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COMPLEX PARALLELISABLE MANIFOLDS
AND THEIR SMALL DEFORMATIONS

IKU NAKAMURA

Introduction

By a complex parallelisable manifold we mean a compact complex manifold
with the trivial holomorphic tangent bundle. Wang [8] showed that a complex
parallelisable manifold is the quotient space of a simply connected, connected
complex Lie group by one of its discrete subgroups.

It is known that if the Lie group corresponding to a parallelisable manifold
is semi-simple and does not contain SL(2C) as a component, then the first
Betti number vanishes and its small deformation is rigid, [2], [5], [6].

In this paper we consider the similar problems in the case where the corre-
sponding Lie group is solvable, and obtain quite different results. We note that
a simply connected, connected solvable complex Lie group is biholomorphical-
ly equivalent to C™ as a complex manifold where n = dim, G. If a complex
parallelisable manifold has a solvable Lie group as the universal covering, it is
called a complex solvable manifold.

In § 1 we summarize some known results and give three lemmas. In § 2 by
numerical invariants we classify three-dimensional complex solvable manifolds
into four classes III-(1), III-(2), 1II-(3a), III-(3b), and construct some exam-
ples in all cases.

In § 3 we construct Kuranishi families of deformations of three-dimensional
complex solvable manifolds constructed in §2. The base spaces of these
Kuranishi families which are reduced complex spaces are irreducible in the
cases of III-(2) and III-(3a) but reducible in for case of III-(3b), about which
we shall give explicit descriptions.

For a compact complex manifold X we denote by ¢ and 27 the sheaves of
germs over X of holomorphic functions and p-forms respectively. Recall A?-4
= dim, HY(X, 2*) and P,,(X) = dim (X, (2™)®™) where n = dim; X. Also
we denote by r, £ and b, respectively the number of linearly independent closed
holomorphic 1-forms, Kodaira dimension of X and the i-th Betti number.

S. Titaka proposed a problem whether all P,, and ¢ are deformation invari-
ants [1]. However computing the numerical characters of small deformations
obtained in the above examples we have

Theorem 2. /1?9 for (p,q) # (0,0),r, P,, and r are not necessarily invari-
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ant under small deformations.

On the other hand we note that small deformations of a complex parallelis-
able manifold are not necessarily parallelisable.

In § 4 and § 5 we prove the following theorems.

Theorem 3 (Kodaira). Let X be parallelisable such that the corresponding
Lie group is nilpotent. Then h*' = r.

Theorem 4. For a complex solvable manifold whose Lie algebra has the
Chevalley decomposition (§ 2) we have b, = 2r.

We remark that a complex solvable manifold has C™ as its universal covering.

Theorem 5. If an n-dimensional complex solvable manifold satisfies the e-
quality h>' = r, then any small deformation has C™ as its universal covering.

In Theorem 5 we cannot remove the assumption that 4! = r. In fact, in
the case of III-(3b) where we have A%! > r, there exist small deformations
whose universal covering are not analytically homeomorphic to C®.

In § 6, following the algorithm shown in § 1 we classify complex solvable
manifolds of four and five dimensions.

The author would like to express his deep appreciation to Professor K.
Kodaira, Professor S. litaka and Mr. K. Akao for valuable advices and en-
couragement during his preparation of the paper.

1. Preliminaries

Let X be a compact complex manifold of dimension .

Definition 1.1. X is parallelisable if the holomorphic tangent bundle of X
is complex analytically trivial.

This condition is written in the following ways:

(1) O = ¢*, where 0 is the sheaf of germes of holomorphic vector fields,
and ¢ is the structure sheaf of X.

(2) There exist n holomorphic vector fields 4,, - - -, 8, on X which are li-
nearly independent at every point on X.

(3) 9' = 0", where ' is the sheaf of germs of holomorphic 1-forms.

(4) There exist n holomorphic 1-forms ¢,, - - -, ¢, on X which are linearly
independent at every point on X.

It is obvious that QP;@(?') . Hence H'(X, 27) is spanned by {p;, A\ - -+ A ¢y,
1< i< -+ <i,<n}and h® = (Z)

Theorem (Wang [6]). Let X be parallelisable. Then there exist a simply
connected, connected complex Lie group G and a discrete subgroup I' of G
such that X = G/I.

