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METRICS WITH VALUES IN ENDOMORPHISMS
OF A FIBRE BUNDLE

PAUL L. KING

Introduction

The essential features of an inner product on a (finite-dimensional) real
vector space V are symmetry and positivity. Hence in § 1 the notion of inner
product is generalized to linear maps Φ: V (x) V —> Horn (W,W), where W is
a real finite-dimensional inner product space and Φ has the properties : (i) for
all u,v <zV, Φ(u, v) = Φ(v, w)* ; (ii) for all v Φ 0, Φ(v, v) is a positive trans-
formation. Such a map is called a Horn {W)-valued inner product; the set of
Horn (PF)-valued inner products on V may be identified with a subset of
Horn (V, V) (x) Horn (W, W). Real inner products on Rn, hermitian inner pro-
ducts onCn ( = R2n), and certain Clifford structures are examples of Horn (W)-
valued inner products.

There are natural actions of GL(V) ® GL(W) and SO(V) (g) SO(W) on the
set of Horn (JΓ)-valued inner products ; these actions are investigated and their
isotropy groups computed for some special cases. Generically these groups are
trivial.

If M is a smooth oriented manifold, the notion of Riemannian metric on M
is generalized in § 2 to the smooth assignment of a Horn-valued inner product
on the tangent space, and the space W at each point may be taken as the fibre
at the point of a vector bundle Ψ` on M. Thus a Horn (Ψ`)-valued metric of
type Φ is a reduction of B(M) (x) B{Ψ`) to a principal bundle BQ, where G is
the isotropy group of Φ under the GL-action.

Horn (W`)-valued connexions and covaήant differentiation are defined in
§ 3. Compatibility and symmetry conditions for a connexion are given; there
exist symmetric connexions compatible with a given metric, and the self-adjoint
parts of all such connexions are equal. There are two ways of computing
second covariant derivatives ; generally these methods produce unequal results.
There is at most one symmetric compatible connexion for which the second
derivatives are equal; if such a connexion exists it is said to be invariant. In-
variance is a generalized kahler condition.

In § 4 a torsion form is introduced using G-structures. Vanishing of torsion
is interpreted as an integrability condition in several cases. An invariant com-
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patible symmetric connexion is shown to have torsion zero. Horn (Ψ`)-valued
curvature is defined and constant curvature analyzed for invariant metrics. A
structural equation is then derived.

It is a pleasure to thank I. M. Singer for his help on all stages of this work.

1. Horn (JF)-valued inner products

Let V be a real ^-dimensional vector space, and W real ra-dimensional inner
product space. A Horn (W)-valued inner product on V is a linear map Φ: V
<g) F -> W* (x) W satisfying:

(i) for all v, vr e F, Φ(v, v') = Φ(v', v)*,
(ii) for all v Φ 0, Φ(v, v) is positive.

Φ induces an inner product g on V by g(v, vf) = — tr Φ(v, v'). Denote by g
m

the map V -> F * : v -• g(v, •) and by g the map g~1 :V*-+V. Also define
^ * ( x ) ^ ) by Φ(v)<ψ. = Φ(v, gψ). Let tτΦ:W-+W be

]
= l

^ί), where {Vi} is any g-orthonormal basis for V. Clearly this defini-

tion is independent of choice of basis.
Any inner product structure <( , > on W induces from Φ a map V (x) V —> (W

® W)* and its adjoint W<&W -»(V®V)*. Identifying V with F * via g then
gives Φ* : W ® W —> F * (x) V, which in turn induces a new inner product

< , >~ on W: <H>, w'>~ = i - tr Φ*(w, wƒ). Φ is proper if < , > = < , >~.
n

Proposition. A necessary and sufficient condition that Φ be proper is that
tr Φ = nidw.

Proof. Let ^ ,•••,i ;„bea g-orthonormal basis for F. We have (w, w'}~

= 1 tr (Φ*(w, wθ) = — Σ ^(Φ*(w, w")vt, Vi)= — Σ <$(Vί, vow, wfS) =
n n ί=i n i

—<(tr Φ)w, H ; />. q.e.d.
n

There is a natural action of GLV (x)^ G L ^ on the set of Horn (PϊO-valued
inner products on V, given by

((R, S)Φ)(v, v') = S*Φ(Rv, Rv')S

for (R,S) eGLv®GLw. (The action is of GLV®RGLW instead just of
GLV x GLW since, by the linearity of Φ, (R, tS)Φ = (ίΛ, S)Φ = ί2(K, S)Φ for
(Λ, S) 6 GL F x GLW, t eR.) This action restricts to an action of SOV (x) SOW.
Let G and G denote the identity components of the isotropy of the GL and
SO actions for some Φ, respectively.

Example 1. If dim W = 1, then a Horn (JF)-valued inner product on F is
just a real-valued inner product on F. In this case G — G = SOV.

1.1. Proposition. If n>2, m>2, then for generic Φ, G w
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Proof. Suppose there is a 1-parameter family of solutions (Rt,St) to the
equation (Rt,St)Φ = Φ (\t\ < ε) such that (RQ,S0) = I. We may assume that

(Rt,St)\t=0 Φ 0. Choosing coordinates in V and writing Φ = (φtj), R = (Rid)

(φij € Horn (W, W), RtJ <= R), we have from (Rt,St)Φ = Φ the system of
equations

ijSϊ1 = Σ φaβRat.tRβj.t for all i, ƒ ,
a,β

whence

i.e.,

0 = lim l ( V v * A 1 - Σ φaβR«i,tRβj,t) ,
ί-0 ί \ a,β /

o = φijSΓ`'(O) + s*-"(p)φij - Σ ΦiβR'βjAW - Σ
β ' «

This is a system of \nm(nm + 1 ) linearly independent homogeneous linear
equations in n2 + m2 — 1 variables (the — 1 occurs because GLV and GLW are

tensored together over R). Thus there are no nonzero values for (Rt, St)\t=Q,

at

a contradiction, if \mn(mn + 1) > n2 + m2 — 1. But n>2 and m>2 imply

m>

1 13 -

V2 •
— n

2(n2-

-n +

2(n2

4_
2) h

V« 2 —

-n

- 2 )

4(n2 -

4- ^ 1 :

2

2
n2 -

2)(2-

3

2 +

2n2)

4(n2

n2

— 2)2

2{n2 - 2) '

whence (n2 — 2)m2 + nm + (2 — 2n2) > 0 by the quadratic formula, i.e.,
\mn(mn + 1) > m2 + n2 — 1.

