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THE DIMENSION OF BASIC SETS

JOHN M. FRANKS

Letf: M — M be a C* diffeomorphism of a compact connected manifold
M. A closed f-invariant set 4 C M is said to be Ayperbolic if the tangent bun-
dle of M restricted to A is the Whitney sum of two Df-invariant bundles, i.e.,
if T,M = EX(A) ® E*(A), and if there are constants C > 0 and 0 < 2 < 1 such
that

|Df*(V)| < CA™ |v| forveEs, n>0,
|Df~"(V)| < Ca" |v| forveE*, n>0.

The diffeomorphism f is said to satisfy Axiom A if (a) the non-wandering set
Q) ={xeM:U N U, f™U) # @ for every neighborhood U of x} of f is
a hyperbolic set, and (b) Q2(f) equals the closure of the set of periodic points
of f. If f satisfies Axiom A, one has the spectral decomposition theorem of
Smale [9] which says Q(f) = 4, U --. U 4, where /; are pairwise disjoint,
f-invariant closed sets and f|,, is topologically transitive.

These A; are called the basic sets of f, and it is the object of this article to
investigate restrictions on their dimensions imposed by the homotopy type of
f and the fiber dimensions of the bundles E* and E*. In [11] S. Smale showed
that any diffeomorphism can be isotoped to a diffeomorphism satisfying Axiom

* A with all basic sets of dimension zero. This disproved earlier conjectures that
some homotopy classes might contain only diffeomorphisms with a basic set of
positive dimension. Theorem 1 below shows that if one restricts either the fi-
ber dimensions of the bundles E* or the total number of basic sets for f, then
there are indeed homotopy classes all of whose diffeomorphisms (subject to
these restrictions) have basic sets of positive dimension. In Theorem 2 we in-
vestigate diffeomrphisms with a single infinite basic set, the others being iso-
lated periodic orbits. It is a pleasure to acknowledge valuable conversations
with R. F. Williams.

We consider diffeomorphisms which in addition to Axiom A satisfy the no-
cycle property [10] which we now define. If /4, is a basic set of f then its
stable and unstable manifolds ([5] or [9]) are defined by

Wi(d4;) = {x e M|d(f"(x), 4;) >0 as n — o},
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W*(4) = {xeM|d(f™(x), 4) >0 asn— oo} .

One says A; < 4, if W*(4,) N W*(4,;) + 0. If this extends to a total order-
ing on the basic sets A, then f is said to satisfy the no-cycle property and we
re-index so that 4; < 4; when i < j. If 4, is a basic set of f: M,—'M then
we define the index u; of /A; with respect to f to be the fiber dimension of
E*(4;). All homology and cohomology will be singular with real coefficients
unless otherwise stated.

Theorem 1. If f: M — M satisfies Axiom A and the no-cycle property and
H*(M) # O, then there is a basic set A, satisfying dim A, > |k — u;| where u,
is the index of A,.

Hence, if f has fewer basic sets than nonzero cohomology groups, it must
have a basic set of positive dimension, or equivalently :

Corollary 1. If f has only basic sets of dimension zero, then there is a
basic set A; with index u, = k for each k such that H*(M) # 0.

Theorem 2. Suppose f: M — M satisfies Axiom A and the no-cycle pro-
perty and has one infinite basic set A, the others being isolated periodic orbits.
If f*: H* (M) — H*(M) has an eigenvalue which is not a root of unity, then
dim 4 > |n — 2k| where n = dim M. It A is an attractor, then dim A >
max {(n — k), k}.

We note that M. Shub [8] has shown that whenever f*: H*(M) — H*(M)
has an eigenvalue which is not a root of unity, then f must have at least one
infinite basic set.

In case M is the n-dimensional torus 7" we can strengthen Theorem 2 be-
cause either f*: H'(T™) — H'T™) has an eigenvalue which is not a root of
unity or f*: H*(T") — H*(T™) is quasi-unipotent (i.e., has only roots of unity
as eigenvalues).

Corollary 2. If f*: T" — T" satisfies Axiom A and the no-cycle property
and has only one basic set A which is infinite, then either f* : H*(T") — H*(T")
is quasi-unipotent or dim A > n — 2.

It is not difficult to construct diffeomorphisms on 7™ with a single infinite
basic set of dimension n,n — 1, but the author does not know if there is a
diffeomorphism of 7° which is not unipotent on homology and with a single
infinite basic set of dimension one (dimensions 2 and 3 can be realized
in this case). The hypothesis that f* not be quasi-unipotent on cohomology is
necessary since it is easy to construct f: 7" — T" homotopic to the identity
with a single infinite basic set of dimension zero.