In particular, H'(X, ®) = g where g is the Lie algebra of G.

Definition 1.2. A complex parallelisable manifold X is solvable (respec-
tively nilpotent) if the corresponding Lie group G is solvable (respectively nil-
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potent).

Let G be a connected complex Lie group, and I” one of its discrete subgroups.

Definition 1.3. [ is uniform in G if G/I" is compact.

Theorem (Mostow [4]). Let G be a connected solvable complex Lie group,
and I' a uniform subgroup of G. Let N be the connected, maximal nilpotent
normal subgroup of G. Then I' N N and I'N|N are uniform in N and G|N
respectively.

The original form of this theorem is not restricted to the complex case. This
theorem means that for any solvable manifold X = G/I’, there is the decom-
position 7 : X — B, where B = (G/N)/(I’N/N), and (X, =, B) is a holomorphic
fiber bundle with a typical fiber F = N/I" N N. We shall call this decomposi-
tion the Mostow decomposition of X. If G is solvable, the commutator group
G’ = [G, G] is nilpotent. G’ is contained in the maximal nilpotent normal sub-
group N, so that G/N is abelian. Therefore the base space B is a complex
torus.

In an obvious way, we define the pairing
H'(X, 07) x H(X?» A\ ©®) - C, ¢ X 0 (p,0) .

The exterior differentiation d: H'(X, 277') — H%(X, 27) induces an adjoint
map *d: H(X? N\ ©) — H'(X?~* A\ 0). Then we obtain
Lemma 1.1. (1) (&)@ N &) = —10,¢], 6,¢ ¢ H(X, 0).
Q) CHONGNE)Y=—0N(DE NO')—8 N (DO N6
— 0" N(CDHOENEG), 0,0,8 e H(X,0).
We omit the proof.
(1) of Lemma 1.1 shows

1.1 (dp, 6 N\ &) = —(p,16,6']

for 6,6 ¢ H'(X, 0), and ¢ ¢ H'(X, 2"). (1) and (2) show that &* = 0 is equiva-
lent to the Jacobi’s identity.

Let g be a solvable Lie algebra defined over C. Then by virtue of Lie’s theo-
rem we have a C-basis of g: ¢y, - - -, ¢, (n = dim, g) such that

(1.2) dgov:,fv/\gou-l—m, v=1,.---,n,

where &,, 7, are represented by ¢,, - - -, ¢,_;. Since d’p, = 0, we have d§, = 0,
i.e., & is a closed holomorphic 1 form. There it follows from (1.3) that &, =
2.4-1 4,0, for some constants a,,.

Lemma 1.2. Let X be a compact complex manifold of dimension n, and
¢ a holomorphic (n — 1)-form on X. Then dp = 0.

Proof. If dp+ 0, then i‘"“j do A dg>0. On the other hand,
X
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i~ J' do N\ dg = i—n*J‘ d(p N\ dp) = 0, a contradiction.
X X

From Lemma 1.2 we infer readily
Lemma 1.3. Let {p,} be a basis of H'(X, ") which satisfies (1.2). Then

(1.3) 2 §=0.

Proposition 1.4. Let G be a simply connected, connected solvable complex
Lie group. Then G is biholomorphically equivalent to C*, where n = dim, G.

Proof. When dim G = 1, we can prove the proposition easily. By induc-
tion on dim G we shall prove the proposition. When dim G > 2, there exists
a connected normal Lie subgroup N of dim 1. (G, z, G/N) is a holomorphic
fiber bundle with fiber N. Calculating homotopy exact sequences of this fiber
bundle, we infer readily that N and G/N are simply connected, connected and
obviously solvable. By the hypothesis of the induction, G/N and N are biho-
lomorphically equivalent to C*~* and C respectively. From Oka’s principle it
follows that G is biholomorphically equivalent to C”.

2. Classification of three-dimensional complex solvable
manifolds and construction of examples

In this section we shall classify three-dimensional complex solvable mani-
folds, and use an algorithm to classify higher-dimensional complex solvable
manifolds. Let X = G/I" be a three-dimensional solvable manifold, and ¢,, ¢,
¢; be a basis of H(X, £2%), which satisfies (1.2).

