X W*(x)
—• A which is a homeomorphism onto a compact neighborhood Jx of x in A.
By (1) above dim^ Jx = dim^ #7(JC) + dim^ #?(*). Since Jx c Λ, dim^ /,, <
dim^ J and again using (2) above and excision, it follows that dim^ A = dim^ Jx

for some x (and hence for all x since diniβ Ws

ε(x) and dimΛ ^e

w(jc) are inde-
pendent of x). Thus (c) is proven, q.e.d.

Lemma 3. If A3 > A2 > Aλis a sequence of vector spaces exact at
A2, cti: Λι —> ^ are linear maps commuting with i and j , and λ is an eigen-
value of a29 then λ is also an eigenvalue ef either a3 or ax.

This is [4, Lemma 2] the proof is not difficult and will not be repeated here.
Lemma 4. // λ is an eigenvalue of f% : Hk(M) —> Hk(M), then there is an

Mt in the filtration for f such that ft: Hk(Mi, Mi_1) —» Hk(Mi9 Mt_^ has λ as
an eigenvalue.

Proof. Consider the exact cohomology sequence of the triple

Hk(M, Mj) -> Hk(M, Mj_λ) -> H\MP M ^ ) .

There is a map /* induced by / on each of these groups, and these maps com-
mute with the maps of the sequence. We now apply Lemma 1 to this sequence
when / = 1. In this case the sequence is

Hk(M, Md -> Hk(M) -> JΪ*(Af j , Mo) ,

so either λ is an eigenvalue of /* on Hk(Mx, Mo) or an eigenvalue of /* on
Hk(M, Mλ). If the latter we set / = 2 and reapply Lemma 1 to show λ is an
eigenvalue of /* on either Jf/

fc(M2,M1) or Hk(M,M2). Continuing this proce-
dure it follows that λ is an eigenvalue of /* on Hk(Mu Mt_^ for some /, since
Hk(M, Mt) = Hk(M, M) = 0.

Proof of Proposition 1. Let kλ = max S. Then by Lemma 1, kλ < dim^ W%Λj)
and by Lemma 2, dim^ W?(Ai) = diniβ Ws

ε(x) + ut where x e Λt and ut —
fiber dimJ^Wί), so kλ - ut < dim^ Ws

ε(x). Let k = minS and let Mj =
cl(M-Mj). Then since /* : H^M^M^) -* H^M^M^) has a nonzero
eigenvalue, its adjoint f#k : Hk(Mi, Mi_^) —> Hk(Mi, M^.j) has the same eigen-
value. Suppose M is orientable and n = dimM. Then [1, Lemma 4] shows
that if g = Γ 1 : M -> M, gί_fe: H

n-*(Mi_l9 M f) -> H^^M^, Mt) is similar
to either f^k: H^M^M^) -^ H^M^M^) or to -/**. In either case g*_fc



440 JOHN M. FRANKS

has a nonzero eigenvalue. Since g has the same basic sets as / (with W'(f At)
= Wu(g Λi)) and M = Mo z> M1 D DM^ = 0 is a filtration for g, we
can apply to g the argument which showed kλ — ut < dimΛ Ws

ε(x). We have
then that (n - k) - fiber dimEu(g Λ<) < dim^ Ws

ε(g JC) or (n - k) - st <
dimΛ W^if x) where ^ = fiber dim Es(f; A^. Adding this inequality to the
one for kx we have

kx - ut + (n - k) - Si < dim^ Ws

ε(x)

Since n = ut -\- su kx — k < άivsiR A by Lemma 2. That is, max S — min 5
< dimΛ J ί < dim^^.

In case M is not orientable, we let π: M —> M be an oriented double cover
of M and / : M-> M a lift of /. If Λt = TΓ-^^,) and M, = TΓ-^M,), then the

Ai have all the properties of basic sets for / except they may not be topologi-
cally transitive. But / together with the nontrivial covering transformation on
M will be transitive, and this is sufficient for everything we have done. So ex-
actly as above, we use the filtration Mt and prove the result for At (TΓ* : HjiM^
Mt_x) —> Hj(Mi,Mί_1) is surjective—see [1, Theorem 1]). Since d i m ^ =
dim Aί9 this completes the proof.