Notation, GV = GΓ\(S<9FΘ{/}), GW = GΠ({/}ΘS<V>, G7 = G / G F + G w .
The proposition shows that unlike the situation when dim V or dim W is 1,

for dimensions > 1 generically G = {/}. Observe also that there is no reason
to expect generally that G = G, i.e., that (as in the one-dimensional cases)
every isotropy element will be orthogonal. Since G is the maximal compact
subgroup of G, of course G retracts onto G. In addition there are other rela-
tions between G and G:

1.2. Proposition. If (R, S) e G we may assume that R e SLV; then
SεSLw. Thus there is a natural inclusion G->SLV®SLW. Moreover,
G Π (SLV 0 SOW) = GΠ (SOr Θ SLW) = G.
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Proof. I R , (det R)s] = (R, S) as an element of G c GLV <g)
\ det # /

so clearly we may assume that det R — 1. Now for all v e V, det (Φ(v, v))

= det (S*Φ(Rv, Rv)S) = (det S)2 (det Φ(Λv, Rv)), so d e t Φ ( ‰ ? j R ^ = (det S)2

detΦ(v,v)
is independent of v. Hence det Φ(RNv, RNv) = (det S)2iVΓ det < ‰ v), which is
possible for all v,N only if (detS)2 = 1. Therefore det 5 = 1 since (R,S) is
in the identity component of the isotropy. Finally, if R (respectively, S) is or-
thogonal, conjugation of Φ by R (resp., S) leaves invariant the positive trans-
formation tr φ e Horn (W, W) (resp., tr Φ* e Horn (F, F)). Conjugation of tr φ
by S (resp., tr Φ* by R) must therefore also leave it invariant. Therefore
S <= SOW (resp., R <= S 0 F ) .

1.3. Corollary. G Π (GLF (x) {/}) = G F , G Π ({/} (x) GL^) = G^.
Observe that Φ: F (x) F -> H *̂ (x) W induces (identifying PF with W* via the

inner product < , » a symmetric bilinear form (F (x) PF) (x) ( F ® PΓ) —• R. In
general this form need not be positive. (The lack of necessary positivity in
higher dimensions than 1 is why not to expect that generally G = G. When
dim W = 1, the form is, in effect, Φ itself, and therefore is positive.)

1.4. Proposition. If the induced bilinear form on V ®W is positive,
then G = G.

Proof. A positive bilinear form is preserved under conjugation only by
orthogonal transformations, and (R, S) is orthogonal as an element of GLVΘW

if and only if R e Ov, S € Ow.
Example 2. Suppose dim W = 2, Jw: W —+W is <(, >-orthogonal with

Pw = —I, dim V = 2k. Suppose Vr and Vi are complementary /:-dimensional
subspaces of F with projections πr, πt. Suppose Φ is a Horn (PF)-valued inner
product satisfying

Φ(u, v) = (g(πru, πrv)

, πrv) - g(πru,

for some positive symmetric real-valued bilinear form g on F. Then F is given
an almost-complex structure Jv defined by Φ(Jvv) = JwΦ(v), Φ is an hermitian
metric on F, and g = £ tr Φ. In this case G F = U(k) C SO(2k), Gw = SO(2)
= S\ Gf = 0.

Example 2 bis (cf. [4, p. 22]). A compto-bilinear map F:Cn®Cn-*Cm

is V-hermitian if for all w, v e Cn, F(u, v) = F(v, u), F(u, u) e V (where F is a
given convex cone, not containing an entire line, in RM ; for instance the cone
of positive transformations in GL(m, C) (m2 = M)), F(u, u) = 0 only if u = 0.
By suitably embedding CM in GL(m, C) we obtain the complex analog of a
Horn (GL(m, C))-valued inner product on Cn (i.e., a map Φ\U®Ό -*W*(g)W
such that Φ(u, u') = Φ(u', u)*, Φ(u + tuf, κ") = Φ(u', u"`) + tΦ(u', uΠ) for
/ e C, and Φ(u, u) is positive for u Φ 0).
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Example 3. Suppose V is of even dimension 2k, and a: C(V) —• Horn (W)
represents the Clifford algebra of V as endomorphisms of a vector space of
dimension 2k over R or 2k~ι over H = quaternions. Then Φ(u, v) = α(w)α:(ΐ;)*
defines a Horn (JJO-valued inner product on V, which may be considered a
C(F)-valued inner product. Here G F = 5p F and Gw = SOW.

Example 4. Dim V = 2, dim JF = 2Λ. There are three possibilities : (i)
G = I®GW\ (ii) G = Sι 0 G^, G F = S1; (iii) G = S1 0 G^, G F = 0. (The
only other seeming possibility would be that G F = S1 and G' = S1, but this cannot
happen. For suppose G F = S\ (R, S) e G. Then (R, I) <= G also; hence so is
CR, 5) CR, 7)"1 = (/, 5), and (/, S)eGw. Therefore G' = G/Gv 0 G ^ is trivial.)
Let / : V —> F be g-orthogonal with J2 = —I. A necessary and sufficient con-
dition for (ii) is that there exist a positive linear map A:W^>W with XτA— 2k,
and a skew-adjoint map B: W ̂ W, such that for any I ; , D ' € F , Φ(V, V*) =
g(v, v')A + g(Jv, v')B. In fact, this condition is clearly sufficient. On the other
hand, if Gv = S\ we must have: for all v such that \v\ = 1, Φ(t;, v) = A for
some fixed positive ^4, and Φ(Jv,v) = B for some fixed B. But then £ =
Φ(Pv, Jv) = —Φ(v, Jv) = — 5 * , so B is skew-adjoint. Finally, for all v, vf e F,
w r i t e v' = av + bJv; t h e n Φ ( v , v θ = \v\2 Φ(v/\v\, av/\v\ + bJv/\v\) =
a \v\2 A - b\vfB = g(v, v')A + g(Jv, v')B.

Necessary and sufficient conditions for (iii) are: there exists eM e SOW such
that: (a) for all θ e R, e~MΘ (tr Φ)eMΘ = tr φ; (b) for any nonzero v e V

e~MΘB'eMΘ = B' ,

e-πM/2β//eπM/2 = _ β"

φ(v,v) = J(trΦ + e-'M/iB"fM'A -

Φ(Jv,Jv) = J(lxΦ - e-*MlkB"e"* +

where we have written Φ(/v, v) = 5 = 5 ' + B" with 5 / r (respectively, Bf) self-
adjoint (resp. skew-adjoint). For suppose (eίθ,eMΘ) fixes Φ, θ generic. Since
by hypothesis G F = 0, we have G = Gw + S\ where S1 is given by
{(eiθ, eMΘ): θ € R}. Since conjugation by e ί β does not alter tr Φ, it follows that

6-MΘ ( t r φ}eMβ — tr φ for all <9 6 i^. Now choose nonzero v eV ;{v, Jv} is a basis
for F. Let A = Φ(v, v), C = Φ(Λ;, ƒv), 5 = Φ(Jv, v), and write ^ ^ = S,

ίθ _ fcos θ — sin ^

~ Isin0 cos^J

Using A + C = tr Φ we see that the equation (eίθ, eMΘ)Φ = Φ is equivalent to

( 1 ) Acos2θ - S*AS + B" sin 20 + (tr Φ) sin2 0 = 0 ,

( 2 ) Λi sin 2Θ - Bft cos 2Θ - Br + 5*55 - (tr Φ) sin 0 cos θ = 0 .