By an elementary calculation together with Lemma 1.4, solvable manifolds
X are classified into the following three classes:

III-(1): dp,=0, A=1,2,3,
I-2): dp, =0, dp, =0, dop,=—¢o N\ ¢,
II-(3): dp,=0, do,=0 ANy, dps= — ¢ N ;.

Dualizing III (1)-(3) by virtue of (1.1) we can determine the structures of the
Lie algebra g of G.

III'(I)/: [017 0.;] =0 s Av= 1’ 27 3 >

-2y : [6,,6,] = — [6,,6] =6;, [6,,6]=0 otherwise,
III—(3)/: [‘91a 02] = — [02, 01] = — 02 .
[01a 03] = - [03, 01] = 03 s [02> 03] =0.

Case III-(1). It is well known that X is a complex torus.
Case I1I-(2). In view of Proposition 1.4, C®is the universal covering of X.
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Let O be the origin of C*. Weset 9,(z) = r ¢,,v = 1,2. Then 9, is a single
0
valued holomorphic function on C® and ¢, = d®,,v = 1,2. Thus dp, =
—d®, \ d®,, i.e., d(p; + 0,dD,) = 0. We set @,(2) = r 0, + 0,d0,. O,is a
0

single valued holomorphic function on C*, and ¢, = d®, — 9,d®,. For ge I,
we set 2 = z-g. Since ¢, is ['-invariant, d®(z') = d®(z) (v = 1,2). Thus we
have @,(7) = @,(2) + w,(g), where w,(g) is a constant depending only on g.
Since

@(2) = dOy(2) — D,(2)dD,(2)
= d0y(2) — (0,(2) + w(8)dD,(2) ,

we obtain
D7) = Dy(2) + 0,(8)D,(2) + wy(8) ,

for some constant w,(g) depending only on g. Define a multiplication * of C* by

(21520, 2) * V1, Y2, V) = (@ + Y1, %0 + V2 23 + Y12 + 3)

This multiplication * makes C* a nilpotent complex Lie group with the Lie al-
gebra of type I1I-(2)'. Hence G is isomorphic to (C, *) as a complex Lie group.
Case 1II-(3). Set

0,2) = L o, 0= L e, D) = L o, .
Since dy, = d(e™"¢,) = d(e”p,) = 0, @, are single valued holomorphic func-
tions on C* and we have ¢, = d@,, ¢, = €"d®,, o, = d~*'d®,. By the same ar-
gument as in the case of I11I-(2), we have

le(zl) == ¢1(Z) + wl(g) 5
0,(7) = e @Dy (2) + w,(9) ,
0y(7) = e Dy(2) + wy(g) ,

where 7 = z-g for g e I', and o,(g)’s are constants depending only on g. De-
fine a multiplication * of C; by

(215 20, 2) * V1, Yoo ¥9) = (2, + Vi, €792, + Yy, €2, + ¥3) ©

The multiplication * makes C* a solvable complex Lie group with the Lie al-
gebra of type III-(3), so that G is isomorphic to (C?, *).
Examples. Case I1I-(2). Set
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1 z, z,
G=<0 1 z]|;z;eC}; =C°,
0 1 1
1 o, o
I'=4l0 1 w];eeZ+ 2z/—1
0 0 1

The multiplication is defined by
1 z, 2\/1 w 1 z,4+ w0, z3+ w3z + o

0 1 z]||0 1 o]=]0 1 Z + o

0

0 0 1/\0 0 1 0 1

X = G/I is called Iwasawa manifold.

Case I1I-(3a). We take an algebraic integer « satisfying the equation o +
Sa + 7 = 0. Let E be an elliptic curve with fundamental periods {1, @}. Let
H be a group of analytic automorphisms of C' X E X E generated by two
automorphisms :

gy (Zl, ron Zs) = (Zl + 27ti’ ron Za) »
031 (2125 Z9) = (2, + B, (—a — 2)7,, (@ + 3)z) ,

where = log @, and (z,, z,, z;) are global coordinates of C X E X E. H acts
on C X E X E properly discontinuously, and its action has no fixed points.
The quotient manifold X = C X E X E/H is a parallelisable manifold of type
111-(3) with A*' = dim;, H(X, 0) = 1.

a b

Case III-(3b). We take a unimodular matrix 4 = (c d) with trace 4 > 3.