Proof of Theorem 1. If λ Φ 0 is an eigenvalue of /* : Hk(M) -> H\M)
then by Lemma 4 there is an i such that λ is an eigenvalue of /* : Hk(Mu M^j)
—• Hk(Mi, Mi.j). Now if ut = fiber dim Eu(Ai), then from the proof of Pro-
position 1 we have k — ut < dimΛ Ws

ε(x) and ut — k = (n — k) — st <

Λ W^x) for x e At. Since

dim Λt > dim^ At = dim^ Ws

ε(x)

> max {(k - u€), fa - k)} = \k - ut\ ,

the proof is complete.
Proof of Theorem 2. If Λt C Mt — M ^ is a periodic orbit of period p,

then /p fixes each point of Λt and D/2 p preserves an orientation on Eu(Λi).
Let g = /2p. Since dim Λ4 = 0, it follows from the proof of Theorem 1 or from
[1, Theorem 1] that gf : Hk(Mu M^) -> //^(M^ Λf <_!> is nilpotent unless k =
fiber dim Eu(Ai).

Now let L(g) = Σϊ-o (~ l) f c tr (gf) = ( - l ) w tr (g*) where w = fiber
dim Eu(Λi). By Lefschetz fixed point theory (see [4, Lemma 3] and [2, Theo-
rem 4.1]). L(g) = Σ<z€/ l ί/(g; 0) where I(g q) denotes the index of q under
g, which by a result of *[9, p. 767] is ( - 1 ) \ Hence ( - l ) w t r ( ^ ) * = L(gm)
= (— l)wp for all m > 0. That is, tr (g™)* = p for all m > 0, and it follows
that the only nonzero eigenvalue of g* is 1, with multiplicity p. This is because
the nonzero eigenvalues with multiplicity of a matrix A are determined by the
poles of exp(Σ~ = 1 (tr^4 m )z m /m) (see [1] or [9]) and hence g* has the same
nonzero eigenvalues as the p x p identity matrix. Consequently every nonzero
eigenvalue of /* : //*(M ί ? Mt_d —> i ϊ*(M i , M ^ ) is a root of unity when At is
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finite. This argument is essentially a reproof of a result of M. Shub [8].

Suppose now that M is orientable. If λ is an eigenvalue of /? : Hk(M) —>

Hk(M) which is not a root of unity, then it follows by Poincare duality (see

[1, Lemma 4]) that / * : Hn_k(M) -^ Hn_k(M) has an eigenvalue ±Λ~1 and

hence f*_k: Hn~k(M) —> Hn~k{M) has an eigenvalue which is not a root of

unity. Hence, if A c Ms — Ms_λ is the infinite basic set, then ff : Hj(Ms, Λf β_j)

—• Hj(Ms, Ms_i) has an eigenvalue which is not a root of unity when / = k

and when j = n — k. This follows from Lemma 4 and the fact shown above

that f* \ H*(Mi9Mi_d -^> H*(Mi9Mi_d has only roots of unity and zero as

eigenvalues when i Φ s. Thus by Proposition 1, dimyl > (n — k) — k if n — k

> k and dim A > k — (n — k) if k > n — k so in any case dim A > \n — 2k\.

If A is an attractor, then the filtration can be chosen such that (Ms, M^^) =

(M1? Mo = 0) so /* : H°(MS, Ms_,) = #°(Mi) — #°(Mi) is nontrivial and it fol-

lows from Proposition 1 that dim A > max {(n — k),k}. This proves the theo-

rem in the case M is orientable.

If M is not orientable, let π: M -* M be an oriented two-fold covering of

M and let / : M—> M cover /. The map π* : Hk(M) - * Hk(M) is surjective (see

[1, Theorem 1]) so TΓ* : #*(M) - ^ Hk(M) is injective and it follows that /*_:

Hk(M) —» Hk(M) has an eigenvalue which is not a root of unity. Now if ^

= π~\Λi) it may be that / : Άt —> Άt is not topologically transitive, but the

proof for the orientable case applied to / : M —> M (using the filtration Mt =

TΓ-^Mί)) still shows that if A = π " 1 ^ ) then dim jί > |n — 2Λ| and that if A

is an attractor then dim A > max {{n — A:), A:}. Since dim A = dim Λ, the re-

sult follows.
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