We review briefly the filtrations of [10] associated with a diffeomorphism
which satisfies Axiom A and the no-cycle property. It is possible to find sub-
manifolds (with boundary and of the same dimension as M),

M=M,D>..-DM,DM, =90,

such that
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M, U fM)CintM,,
Ai = ﬂ fm(Mz - Mi—l) s

mezZ
Wu(/lz) U Mi—l = Mi—l U "Qofm(Mi) .

Henceforth f: M — M will be a diffeomorphism of a compact manifold
satisfying Axiom A and the no-cycle property and M =M, DM, ;D --- D
M, = 0 will be a filtration for f. The proofs of Theorems 1 and 2 use the fol-
lowing proposition which may be of some independent interest.

Proposition 1. Suppose f: M — M satisfies Axiom A and the no-cyclic
property and A, C M; — M, _, is a basic set of f. Let S = {k|ff: H*(M;,M,_,)
— H*(M,, M;_,) has a nonzero eigenvalue}. Then dim /4; > max S — min S.

We procede now with a sequence of lemmas leading to the proofs of the re-
sults above. We will use closed local stable and unstable manifolds of a point
x ¢ 4, denoted W5(x) and WH(x) (see [5] or [9]).

Since it is not in general true that dim (X X Y) = dim X + dimY it is ne-
cessary to use the concept of cohomological dimension over R [3] defined as
follows : If X is a compact Housdorff space, then dimy, X = sup {k |H*(X,A; R)
# 0} where A runs over all closed subspaces of X and H* is Cech cohomology
with real coefficients. By a result of [7, p. 152] dimp X < dim X.

Lemma 1. Suppose A, C M, — M,_, is a basic set for f and M,, M,_, are
the elements of a filtration for f. If k > dimp W*(A,), then the map f¥:
H¥(M,,M,_,) — H¥*(M,, M,_,) is nilpotent.

Proof. This is essentially the same as [4, Lemma 6] which drew heavily
on [1]. Let X = W*(4,) U M,_, and let H* denote Cech cohomology with real
coefficients. We use the closed local unstable manifolds of [5]. The inclusion
Wwe(4,), oW (4)) — (X, W) is a relative homeomorphism where W =
cl(X — W*(4))). Hence by a standard result [12, p. 266],

HY W4y, aWH(A) = H X, W) .
By definition of dimg,
HEW (4D, aWH(4) =0,
when k > dimp W¥(A,). Since W is compact and X C {(),s, f~™(int M,_,)}
U 4, it follows that f*(W) C M,_, for some m > 0. The diagram

X, M,_) —> X, W)

NG

(Xs Mi-l)
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commutes. Thus the map (f™)*: H*(X, M,_,) — H*(X, M,_)) factors through
H*(X, W) so that (f)* = (f*)™ = 0 when k > dim, W*(4,).

Now if f*: H*(M,, M,_,) — H*(M,;, M,_,) is not nilpotent, there is a sub-
space V # 0 with f*(VV) = V. By [1, Lemma 1], the map A* is one-to-one on
V where h*: H*(M;, M,_)) = H*(M,;, M,_,) — H*(X, M,_,) is induced by the
inclusion & : (X, M,_,) — (M;, M,_;). Thus we have a commutative diagram

H M, M,_) 9% H:M,, M,_)
h* h*
HeX, M,_) 9% BoX, M,_) .

But, (f*)™h*(V) = h*(f*)"V = h*(V) # 0, which is a contradiction if &k >
dim, W*(4,), since (f*)™: H*(X,M,_,) — H*(X,M,_,) is zero in this case.
Thus it must be the case that f*: H¥(M,;, M,_,) — H*(M,, M,_,) is nilpotent
when £ > dim, W*(4,). q.e.d.

If A is a basic set and x e 4, we let W*(x) = W(x) N A and W;‘(x) = W(x)
N A. While it is true [9] that x € 4 has a neighborhood homeomorphic to
Wﬁ(x) X W:‘(x), it appears to be an open question whether or not dim 4 =
dim Wﬁ(x) + dim W:‘(x). For the cohomological dimension over R however
we have the following.

Lemma 2. Suppose A is a basic set for f,u = fiber dim E*(A), and s =
fiber dim E*(A). Then

(@) dimp W) = dimg W(x) + u,

(b) dimg Wi(4) = dim, W(x) + s,

() dimg 4 = dim, W*(x) + dim, Wi(x),
where x is any point of A and ¢ > 0 is sufficiently small.

Proof. We will use the following results from [13, Theorem 2.2 and Lem-
ma 2.1]. If X and Y are compact Hausdorff spaces, then (1) dimz (X X ¥) =
dimz; X + dimg Y, and (2) if » = dimj X, there exists a point p € X such that
if U is any sufficiently small neighborhood of p in X, then HX,X — U) £ 0.