Let « be an eigenvalue of 4, and § = loga > 0. Let E be an elliptlc curve
with fundamental periods {1, z}. Let H be a group of analytic automorphisms
of C X E X E generated by two automorphisms :

011 (24, 25, 2) — (2, + 270, 25, 25)
030 (21, 25, 2) — (2, + B, az, + bz, cz, + dz,) ,

where (z,, 2,, z,) denotes the system of global coordinates of C X E X E. H
operates on C X E X E properly discontinuously, and its action has no fixed
points. The quotient manifold X = C X E X E/H is a parallelisable manifold
of type III-(3) with A% = 3.

By virtue of Theorems 3 and 4 and the proof of Theorem 4, it can be
checked that A%! 5= 2 for a solvable manifold of type III-(3). Thus we obtain
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Theorem 1. Three-dimensional solvable manifolds are classified into the
following four classes:

Lie group b, r h%' | Structure (Albanese mapping)
(1) abelian 6 3 3 complex torus
(2)  nilpotent 4 2 2 T'-bundle over T*
(3a) solvable 2 1 1 T*-bundle over T*
(3b) solvable 2 1 3 T?-bundle over T!

where T' and T*? denote complex tori of dimensions 1 and 2 respectively.

In this section, we have shown how to determine the structures of C® as
solvable Lie groups. Proposition 2.2 and the statement below show that this
algorithm is valid for higher dimensional cases.

Let G be a simply connected, connected solvable complex Lie group of dim n.

Definition. A solvable Lie algebra g has the Chevalley decomposition if
there exist a commutative subalgebra a and the maximal nilpotent ideal n of g
such that ¢ = a + n (direct sum as vector spaces).

Assume g to have the Chevalley decomposition. Then by definition we can
choose a basis {¢;} of g such that

0,6, =
[ ’ ] p2max(a,v) C:tluay ’
(2.1 6,61=0 (1<A3v<y),
[6:,6,] = N Z}(X )Cﬁ,zﬁ,, t+1<2,v<n),
p>max(2,v
where ¢, = —C),..

Dualizing (2.1) by (1.1) we conclude that there exists a basis {g,} of right
(or left) invariant 1-forms on G such that

2.2) d@,; =2 Caa N\ @, 5

where c,;,, = —Cpie €y =0 if “1 <2,y <s” or “s+ 1< A,vand <
max (2,v)” or “p < max (1,v)”.
Furthermore we can arrange dg, in the following order :

Q,: dp,=0,:.--,dp, =0, where r = dim H(X, d0),

d® denoting the sheaf of germs of closed holomorphic 1-forms on X ;

-1
Q,: dp, =sumof ¢, A\ ¢,’s for (v,) e U Q;_, X O,
(2.3) p=1
(l=2s3a "’);
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0=UQand Q. ={1,---,n} —Q0={m+1,.--,n};

any nontrivial linear combination of dy,, ., - - -, dp, cannot be represented by
a linear combination of do,, - - -, do,,.

Proposition 2.1. Assume g to have the Chevalley decomposition, and let
{¢:} be a basis of right invariant holomorphic 1-forms on G which satisfy (2.2).
Then there exist holomorphic functions @,, - - -, ®,, on G such that

Soxzd@x a1<i<gn,
2.4) 2
o= 2 F,(@d0, (r+1<2<n),

v=8+1

where F, (@) = >, F,,(@)exp(a,D, + -+ + aDy), F, (D) is a polynomial

in®,---,0,_,, and F,(®) = exp (ai@, + --- + aiD,).
Proof. By induction on n = dim G we shall prove the proposition, which
is obvious for n = 1. Assume (2.1) to be valid for v < n — 1. Since &, =

$

n
2 450,
p=1

d(exp (~ ; a;‘@p);on)
= —exp (— 2 @@, N ¢, + exp (— 2 @D, )&, N ©n + 1)
2 F¥®)do, N\ do, .