The skew-adjoint part of (2) gives e~MΘB'eMΘ = B'. Considering symmetric
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parts, multiplying (1) by sin 2Θ, (2) by cos 2Θ, and subtracting give

S*AS sin 2Θ - B" + S*B"S cos 2Θ - (tr Φ) sin θ cos θ = 0 .

Conjugating by S* and subtracting from (2) yield

( 3 ) B" cos 2Θ = i (S#"S* + S*5"S) .

Choosing 0 = \π gives

eπM/iβ//e-πM/4 _|_ g-πM/iβ//gπM/4 __ Q

i.e.,

and the formulas for Λl and C now follow from (2) and tr Φ = A + C. Finally,
to show the conditions sufficient, diagonalize B" and find S explicitly from (3).
In fact, one may choose coordinates so that

B =

— a,

ak

la,

A = tr Φ +

, λλ > • • • > λk > 0 (not all λ3 = 0) ,

C = tr φ -

Example 5. Dim V = 2&, dim W = 2. This case is almost but not quite
dual to the preceding. Again there are three possibilities: (i) G = Gv ® {/};
(ii) G = Gv Θ S1, G w = S1 \ (iii) G = Gv 0 51, G ^ = 0. This time a necessary
and sufficient condition for (ii) is that Φ be proper and that there exist a skew-
adjoint map B: V -> F such that for all w, w' 6 W, Φ*(w, w1) = <w, w'>7 +
<(/>v, w ^ 5 , / being an <( , )-isometry with /2 = —/. Similarly a necessary and
sufficient condition for (iii) is that Φ be proper and that for w € W there exist
an eM e 5OF such that:

eMβ = Bf ? f o r ^ 0 6 jR ,

e-M/2β//eM/2 __ __2J"
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φ*O, w) = I + \{e-«M"B"e«MI" - eM"BrreπM")

Φ*(ƒ>v, Jw) = / - J(e**/*5'V1"4 - e*M/iB"e*M») ,

where £ " (respectively, £') is the self-adjoint (resp., skew-adjoint) part of
Φ*(Jw, w).

The necessity for the propriety of Φ is seen as follows. Pick orthonormal
bases for V and W with respect to g and < , >; write Λl = Φ*(w, w), C =
Φ*(Jw,Jw). The orthogonality of the basis for V implies that A + C = 21.
The conditions for the propriety of Φ are that tr A = tr C = n, tr B = 0. But
in both cases (ii) and (iii) we must have A ~ C, B ~ — 5 * , so these conditions
must be fulfilled. In this case, by taking suitable coordinates we may write

B =
—λk

la,

> > λk > 0

A =

1

C =

not

^l

= 0

-λk

-λk

• ^l 1

Example 6. Suppose j:V->Horn(W) is linear; thenΦ(v, v') = j(
is a Horn (JF)-valued inner product. Suppose <€ C Horn (W) is a represented
Clifford algebra and image Φ c ^ , F splitting into subspaces Vt each linearly
isomorphic to # under ƒ and such that Φ ( ^ , vfc) = 0 for vt e Vi9 vk G Vk, i Φ k.
Then Φ defines a Clifford module structure on V. In this case Gv is a direct
sum of spin groups, Gw varies.

The set of Horn (W)-valued inner products on V can be identified, via
choices of bases on V and W, with a subset of the symmetric (ran x mri)-
matrices. The subset is clearly convex and open, and properly contains the
positive (rnn x ran)-matrices. It is thus an open \mn{mn + l)-cell. The orbit
space is the quotient of this cell under the effective action of the (ra2 + n2 — 1)-
dimensional group GLV ® GLW, which is a free action off a set of measure
zero.
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2. Horn (τΓ)-valued metrics

Throughout the sequel unless otherwise noted we shall assume M to be a
smooth oriented n-dimensional manifold, and Ψ` an oriented vector bundle on
M with m-dimensional fibre, isomorphic with the inner product space W and
thus itself inheriting an inner product; that is, we assume a priori a (real-
valued) metric on Ψ`. If Φ is a Horn (W)-valued inner product on the n-dimen-
sional vector space V, a Horn (Ψ`)-valued metric of type Φ on M is a reduction
of the principal bundle B(M) (x) B(Ψ`) (with group GLV (x) GLW) to a principal
bundle BQ with fibre G. If the fibre B(M)X (respectively, B(Ψ` x) is considered
as the collection of isomorphisms V —> TMX (resp., W —• T F J we may, given
Φ, write ΦX(X, Y) = qo Φ(p~'X, p~Ύ) o <?"1 for X, Y 6 TMX, (p, 4) € Bfi. By
definition of G, ΦX(Z, Y) is defined independently of choice of (p, q). Thus a
Horn (τF)-valued metric of type Φ may be considered the smooth assignment
of Horn (7FJ-valued metric to TMX, with the metric at each point being in
the orbit of Φ.

Example 1 (cont.). If Ψ` is the trivial line bundle, then Φ is an affine inner
product on V, and a Horn (τΓ)-valued metric on M is just a Riemannian metric
on M.

Example 2 (cont.). If T F is a trivial i^-bundle, and Φ is as in Example 2,
then a Horn CR2)-valued metric of type Φ defines an almost-complex structure
with hermitian metric on M.

Example 3 (cont.). If Φ is as in example 3, then a Horn (τF)-valued metric
on M defines an almost-Hamiltonian structure (cf. [5, p. 36]) on M, with a
"Clifford-valued" metric.

We consider the problem of the existence of a Horn (#")-valued metric of
type Φ.

2.1. Proposition. The existence of a Horn (Ψ`)-valued metric of type Φ
on M is equivalent to the reduction of BSOv(M) (x) BSOw(Ψ`) to a principal
bundle BG with group G. If Gf == 0, then this reduction is possible if and only
if BSOv(M) and BSOw(Ψ`) reduce to BGv(M) and BGw(Ψ`), respectively, i.e., if
and only if the associated bundles BSOv(M)/Gv and BSOw(Ψ`)/Gw admit
sections.

Proof. The first statement is clear, since B(M) (x) B(Ψ`) can always be re-
duced to BSOv(M) (g) BSOw(Ψ`), a principal bundle with group the maximal
compact subgroup of GLV (x) GLW. The obstructions to reducing to BG lie in
H*(M, π*(SOy ® SOW/G)), and when G' = 0 this is just #*(M, π*(SOv/Gv 0
SOW/GW)) = H*(M,π*(SOylGy)) + H*(M, π*(SOw/Gw)), proving the other
assertion, q.e.d.

For trivial Ψ` the metric thus exists if and only if BSOv(M)/Gv is sectionable.
If Ψ` is nontrivial, then both bundles must be tested.