Also if Y is a compact subset of X, then consideration of the exact sequence
of the triple (X, Y, A), where A is a closed subset of Y,

v “ 0 9
HYX,A)—> HY(Y,A) —> H"'(X,Y) ,

shows that dimz X > dimg Y.

We begin the proof of (a) by showing that dimg We(x) is independent of
xe A. If y e 4, then using the canonical coordinates [9, p. 781] for A and the
fact that W*(orb (y)) is dense in A it is easy to show that Wi(x) is homeomor-
phic to a compact subset of f™( W:(y)) for some m. This implies Ws(x) is ho-
meomorphic to a subset of W:(y) since f™ is a diffeomorphism. Thus dimj #*(x)
< dimy W*(y) and the same argument shows dim, W:(y) < dimg W:(x).



DIMENSION OF BASIC SETS 439

By results of [6] there is a continuous map ¢: 4 — Emb (D, M) such that
¢(z)(D) = W*(z) where D is the disk of dimension u. The map + TW(x) X
D — W*(A) given by (¥, ) = ¢(¥)(?) is a homeomorphism onto a compact
neighborhood K, of x in W¥*(4). But it is not possible that dim, W¥*(4) >
dim K, because the sets K, cover W%(A) and by (2) above together with exci-
sion at least one of them must have dimension over R equal to that of W*(A).
Thus dim, W(4) = dim W:(X) + u for all x € 4 and (a) is proven. Applying
this result to f~! proves (b).

To prove (c) we consider the canonical coordinate map p: Ws(x) x W(x)
— /A which is a homeomorphism onto a compact neighborhood J, of x in 4.
By (1) above dimy J, = dimg Wi(x) + dim, W2(x). Since J, C A, dimy J, <
dimy 4 and again using (2) above and excision, it follows that dimz; 4 = dimg J,
for some x (and hence for all x since dimj W3(x) and dimj W*(x) are inde-
pendent of x). Thus (c) is proven. q.e.d.

Lemma 3. If A4, LN A, AN A, is a sequence of vector spaces exact at
A,, a;: A; — A; are linear maps commuting with i and j, and 2 is an eigen-
value of a,, then 2 is also an eigenvalue ef either a; or a.

This is [4, Lemma 2] ; the proof is not difficult and will not be repeated here.

Lemma 4. If A is an eigenvalue of ff : H*(M) — H*(M), then there is an
M, in the filtration for f such that ff: H*(M;, M;_,) — H*(M;, M,_)) has A as
an eigenvalue.

Proof. Consider the exact cohomology sequence of the triple

H*M,Mj;) — H*M,M;_,) — H"M;,M;_)) .

There is a map f* induced by f on each of these groups, and these maps com-
mute with the maps of the sequence. We now apply Lemma 1 to this sequence
when j = 1. In this case the sequence is

H*M,M,) — H*M) — H*(M,, M,) ,

so either 1 is an eigenvalue of f* on H*(M,, M,) or an eigenvalue of f* on
H*(M,M)). If the latter we set j = 2 and reapply Lemma 1 to show 2 is an
eigenvalue of f* on either H*(M,, M,) or H*(M, M,). Continuing this proce-
dure it follows that 2 is an eigenvalue of f* on H*(M,, M,_,) for some i, since
H*M,M;) = H(M,M) = 0.

Proof of Proposition 1. Letk, =max S. Then by Lemma 1, k, < dim, W*(4,)
and by Lemma 2, dimp W*(4,) = dim, W*(x) + u; where x ¢ 4; and u; =
fiber dim E*(4,), so k, — u; < dimgy Wi(x). Let k = min S and let M, =
clM — M,). Then since f¥:H*(M,, M, ) — H*(M;,M;_,) has a nonzero
eigenvalue, its adjoint f,,: H.(M;, M;_,) — H.(M;, M,_,) has the same eigen-
value. Suppose M is orientable and » = dim M. Then [1, Lemma 4] shows
that if g=f'' M —> M, gf .: H"“"(Mi_l, M) — H*(M,_,, M,) is similar
to either f,,: H,M;,M;_,) — H,(M;,M,;_,) or to —f,,. In either case gF ,
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has a nonzero eigenvalue. Since g has the same basic sets as f (with Wi(f; 4,)
=Wwg; A)) and M =M,DM,D ... DM, = ( is a filtration for g, we
can apply to g the argument which showed k, — u; < dim, W*(x). We have
then that (n — k) — fiber dim E*(g; A;) < dim, W*(g; x) or (n — k) — 5; <
dimg W:‘(f;x) where s; = fiber dim E*(f; 4;). Adding this inequality to the
one for k, we have

ki —u; + (n — k) — s, < dimg W(x) + dimg W (x) .