1<2<v<n-1

By the hypothesis of the induction together with (2.1), (2.2) and (2.3) we have

Fi@) =0 (1<v<y),
F;l:(@) = ZF;I:a €Xp (a1¢1 "I' cee + 03@3) >

wheae F¥,(®) is a polynomial in @,, - - -, D,_,. Take G, such that

9G,/00,_, =F%_, (>ys), 9G,/00, = F%_, (<),

d(exp (=X ad,)p, + ¥ GdD, — ¥ G,d@,,_l)
v>s

v<s

= Y F¥d0, N\ d®, — Y F¥_.d®, \ d®,_, — ), Fk_d®, N\ dd,_,

i<v v>8 v<s$§

+ (terms of d®, N\ dD,, 2,v < n — 2)
= > F{*do, N\ do,, where F¥* = F¥*(@,, ---,D,_,) .

A<v<n—2

Since 0 = d( 5 FERdD, A d(l)v) - Zg** A0, , A dD, N dD, + - -, we

A<v<n—2 n-1
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have 9F{* /80, _, = 0. Hence Fi* = EX*(®,, - -+, ®,_,). Obviously F¥* = 0
(1 <€ 2,v < s), etc. Thus we obtain the proposition by induction. q.e.d.

By the same way as stated above we can contruct a multiplication * of C”.
In order to show that this multiplication defines a Lie group structure of C" we
have only to check the associative law. We can easily do this by using the
fact that ¢, is a right invariant 1-form on G and the multiplication is written ex-
plicitly (see below). Hence the multiplication * makes C™ a complex Lie group,
and (C", ) is isomorphic to the Lie group G.

The multiplication * is defined by

(zn . ',Zn)*(yn N ',yn) = (Zl R R ZVILICI A S SISO
exp (—ay,—---—ay)z, + 3, + F.(z,y), --+),
where F,(z,) is expressed in z;, -+ +,2,_3, Y1, - - *» ¥,_,. Therefore we obtain

Propesition 2.2. Assume g to have the Chevalley decomposition. Let {¢,}
be a basis of right invariant 1-forms on G which satisfy (2.3). By an appro-

priate choice of a system of coordinates (z, - - -, z,) of C", {p,} are represented
as follows :
dZ; , 1 < A <r,
2.5) =< 2
“7 S Fudr,,  r<a,
v=8+1

where F,(z) = > F,,,(2) exp (Z apzp), F,. is a polynomial in z,, ---,z,_,,
a p=1

S
and F,, = exp ), diz,.
p=1

Dualizing Proposition 2.3 by means of (1.1), we obtain
Proposition 2.3. Let {6,} be a dual basis of right invariant vector fields of
{¢.}. Then by the same system of coordinates of C" as in Proposition 2.2, {6}
are represented as follows :
9/0z, , 1<a<r,
(2.6) 1= [

3 G.@3/6z,, r<a,
v=2

where G,(2) = Y. G,,.(2) exp (ij a,,z,,) and G,,, is a polynomial in z,, - - -,
a p=1
Z, 1.
3. Construction of Kuranishi families of deformations of
three-dimensional complex solvable manifolds

In this section we shall calculate small deformations of three-dimensional
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complex solvable manifolds constructed in §2. In these cases we see that sev-
eral numerical characters, such as 4?'? (p,q) + (0,0), r, P,, (m > 1) are not
necessarily invariant under small deformations. Moreover, in the case of III-(3b)
there are small deformations whose universal covering are not biholomorphi-
cally equivalent to C°.

Kodaira first calculated small deformations of Iwasawa manifold. In the
first part of this section we shall introduce his result.

Case III-(2) Let X = C®/I" be Iwasawa manifold. g ¢ I' operates on C®
as follows:

=240, Z=%L+ae,, H=%L+ o+ o,

where g = (w,, @, ®,) and z’ = z-g. There exist holomorhpic 1-forms ¢,, ¢,, ¢,
which are linearly independent at every point on X and are given by

o=dz,, ¢, =dz,, ¢, =dz;— z,dz,,
so that
dp, = dp, =0, do, = —¢, N\ ¢, .
On the other hand we have holomorphic vector fields é,, ,, 6, on X given by
6,=8,, 0,=0,+20,, 0,=207;,
where 3, denotes /dz,. It is easily seen that
(6, 6.] = —16,,6.]1 = 0, , [6,,6,] = [6,,6,] =0 .