Example 2 (cont.). Gw = SOW « E/(l), so BSOw(Ψ`)/Gw is trivial and
admits a section whether Ψ` is trivial or not, and M admits a Horn (τF)-valued
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metric of type Φ if and only if M admits an almost-complex structure.
Example. The preceding discussion has assumed M to be oriented. Suppose

for this example that M is the (nonorientable) Mobius strip. M does not admit
a Horn CR2)-valued metric of type Φ in Example 2 because it is not almost-
complex. However, M does admit a Horn (ΓM)-valued metric of type Φ as
follows: pick a Riemannian metric on M, and define Φ(u, v) = rotation of the
tangent plane so as to carry the unit vector in the direction of u to the unit
vector in the direction of v, and scalar multiplication by |w|•|v|. The existence
of this Φ may be thought to say that M is "twisted almost-complex" (its double
cover is almost-complex).

Example. If V = R" = W,

(ei9

Φ:\

( β „

02,

e2)]_

e3)/

e)- >O

Ό
1

0

.0

0
1

0

0

1
0

0

0

- 1

0

0

0

0
0

0
_ 2

0

0

0 -

2

otherwise,

0
0

2

0.

ò
0

2

α

then Gv = E/(2) and Gw = S1 X S\ SOW/GW ~ S2 X S\ and BSOw(iΓ)/Gw

is sectionable when the obstruction c e H3(M,π2(SOw/Gw)) vanishes [6, p.
178]. Thus a Horn OF)-valued metric of type Φ exists if and only if M is
almost-complex (so BSOv reduces to BGγ = Bϋ{2)) and Ψ` admits an almost-
product structure (so BSOw(Ψ`) reduces to BGw = J 5 5 1 x 5 1 ; cƒ. [5, p. 36]).

Example 3 (cont.). The obstruction to reducing BSOv(M) to 5 5 P F (M) is
the second Stiefel-Whitney class of M. When this vanishes, i.e., when M is a
spin manifold, a bundle with fibre W can be defined such that C(TMX) =
Horn C#'\p). Then SOW/GW = 0? so a metric of type Φ exists.

Now suppose G' ψ 0. If and BSOw(Ψ`) reduce to J 5 G F ( M ) and
BGw{W`), then a Horn (τF)-valued metric of type Φ exists. However, the con-
dition is not necessary. Let j : G'-^ (SOV ® SOW)/(GV ® Gw), q:(SOv®
SOW)/(GV 0 Gw) —• (SOV 0 SOW)/G. Then we have an exact sequence

> πί+1((SOv 0 SOW)/(GV ©

> TΓ,(GO - ! l > π,((SOy © 5O

whence a short exact sequence

©

© G^)
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0 _ _ ^ πi((SOr®SOw)/(Gr®Gw)) _

— ker {/# : T Γ ^ ( G ' ) > 7Γ^((5O„ Θ SOW)/(GV © G^))} > 0

and an exact cohomology sequence

> fl*-(M, ker/,) - £ >

- ^ > #*(M, π,((SOy © SOW)/G)) - ^ > iϊ*(Af, ker /*) > •. • .

Suppose c fc+1 € Hk+ι(M, πk((SOv 0 SOW)/(GV 0 G^))) is the primary obstruc-
tion to the sectioning of BSOv(M)/Gv and BSOw(Ψ`)/Gw. Then c fc+1 induces
an element cfc+1 e Hk+1(M, πk((SOv φ SOW)/G)), which is the primary obstruc-
tion to sectioning (J3^(M) 0 BSOw{Ψ`))jG. We also have an exact sequence

0 > ƒ>*(G') - % ττfc((5OF 0 5O^)/(G F φ Gw)) >

- ^ πk((SOv 0 SOw)/(Gy 0 G^))/ƒ>,(GO > 0 ,

where p* is defined by the sequence, whence a cohomology sequence

© 5O^)/(G F 0 Gw)))

πMSOv®SOw)/(Gv®Gw))\ >

Hence
2.2. Proposition. The primary obstruction to reducing to BG, ck+1 = 0,

if and only if

ck+ι = a*h, he Hk+1(M, j*πkG0) ,

or

p*ck+1 = β*h , he Hk(M, ker j*) ,

(notations as in preceding discussion).
2.3. Corollary. Suppose j : Gr -> (5OF © SOW)/(GV © G^) ίndMc^

homotopy injections at all levels. Then the primary obstruction is an element
of Hk+\M, πk((SOv © SOW)I(GV © Gw)))/Hk+\M, πkG').

Proof. For Hk(M, ker ƒ*) = 0 for all k, so cfc+1 = 0 if and only if ck+ί =
a*h for h e Hk+ι(M, ƒ> f cG'), or alternatively, ck+1 = α'*A', where A7 e Hk+1(M,

and
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α'* : #*(M, πkG') • #*(M, ƒ>*G')

<=^> H*(M, πk((SOr Θ SOw)/(Gr Θ Gπr))) .

Example 5 (cont.). If dim JF = 2, then G/ vanishes unless G ^ = 0, and
then Gr = 0 or S1. In the latter case we have topologically G = Gv X S1, so
j : S° ~ (SOy/Gy) x S1 induces an injection in homotopy. Hence the obstruc-
tions to a Horn (#>valued metric of type Φ lie in Hk+1(M, πk((SOv/Gv) X
Sι))IHk+ι(M, πjc(S1)). Thus we have a corollary to the previous proposition:

2.4. Corollary. In this example a metric of type Φ is possible only if the
only obstruction to sectioning (SOV/GV) X S1 lies in H2(M, π,((SOy/Gy) X S1)).

For instance, if dim M = 2 and Φ is given by

ί \ ί1 1/41 , . Γl - 1 / 4 '

lJ ' 2' 2 L — 1 / 4

10 -1/4J

for some eγ € F and e2 = /^! (ƒ2 = - / ) , then SOV/GV = S\ and j* : TΓ^GO

= π,(S1) -> πSiSOyjGy) X Sι) = Z ® Z: n-> (n,n). Since H\M,Z 0 Z ) =
Z 0 Z , M will not admit a Horn (7Γ)-valued metric of type Φ with #^ trivial
unless M is flat. But M will always admit a Horn (TM)-valued metric of type
Φ. (Choose an almost-complex structure J on TM and for any unit vector
veTM define

Φ(v, v): v —> v + \Jv , Jv —> \v + Jv ,

, v ) : v —> ̂  , /?; —> i/'z;.)

In fact, the discussion shows that M admits a Horn (τF)-valued metric of
type Φ if and only if the characteristic class (in the sense of [6, p. 178])
c 6 H\M, πx{SOw)) of Ψ` generates H\M, Z).