Since n = u; + §;, k;, — k < dimy 4 by Lemma 2. That is, max S — min S
< dimy 4; < dim 4,.

In case M is not orientable, we let 7: M — M be an oriented double cover
of M and f: M — M a lift of f. If A, = z~'(4;) and M, = z~*(M,), then the
4, have all the properties of basic sets for f except they may not be topologi-
cally transitive. But f together with the nontrivial covering transformation on
M will be transitive, and this is sufficient for everything we have done. So ex-
actly as above, we use the filtration M, and prove the result for /;, (my: H (MZ,

M;_ ) - H;M;,M,_) is surjective—see [1, Theorem 1]). Since dim 4; =
dim 4, this completes the proof.

Proof of Theorem 1. If 2 # 0 is an eigenvalue of f*: H*(M) — H*(M)
then by Lemma 4 there is an i such that 1 is an eigenvalue of f*: H*(M,;, M,_,)
— H*(M;,M,_,). Now if u; = fiber dim E*(/;), then from the proof of Pro-
position 1 we have k — u; < dimp W*(x) and u;, —k=@n — k) —s5; <
dimy W*(x) for x e A,. Since

dim 4, > dimy 4, = dim, W:(x) + dim, W*(x)
> max {(k — uy), (u; — k)} = |k — uy,

the proof is complete.

Proof of Theorem 2. If A, C M; — M,_, is a periodic orbit of period p,
then f? fixes each point of A; and Df?? preserves an orientation on E*(/4,).
Let g = f**. Since dim 4; = 0, it follows from the proof of Theorem 1 or from
[1, Theorem 1] that g¥: H*(M,, M,_,) — H*(M;, M;_,) is nilpotent unless k =
fiber dim E*(4,).

Now let L(g) = X2, (—D*tr(gf) = (—1*tr(gf) where u = fiber
dim E“(4;). By Lefschetz fixed point theory (see [4, Lemma 3] and [2, Theo-
rem 4.11). L(g) = X},c4 I(g; q@) where I(g;q) denotes the index of g under
g, which by a result of [9, p. 767] is (—1)*. Hence (—1)* tr (g®)* = L(g™)
= (=1)*p for all m > 0. That is, tr (¢™)* = p for all m > 0, and it follows
that the only nonzero eigenvalue of g¥ is 1, with multiplicity p. This is because
the nonzero eigenvalues with multiplicity of a matrix 4 are determined by the
poles of exp (35, (tr A™)z™/m) (see [1] or [9]) and hence g has the same
nonzero eigenvalues as the p X p identity matrix. Consequently every nonzero
eigenvalue of f*: H*(M;, M;_,) — H*(M;, M;_,) is a root of unity when /4, is
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finite. This argument is essentially a reproof of a result of M. Shub [8].

Suppose now that M is orientable. If 2 is an eigenvalue of f}¥: H*(M) —
H*(M) which is not a root of unity, then it follows by Poincaré duality (see
[1, Lemma 4]) that f,: H,_,(M) — H,_,(M) has an eigenvalue +21"' and
hence f* ,: H* *(M) — H* *(M) has an eigenvalue which is not a root of
unity. Hence, if 4 € M, — M,_, is the infinite basic set, then f¥ : H/(M,, M,_,)
— Hi(M,, M,_)) has an eigenvalue which is not a root of unity when j = k
and when j = n — k. This follows from Lemma 4 and the fact shown above
that *: H*(M,;,M,_,) — H*(M;, M;_,) has only roots of unity and zero as
eigenvalues when i # s. Thus by Proposition 1, dim4d > (n — k) — kif n — k
>kanddimA4d >k — (n — k) if k > n — k so in any case dim 4 > |n — 2k]|.
If A is an attractor, then the filtration can be chosen such that (M, M,_,)) =
M,, M, = §) so f*: H(M,, M,_)) = H'(M,) — H(M,) is nontrivial and it fol-
lows from Proposition 1 that dim 4 > max {(n — k), k}. This proves the theo-
rem in the case M is orientable.

If M is not orientable, let 7: M — M be an oriented two-fold covering of
M and let f: M — M cover f. The map =, : H,(M) — H (M) is surjective (see
[1, Theorem 1]) so z*: H¥(M) — H*(M) is injective and it follows that f:
H*(M) — H*(M) has an eigenvalue which is not a root of unity. Now if A,
= n~'(4,) it may be that f: A4; — A, is not topologically transitive, but the
proof for the orientable case applied to f: M — M (using the filtration M, =
77} (M;)) still shows that if 4 = z~'(/) then dim A > |n — 2k| and that if 4
is an attractor then dim 4 > max {(n — k), k}. Since dim 4 = dim /, the re-
sult follows.
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