In view of Theorem 2 (§ 4), H¥*(X) is spanned by @,, @,. Since O is isomorphic
to @°, HYY(X, ©) is spanned by 6,¢,, i = 1,2,3, 1 =1,2.
For vector (0, 1)-forms ¥, z, we define

[, 2l = 2 (0 A 3,28 + =2 N\ 3999, ,
B
where 4 = Y, 49, and z = )] zf9,. (Cf. [3].) We have
[0i¢19 0k¢v] = [ah 0k]¢u A\ ¢v .
We shall construct a vector (0, 1)-form + such that

(B.1D oy — 3, v]1=0.

3 2

Set 4 = i ¥ (2), where v, () = Y. 3 1,,0:3,, and +,(¢) is the homogeneous
a=1

i=121=1
term of total degree « in #;,. Then
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3‘1’2(’) = %[\h(t): \lfl(l)] = (lutzz - t21t12)03¢1 AN Sf’z .

Set () = —(tuty, — t,111,)0,0,. Thus we obtain a solution of (3.1) given by

3 2
\l’(t) = Z:l 1211 ti10i¢1 - (tutzz - t21t12)03¢3 .

This proves the existence of a locally complete complex analytic family of de-
formations X, of X depending on 6 effective parameters ¢;,, [3].
Next, by solving the system of differential equations

3.2) a, — v, =0, y=12,3,

under the initial condition £,(0) = z,, we have the solutions :
2 B 2 _
L=z + le 1,2, » =2+ ;1 1,2

G=2+ 2 + 6202 + AQ — DOZ
where
D(t) = tyty, — tyty,,  AQ@) = 3tutnZd + 201,22, + tunZ3) -
Since
dg, A\ dg, N\ dg, N\ dg, N dg, N dE,
= c(Odz, N\ dz, N\ dz; A\ dz; N\ dZ, N\dZ, ,

where c(?) is a differentiable function in ¢;, with ¢(0) = 1, it follows that
D: (24, 2, 7)) — (£, &35 &) is a diffeomorphism of C® if }] |t;,| < ¢ for suffi-
0,2

ciently small positive number e.

c—2? Lo
diffeor;orphic
T D) T
¢
X ———~—) X t
diffeomorphic

Since « is a covering map, z, = pomwo @' is also a covering map from C® to
X;. Therefore C?® is the universal covering of X,, thatis, X, = C®/I, for a
group I, of analytic automorphisms of C®. The group I, is defined by

Ci = Cl + (bl(t) ’ g; = Cz + (Dz(t) ’
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C; = Cs + (bs(t) + w1C2 + <ZZi:1 tzza_)z)g + A(@) - D(t)a’_:-x 5

where @;(1) = w; + t,®, + t;,@, for (0, v, w,) € I
Now we summarize the numerical characters of deformations. The deforma-
tions are divided into the following three classes:
1) t; =1t,=1, =1, =0, X, is a parallelisable manifold of type III-(2).
ii) D() = 0and (¢;; t,, sy ) # (0,0,0,0), X, is not parallelisable.
iii) D(?) # 0, X, is not parallelisable.

ro| o | por | p2o | pur | po2 | pso | p2a | puz | pos | P (m>1)
Dl 2 3 23|62 |16/ 6]1 1

i) | 2| 2] 225 |2 |15 |5/|1 1

i) | 2 | 2 |2 | 1] 5 | 2| 1| 4] 4/|1 1

h3—p,3—q o hpvq

Next we shall calculate small deformations of a solvable manifold of type
II1-(3) constructed in § 2. As stated before, A"(X) = 1 or 3 (see the proof of
Theorem 3).

First we shall consider the case where A% = 3. Let X = C*/I  be a solvable
manifold constructed in Example II1I-(3b). By an appropriate linear transfor-
mation of z, and z;, g € I" operates on C® as follows:

Z=z+w, Z=e"2+w, z=e2+ao.
There exist holomorphic 1-forms gc;l, ¢, 03 on X given by
o =dz,, ¢, =edz,, ¢, =edz,
so that
dpy =0, dp, =0 N, dps=—¢/\ 5.