Now the fibre (Bβ)x of Bβ (x e M) may be considered as a set of isomorphisms
V (x) W -> ΓM, (g) ^ , The right action of G on 5 g is then given by

(RCa,b)(P,<l))(v,w) = (p,q)(av,bw) .

As previously noted, G may be considered naturally as a subgroup of SLV 0
SLW, where W is given its a priori inner product and V has the inner product
g induced by Φ.

If π: BQ^ M is the projection, define a K-valued 1-form ω on i? g by

ω(X(PtQ)) = p~ιπ*X. Similarly the fundamental linear form ω on 5 e is the

Horn (F*, Horn (W, W)) πV ®W*®W -valued 1-foπn on BQ defined thus :
for X 6 Γ(Pfβ)Bff, v * 6 F * ^ e ^ ; c = τr(p, q),
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Observe that ω = Φ o ω and also that

Alternatively, think of ω as a (V ® W* (g) W)-valued form, and (4) becomes

(5) Rfa,„Z = (a-\b,b-`)5,

where α and Z?~1 act on the left and b acts on the right.

Infinitessimally, let (A, B) e ̂  == Lie algebra of G. Then (exp tA, exp tB) e G

and i^(exp^, expži?) is a one-parameter group of difϊeomorphisms of BQ. Let its

infinitessimal generator be (A,B). Clearly ~ commutes with Lie bracket and

π*(A, B) — 0. Thus we have described a canonical isomorphism of $ with the
tangent space to the fibre of BQ at any point. The infinitessimal version of (5)
becomes

WΓtf) _J dω = (-A,I,I)ω + (I,B,I)ω + (I,I,-B)ω

= {-A ®I®I + I®B®I-l®l®B)ω,

where _ι denotes interior product. Write

ψ(A,B) = (-A ®I®I + I®B®I-I®I®B).

Let (p, <?) e 5g, and let HiPtQ) be an n-dimensional subspace of T(p>q)BQ.

H(Pfq) is horizontal if π*H(p>q) = Tπ(p>q)M, i.e., if fl(p,β) is complementary to

the tangent space of the fibre. Then ω: HiPtQ) -* F is an isomorphism, and the

restriction dω: H(PtQ) Λ ί?(p,β) -* V ® W* ® W is now given by the linearity

of Φ as dω = Φodω.

3. Horn (τF)-valued connexions

In this section we shall assume M to be an oriented n-dimensional manifold,
Ψ` a vector bundle of inner product spaces on M with fibre dimension n, and
Φ a Horn (#O-valued metric on M. The real-valued bilinear form g(X, Y) =

tr Φ(X, Y) on TM is a Riemannian metric on M, called the metric induced
m
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by Φ. g induces maps g:TM-+ T*M: X -* g{X, •), and g = g~ι: T*M -> TM.
Define Φ:TM-> L{T*M, Horn ( Ό : Y -> Φ{Y, g(•))•

,4 #ora {Ψ`)-valued connexion on (M, Φ) is a linear map F : Γ{TM) <g) Γ(ΓΛf)
->Γ{L{T*M, Horn (TΓ))) such that for all X,Ye Γ{TM) and smooth f:M->R,

w w w w

vsxγ - WxY, F*/r = (^ƒ)φ(y) + /r x y.

Locally, a Horn (τF)-valued connexion may be constructed thus. Let xι be
local coordinates on M, inducing coordinates dt on TM and dual coordinates

w w w

άxι on Γ*M. Choosing Γf, € Horn {Ψ`) and setting F 9 .dj = Σ Γf,afc completely

determine Γ. For, given vector fields X = Σ χίdi> γ = Σ 37^? w e n a v e

i i,3

— V xi(vJ'F* d • 4-

= Σ (Σ χι (Σ y'h + OoΌ Σ
k \ ί \ j I

where Φ j 7 == Φ(dj,dt), gtk = g(dι,dk), {glk) = (g^)"1- One may now construct
global Horn (τF)-valued connexions from local ones, using a partition of unity,
for one verifies at once from the local equation that convex linear combinations

to

of How (τF)-valued connexions are themselves such connexions. Given V,
w 1 to

define the affine connexion V induced by V by VXY — —— tr VXY € Γ(L(Γ*M,
m

R)) = Γ{TM).
Any vector field V along a curve c: R-*M determines a map T*M -»

to

Horn OF) along c, denoted and called the Horn {Ψ`)-valued covaήant
dt

w

derivative of V {related to Φ). The operation V —> — — is characterized by
dt

w w w

D(U + V) _ DU DV
dt dt dt

If ƒ: R —> R is smooth, then

V) 111

= 4-Φ(V)ψ Φ(V) + f
dt dt dt
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If V is induced by a vector field Y on M, then

3.1. Lemma. There is a unique operator satisfying these conditions.
dt

Proof. Choose local coordinates x\ and write c{t) = (M*(O), V = Σ v^j-
Then

w w

DV _ v Z>(^) _ v άo' S

/7/jii ~ Aid

= Σ ^ - Φ ( ^ ) + Σ **%- Σ
j at t dt re

= Σ (^-Φ^ + ^ Π
ij,ic \ dt dt

w

which proves uniqueness. Conversely, if is defined locally by this last ex-
dt

pression, it has the desired properties, q.e.d.
Let $ be the Lie algebra of the group G of the bundle BQ associated to Φ.

Then a Horn (#")-valued connexion on M induces a $-valued connexion \-form
w

φ on BQ defined by

) = (p, q)~Wπ*xPv)(qw)) - X(v,w) ,

where X e T{p>q)BQ, and (v, w): M -^ V (x) W. Note that if X is vertical, and

X = (A, B) for (A, B) 6 % then the first term of φ(X) vanishes and the second
w

term just becomes (A,B)-(v,w). The kernel of φ is called the horizontal space
of the connexion.

We would like to define a compatibility condition on a connexion suggesting
invariance of Φ under parallel translation. The obvious candidate for such a
condition would be

j - Φ ( u , v ) = Φ ( v ) + Φ ( u , m
dt \ dt ) \ dt )

w

Φ(U V)\ w h e r e = t r(using some connexion in Ψ` to define Φ(U, V)\, where = tr
\ dt / dt m dt
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Unfortunately this condition cannot always be realized. A similar but somewhat
weaker condition would "reverse the order of mapping into Horn (Ψ`)" on the
right hand side of the equation and say in essence:

dt \ dt I \ dt

This equation does not make sense, however, and needs rephrasing. To do so
we fix (throughout the sequel) some (real-valued) connexion on Ψ`, also to be
denoted V. (In case Ψ` is trivial we use the trivial connexion.) Then define a

w

Horn (τF)-valued connexion V on (M, Φ) to be compatible (with Φ) if for any
parametrized curve c: R^>M and vector fields U and V along c:

w w

, V)w) = i^-(gV) + ^(gU)Aw + Φ(U, V)-
\ dt dt )

dw

dt ` ' ` " ` " " \ dt `°' ' ` dt ` " " ) ` ~`" ' Ίti~ '

w

It is clear that if V is compatible with Φ, then V is compatible with g.
w

3.1. Lemma. If V is compatible with Φ, then for any vector fields Y,
Y' on M, and X e TMX,

w w

FX{Φ(Y, Y')) = (FxY)(g(Y')) + (FxY')(gY)* .

w w w

A connexion V is symmetric if VXY — VYX = Φ([Z, Y]) for all X, Y e
Γ(TM).