On the other hand, there exist holomorphic vector fields 6,, 6., 6, given by

6,=0,, 0,=e%9,, 0;=e0;,
such that

[6,, 6,1 = —1[6,,6,] = —6,, [0, 0,] = —[65,6,] =6, , [6,,6,] =0 .

HY'(X) is generated by of = dz,, pf = e*dZ, and ¢f = e *'dZ, (see the proof
of Theorem 3). Since ¢} = e*~%3, and ¢ = e~**415,, HY(X, 0) is spanned
by 0.0¥,i=1,2,3, 2= 1,2,3. We shall construct a vector (0, 1)-forms +r
satisfying (3.1). ' '
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o 3 3
Set (2) = Z (1), where 4, (f) = Z Z t;.0.0Ff and +,(¢) is the homo-
geneous term of total degree « in ¢;;. Then we have

[0.0F, 0,051 = (810, + [0, 0,DeF N o 5

[6.0F, 0,.0F] = (—6,0, + [0, 0,DpF N oF ,

(605, #%] = (=80, — 0,0, + [0, 0,Dpx¥ N ofF ,
s, ] = mb; + 7.0, + :0; »

where

= _tutls@ik A\ SD:ka + tutlzﬂoiI< A Gﬁék - 2112t13§0§k A\ 90*; s
N2 = (t21t13 - 2’11123)@;|< A %’f + t1ztz1SDi'< AN Sng - 2t12t2390;k AN 50':": s
N3 = —t13t31go;k A §0§k + Qtyts — t31t12)§0ik A\ §0§k - 2t13t32§05k AN SD.:sk .

Since ovr, = L[y, Y1, it follows that 7, is cohomologous to zero in HY*(X).
Lemma 3.1. Set p = Apf N of + Bof N oFf + Cof N ¢f, and assume
that 7 is cohomologous to zero in HY*(X). Then A = B = C = 0.
Proof. ¢ N of = €720, N\ @, of N of = @ N\ @5, o N of = €77,
N @y, 0(pF /\ o) = 0. If fi, f,, f5 are functions in z,, Z;, then

12 N\ @5 + [oor N @5 + o1 AN @) = —@.f, + 15 — 0ofs — [ »

where 9 is the adjoint operator of d (see the proofs of Theorems 2 and 3). Thus
HeF N oF) = Hpf N ¢F) = HpF N ¢F) = 0, and f A ¢ is harmonic. Hence
P=0,A=B=C=0. q.e.d.

It follows from Lemma 3.1 that

ity = 0, Ity = 0, Loty = 0,
(3-3) Iyt — 2tut23 =0 s haly = 0 B Loty = 0 s
tyty = 0 ) 2t11t32 — Iyl = 0 y bty = 0.

Consequently v = ;.
By solving (3.2) we have the solutions :

n=2Z + T — log (1 — t,e9Z,) + log (1 + tze 7y ,

B -2217
=2, + tpZ, — e 0,7 — —tzl er(e i — 1) 4 _—1236 Zs ’
N2 2 13 3 —
I 1 — te ™7

1,,6%17
G =23 + lyZs + lulue€™2:2 + fa S en(etnn — 1) € L2 — .
1 1 — t,e”7,

Four cases may occur. If ¢, = #,; = 0, we infer that C® is the universal covr-
ing of X, by the same argument as in the case of III-(2).
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Case 1: tw#0, by =ty =1ly=1,=0, L=2+ 47,
t21 e—zl(e-tuél — 1) ,
1

Co =2, + 1pZ, —

§ =25 + 12, + ta e(etn — 1) .