3.2. Lemma. A convex linear combination of compatible (respectively,
symmetric) connexions is compatible (resp., symmetric).

3.3. Proposition. A necessary and sufficient condition for the existence
on M of symmetric connexions compatible with Φ is that (V$jk + FjΦkί +
FiΦjkY = 0. The self-adjoint part of such a connexion is determined by these
characteristics.

Proof. Let uι be local coordinates. We have

w w

FiΦ}k = (FSidj)(gdk) + (FSidk)(gdJs)* .

Permuting indices and using symmetry yield

( 7 ) FtΦjk = (F5(dj)(gdk) + (F,

w w

( 8 ) PjΦki = (F,fr)(šdd + (FSidj)(gdk)*,

w w

( 9 ) FkΦυ = (FtβMdj) + OV
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Call the adjoint equations (7)*, (8)*, and (9)*. Then (7) + (8) - (9)* gives

(10) (Fidj)(gd,)" = i(TiΦ„ + FjΦ„ - VkΦjt) .

This proves the second assertion. To prove the first assertion it suffices by the
previous lemma to construct symmetric compatible connexions locally and use
a partition of unity. To construct locally a suitable skew-adjoint part, note
first that for a symmetric compatible connexion, d$u is self-adjoint, and (7)
- (7)* + (8) - (8)* + (9) - (9)* is identically zero. It follows that if for
each triplet {i, ƒ, k] (at least two distinct) an arbitrary value is assigned to (say)

(Fd.dj)(gdky, the other permutations can be determined by (7), (8), (9). These
then determine the connexion, q.e.d.

It should not be surprising that compatibility and symmetry do not determine
the connexion. In the usual case of a complex manifold with hermitian metric,
the connexion is not determined by these conditions—one may also specify that
the anti-holomorphic part of the covariant derivative vanish on holomorphic
vector fields (a skew-adjoint condition).

There are two natural ways to define a Horn (τΓ)-valued second covariant
w w

derivative, namely, as VX(VYZ) or FX(FYZ). (The latter definition depends on
the fixed connexion in Ψ`: specifically

w w w w

(Vχ(VγZ))(gυ)w = Fx((PγZ)(gU)w) - (rrZ)(Pz&U)w - (FγZ)(gUWzW ,

where on the right the first and last V refer to the connexion in Ψ`.) In general
these are unequal. When they are equal the connexion V is said to be invariant.

w w „ w
3.4. Proposition. That V is invariant implies V = Φ°V.IfVis symmetric,

w w

compatible with Φ, and satisfies V = Φ o F, then V is invariant.
Remark. This proposition implies that for a given connexion on Ψ` there

is at most one compatible invariant symmetric connexion.
Proof. The computation is local. We adopt the summation convetion. Let

X = x%, Y = yjdj, Z = zkdk. Then

VX{VYZ) = x"(d„(y%d^ +

+ y*(diZ' + , , H
w w

VX(VYZ) = xa(Fa(y"(dpz"Φqsg
Sr + zT'm)

W

+ yp(dpz"Φqsg
s" + z?Γ>„)Γi„))d, .

w w

Expanding and cancelling like terms, this implies that VX(VYZ) = FX(FYZ) if
and only if for all a, γ,
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+ y'O,zO/7;, +

= (3,y*)z'Γ^ + y*(3^)Γj^ + y*z*0„Γj,)

+ y*O„z')Φ,^T!;, + y"z"Γ;,Γ^ + y

If Y and Z are chosen locally constant, (11) becomes

iv w

Whence for all a, i, j , γ,

W W W

(12) (9J`i,)Φμ^ + ΠjΓ'„, = daΓ\j + ΓϊjΓl, .

Cancelling these terms in (11) and then choosing only Z locally constant give

(13) ΓξjΦ^ = Γlj f o r a U ϊ , ƒ , r .

But this is just the assertion that for all /, ƒ,

Since both Φ(Fd.dj) and Fd.dj are function-linear maps T*M —> Horn (Ψ`),

this implies that Φ(Fd.dj) = Vdidj for all /, ƒ, whence clearly Φ(Vxd3) = Vxdj
for all X, j . Now if Y = y*dj9 then

VXY = Fx(y*dj) = (Xyi)Φ(dj) + y}Vxd}

= Φ((XyJ)dj) + y'WFxdj) = WXY) .

w w „

Conversely, suppose V is compatible with Φ and V = Φ o Γ. Then

FXΦ(£7, F) = (Fx£/)(gF) + WZV)(&U)* by compatibility

(14) = Φ(FXU, V) + Φ{VxV){gυy by (13)

But then

w w

= PA(FYZ)(&U)) ~ (FyZ)(Fx(gU))

, £/)) - Φ(F r Z, FXV) by (13) and compatibility
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= Φ(FXFYZ, U) + Φ(FyZ, FXU) - Φ(FYZ, FXU) by (14)

= Φ(FXFYZ, U) = {{ΦoFx){

w

= (FxFγZ)(gU) by (13). q.e.d.

It should be noted that invariant compatible connexions do not necessarily
exist.

Examples 1 (cont.). A Horn CR)-valued connexion is just a usual real-valued
connexion; it equals its induced affine connexion. Compatibility is the usual

Riemannian compatibility —g(U, V) = g(^-9 v) + g(u, ^ - ) . Symmetry
dt \ dt I \ dt )

is the usual symmetry of an affine connexion, and since Φ has no skew-adjoint
w

part, the compatible symmetric connexion is unique. Also, since V = F, it is
trivially invariant.

Example 2 {cont.). In the Hermitian case a Horn CR2)-valued connexion is
w

a real-linear map TM (x) TM -+ L(T*M, Horn CR2)). If V is compatible and
w

symmetric, then (10) gives (Fg,9,)(g3*)" = \{dtΦjk + djΦki - dkΦjt). But for
this Φ the self-adjoint parts of the Φij9 and hence of the dkΦij9 are always
multiples of /. Hence the self-adjoint part of V must be a multiple of /, so we

w

actually have V: TM ® TM -> TM ® C. Also, Proposition 3.3 then specifies
that compatibility implies the closure of the Kahler form Φ', i.e., that (M, Φ)
is Kahler. Equivalently, if Y is a vector field, choose X19 • • •, Xn-i locally in-
dependent and perpendicular to Y and JY; set Y = Xn_19 JY = Xn. Then
by compatibility,

= (FXιXj)(gJY)* = 0 ,
w w

J(FXiY)(gXj) + J(FXiXj)(gY)* = 0 ,

so
w w

{FXiJY - JFzX){gX,) = -(J(FXiXj)(gY) + (FXiXj)(ŠJY))* = 0 ,
w

and / is parallel with respect to F. In this case

φ(Fxu, v) + Φ(u, FXV) = <Fxυ, vyi - <Fxυ,Jvyj

= Pχ«u, vyi - <υ,jvyj) = FXΦW, V) ,

w

so the connexion V = Φ o 7 is invariant.



METRICS WITH VALUES IN ENDOMORPHISMS 83

Example 6 (cont.). In the Clifford situation as in the previous example
w

compatibility and symmetry imply that the self-adjoint part of F is a multiple
w

of / . In this case, though, there is no guarantee that V XY is automatically in
TM (x) ̂ . However, it is clear that if the free choices of skew-adjoint parts
are chosen in ̂ , then the connexion will take values in TM (x) ̂ . Now suppose
w e <€. Since TMX has structure of Clifford module, we may form the vector
field wY for any vector field Y on M. Using precisely the same argument as
in the previous example, we find that compatibility and symmetry of connexion

w w
imply that VxwY = wFxY, while invariance implies that VxwY = wFxY.

4. Torsion and curvature

Throughout, Ψ` is considered to have fixed connexion V with covariant

derivative .
dt

The notion of Horn (#^)-valued torsion is developed following the G-structure
method of Singer-Sternberg [5]. If H(p>q) is a horizontal subspace of T(p>q)Bβ,
then via the identification of Hip>q) with V under ω, we get a map

cH(pq): V A V -> V <g> PF* <g> W: (w, v) — dω(X A Y) = Φ(dω(X A Y)) ,

where X,Y e H^p>q), ω(X) = u, ω(Y) = v. If H\M) and H\PtQ) are two hori-

zontal subspaces, there exists a map S: V —> $ defined by S(F)(P)<Z) = Yx — Y2

where ω(Yx) - ω(Y2) = v. Let Z€, Y€ € fl^,«) 0' = !»2) s u c h *at ω(Z<) = w,

ω(Yt) = v. Then

^},.β)(« Λ t ; ) - ^ J , ^ , ( K Λv) = dω(iX1 - X2) A Yd + dω(X2 A (Yx - Y2))

- dω(Š(u‰,„ A Yd + dω(X2 A Š(v)iPtQ))

(15) = (Š(u‰ιq) _J dS(Y,)) - (Š(v)(p>q)

- (ψ(S(v))Φ)u .

Now if Ψ: F —> gl(V ® ί̂ * Θ WO is any linear map, we may define the 2-form
dΨ:V AV->V®W*®W\u Av-+ Ψ(u){Φ{v)) - Ψ{v)(Φ{u)). The span of
2-forms dΨ, where Ψ = ΨoS for S: V -> %, is denoted d(WoHom (F,^)).
Then (15) implies that

CH\,,O - cH\p,q) € 3(ψ o Horn (F, 3)) .

i • ii Λ c A £ D ΦoHom(FΛF,F) , .

Hence there is a well-defined function c: BG-* — • „ . ? — , (note
( d H o m ( F $ ) )
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incidentally that Φ and ψ are injective), called the (first-order) structure func-
tion of BQ.

w

Suppose that V is a connexion on M and H(PtQ) is its horizontal space. Then
define a Horn (Γ*M, Horn C#O)-valued 2-form T on M as follows. For
X, Y s TXM, let X, 7 <= H(p>q) such that TΓ*X = X, π*Ÿ = Y, and define

(Γ F), Y) = (p, <?)ω(Γ, F) = (p, 4 ) c ^ > Ž , ω Ÿ ) .

Γ is the torsion of (M, Φ, F). It is clear that if Γ = 0, then c = 0. On the
other hand, Fujimoto has shown [2, Corollary 3.4.1] that if c vanishes a con-
nexion 1-form with vanishing torsion does exist.

We can also define a F ® W* (x) JP-valued torsion 2-form ŽΓ on BQ by

Γ(X,Y) = dω(HX,HY) = d[(p,q)-KΦoπ*)(p,q)](HX,HY) ,

where H is the projection onto the horizontal space of the connexion V.
4.1. Proposition. T{X, Y) = VXΦ{Y) - VYΦ{X) - Φ([X, Y]).
Proof.

T(X, Y) = (p, q)(Xω(T) - Ÿω(X) - ω([X, ?]))

= (
(16)

Now let C be the integral curve of X through x, and C the horizontal lift over
C through (p,q). Then

C(O) lim — (

= C(O) lim !

t-o ί

- lim l o

Using a similar argument for Y, from (16) we have

, Y) = M * ( D - VYΦX(X) - Φxax, Π ) .

4.2. Proposition. 4̂/2 invariant symmetric compatible connexion has zero

torsion.
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Proof. For all X, Y, U s TMX,
(FxΦ(Y))(gU) = FX(Φ(Y, U)) - Φ(Y)(gFxU)

w w

= (FxY)(gU) + (FxU)(gY)*-Φ(Y, FXU) by compatibility.

Therefore

T(X, Y)(gU) = (FXΦ(Y) - FyΦ{X) - Φ([X, Y]))(gU)
w w w

= (FxY)(gU) + (FxU)(gY)* - Φ(Y, FXU) - (FyX)(gU)
w

- (FyU)(gX)* + Φ(X, FyU) - Φ([X, Y], U)
w w

= (FxU)(gY)* - Φ(Y, FXU) - (FγU)(gX)* + Φ(X, FyU)

= 0 by symmetry and invariance. q.e.d.

Note that a torsion zero metric may not have invariant connexion. (For in-
stance, in Example 2 a complex manifold need not be Kahlerian.) Also note
that with any compatible symmetric connexion, tr T = 0.

Example 1 (cont.). Here the torsion equals its trace and is automatically
zero.

Examples 2 and 3 (cont.). The torsion zero condition is that the almost-
complex structure be complex, or the almost-Hamiltonian structure be
Hamiltonian.

Example 5. In case (ii) recall that choosing suitable coordinates we obtain
Φ:A=I = C,

—a,

B =

la,

Suppose aλ = • • • = aβl, aβl+1 = • • • = aei+e2, • • • = ak. If M is simply con-
nected, then torsion zero implies that M is a product of complex manifolds of
dimensions e19 e2, • • •. In case (iii) for trivial Ψ` and M simply connected,
torsion zero imples that M is a product of manifolds of dimensions according
to the numbers of equal pairs (λ, a^. These manifolds will have certain addi-
tional structure induced by Φ.

Define the Horn (Ψ`)-valued curvature form

R(X, Y)Z = FX(FYZ) - FY(FZZ) - F[jSΓ>r]Z ,
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where V is the affine connexion in Ψ`.
4.3. Proposition. If s: ϋ C R2 —• M is a smooth surface, and V a vector

field on M along s, then

w w

ds \yy
dx ' dy / dx dy dy dx

Proof. This is just a local computation. By linearity it will suffice to show
that for some local coordinate system,

W W

D D ~ D D a

" * dx* dxi * dx' dx

But

dx* dx> ' dx' dx' ' dx* ̀  ' r " dx' " "
w w w

= v»y»ρ* - P. ƒ .A = R(dit dj)dk .
w w w

4.4. Proposition. R(X, Y) = —R(Y,X). If V is compatible, then

w w w

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 .

Proof. The first relation follows at once from the definitions. By multi-
linearity it suffices to prove the second only in the case where [X, Y] = [Y, Z]
= [X, Z] = 0. In this case,

w w w

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y
w w w w w w

= FAFyZ - FZY) + FY(FZX - FXZ) + FZ(FZY - FYX)

= FXΦ([Y, Z]) + FyΦ([Z, X]) + FZΦ([X, Π ) by compatibility

= 0 .

w w

4.5. Propoition. Suppose that V is invariant, and x$M. Then R(x) = 0
w

if and only if R(x) = tr R(x) = 0.
w

Proof. => is obvious. Conversely suppose R(x) = 0. Then R(X, Y)Z
w w w „ „

= VX7YZ — VYVXZ — F [ j S Γ } F ]Z = Φ(VXVYZ — VYVXZ — Vιx,YΛZ) — Φ(R(X,
Y)Z) = 0. q.e.d.

We wish to investigate the implications of constant curvature in the Horn (Ψ`)-
valued setting. We shall say that M has constant Horn (Ψ`)-valued curvature
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w

at x if (Rx(vl9 v2)v^(gv2) depends only on 1^1, \v2\, g(v19 v2) and the orientation
w

(yx: v2). (We continue to suppose V to be invariant through this discussion.)
In that case tr (Rx(v19 v2)v^)(gv2) = g(R(vl9 v2)vλ, v2) will depend only on these
quantities also, so that the sectional curvature K(p), which is independent of
them, will be constant. Hence we suppose in this discussion that M has constant
sectional curvature at x. Let v19 v2 be an orthonormal basis for a plane p c TMX,
and w1 = avλ + bv2, w2 = — bvλ + av2, a2 + b2 = 1, another basia with the
same orientation. Then

(R(w,,w,)wJ(gw,) = Φ(R(w,,w,)w,)(g^2) =

= Φ(R(av, + bv2, -bvλ + av,)(av, + bv2),

— bvλ + 0^2)

= Φ(R(vx,v2)(avι + bv2), —bVi + av2)

= —abΦ(R(v19v2)v19v2) + abΦ(R(v19v2)v29V2)

+ a'Φ(R(v,, v2)v19 v2) - b2Φ(R(v19 v2)v2, vλ)

= Φ(R(vλ, v2)v19 v2) + skew-adjoint terms.

Using the basis w1? — w2 with opposite orientation gives the same result. Hence
the symmetric part of (R(v^ v^v^igv^ is invariant under change of ortho-
normal basis.

If v19 v2 are an arbitrary basis, by considering the orthonormal basis

vλ \vx\
2v2 - g(vl9v2)vx

\vA \v,\{\v,f\v,\2 - g{vλ,v2)ψ2

we find that symmetric part of

w

\vλ\
2\v2\

2 - g(v,,v,y

is invariant for all v19 v2 e p. We define this to be K(p)".

Now as M has constant sectional curvature at x, if n > 3 we have

Rχ(v19 v2)v3 = c(g(v,, v2)v2 - g(y29

a n d t h e r e f o r e for a n y v19v2e TMX

(JRx(v19 v2)vMv2) = cΦ(g(v19 vλ)v2 - g(v29 vM, v2)

= c(\vx\
2Φ(v2,v2) -'g(v29 v,)Φ(v,, v2)) .

Hence
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c(\vλ\
2Φ(v2,v2) - $gfa,vd(Φ(V!,vJ + Φ(v2,v1)))

\Vχf\V21
2- g(vx,V2)

2

_ c(\V,fΦ(v,,V,) ~ \g(v,,V,)(Φ(v^V,) + Φ(V2,Vi)

or

for all v19 v2 € TMX, i.e., there exists φ"x € Horn ( T F J such that Φ(v, v) = \v\2φ"x

for all v € Γ M ^ , a n d w h e n c e Φ(u, v`)" — g(u, v)φ"x for all u,v e TMX.

The skew-adjoint part of (Rx(v19 v2)v^){gv2) is

v,) - Φ(v,,v,)) = - - ^

For any oriented basis v19v2 for p, Φ(v^ ^ 2)7( |^i | 2 |^ 2 | 2 — ̂ (Vi, ̂ 2)2) 1 / 2 is in-
variant. This element of Horn (Ψ`x) is denoted K(p)'. Hence, if M has constant
curvature (rc>3) at x, we may write for all v19 v2 e TMX,

where v19 v2 is a basis for the oriented plane p C TMX. But for n > 3 the
bundle of oriented planes in TM forms a connected double cover of V2(TM).
Thus, if n > 3, then X(p)' = 0. Hence

4.6. Proposition. Unless Φ(u, v) is self-adjoint for all u,v <žV, (n> 3),
there are no manifolds with Horn (Ψ`)-valued metric of type Φ and constant
Horn (Ψ`)-valued curvature. The self-adjoint part of the curvature is con-
stant if an only if the metric Φ has the form Φ(u, v) = g(u, v)φ"x for some fixed

φ
We now return to the general (not necessarily invariant) case. One may

w

derive the curvature form from the connexion 1-form φ, giving a structural
equation. Indeed, define a ^-valued curvature form 01 on BQ by

w

3tiX, Y)(v, w) = (p, q)-`[(R(π*X, π*Y)pv)qw] ,

V)

where X,Y e T(PiQ) BG. Note that 3t{K, Y) = dφ(HX, HY) where H is pro-
w

jection onto the horizontal subspace of φ.
4.7. Proposition (structural equation).
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dφ{x, Y) = -φ A φ{x, Y) +

Proof. If X and Y are vertical, and X = A, Y = B, then

w W W W

dφ(X, Y) = Xφ(Y) - Yφ(X) - φ([X, Y]) =XB -YA-[A,B]
w w w w

= -(φΛ φ)(X, Y) = -(φΛ φ){X, Y) + 3Z{X, Y) ,

since 0ί is horizontal. If X = A is vertical, and Y horizontal, then

dφ(X, Y) = 0 = ~(φ Λ 0)(Z, Y) + m(X, Y) .

If X and Y are both horizontal, then due to φ(X) = φ(Y) = 0 we have

W W W W

dφ(X, Y) = dφ(HX, HY) = m(X, Y)=-(φΛ φ)(X, Y) + 3t(X, Y) .
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