11

C? is the universal covering of X,, i.e., X, = C®/I", for a group I'; of analytic
automorphisms of C?; the group [, is defined by
=4+ a,

Go= e, + @ + e ua(l — emtum) |
11

C;-; = ewlca + (Z)a — _13_1 ecl""”l(l _ etuﬁl) ,
11

where @; = w; + t,,®; for (w,, w,, w,) € I".
Case 2: =t =1t;,=0, &=z,
Co =2, + 12, + 16797, + Ine ™7, ,
G = 23 + IyZ; + 15€77, + 1567, .
C? is also the universal covering of X, i.e., X, = C*/I";; I'; is defined by
C{ =+ o,

4 - ~ — =1 — 5—201—2
& e, + @, + me T 4 typBe T

’ ~ - " . 205+2
8= el + @ + 18,57 + L@, et

where @&, = w; + 1;;@;, i = 2, 3 for (w,, w,, w;) € I'.

Case 3 (Kodaira): ¢, # 0, =ty =1, =1ty =1,=0,
¢ =2z — log (1 — t,e"Z,) , C =2, + 1,
122,

Cs=zs+tsszs+*l-_—tnezz—2—-

Set

w=en, pn=w—1=10Z%, =24+t i,
t, 1
t, W

Ny = %3 + I3 —

Any g e I" induces a transformation g, of W, as follows:
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7= ey — 1,®,) , 7= e "y + @) , 75 = € (s + @) ,

where W, = {(91, 72, 73) € C*; (1 — 1,y + 1,5(7, — sz) # 0}and @; = w; +

t;;@;, i = 2,3 for (w, 0, w5) € . Setd, ={g,;g € I'}. Thenwe have X, = W,/ 4,

for ) |,/ <1 and X = X, = W,/ 4,. For t, #+ 0, W, is not a domain of holo-
1,2

morf)hy. In fact, by virtue of the edge of the wedge theorem [6] any multivalued
holomorphic function on W, extends to C®. In particular the universal covering
manifold W, of W, cannot be imbedded into C"* for any n.

Case 4: t,+0, h=tly=1) =1 =1t,=0.

By the transformation: (z,, 25, Z5) — (—2;, — 23, —23), (£, &, &) = (=,
—&,, —&,), we can reduce Case 4 to Case 3.

Now we summarize the numerical characters of small deformations in Case
3.

r K10 ho hoz h3) 08 hst K2 | Pn(m>1)|

l) t2;=0
iy TPSPo NN T A O T U O I B 1 0
il) #,#0 0 0 2 1 0 0 2 1 0 —o0

Thus we obtain

Theorem 2. /1?7 (p,q) + (0,0), r, P, (m > 1) and x are not necessarily
invariant under small deformations.

Secondly we shall consider the case where X is of type III-(3) with A%! = 1.
Holomorphic 1-forms and vector fields on X are given as follows :
o =dz,, ¢, =e%dz,, @ =edz,
6,=0,, 0,=e"5,, 0,=e"0,.

H"Y(®) is spanned by 6,p,, 6,5,, 6,¢,, and the vector (0, 1)-form + satisfying

3
(3.1) is given by (t) = 2, t,60,5,. We can construct a locally complete complex
i=1

analytic family of deformations of X depending on 3 effective parameters ¢,.

Case 1: t,#0, L=z + 4z,

t .
Li=2— 2e(ehn — 1), G=2z + t—ae“(em1 -1.

1 1

Xt = C*/T';, and the group I, is defined by

, _ , o t, _._ L
G=4+ o + 1@, , L=e"¢ + t—ze frme(] — et
1
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L= el — ?e‘“”‘(l —eh®)  for (0, wpw) el .
1
Case2: 1,=0, (=2, L=2+KL57, §=2z + L7 .
xt = C*/I';, and the group I, is defined by
G=0+ o, G=e"C + o, + we v,
G = el + o + twet for (w,, @y, ;) € I .

4. Proofs of Theorems 2 and 3

The following theorem is due to Kodaira.

Theorem 3. If X is nilpotent, then h* = r.

Proof. We shall calculate the dimension of harmonic (0, 1)-forms by the
Dolbeault isomorphism H'(X, ®) = HMX). Let {¢,} and {6,} be a basis of
H'(X, Q") and H(X,0) dual to each other with respect to (1.1), which
satisfy (2.1) and (2.2) respectively. Let ¢ be a differentiable (0.1)-form on

X. Then ¢ = i} f.¢:, where f.’s are differentiable function on X, so that
2=1
9¢ = 12: (9vfu)¢v AN o, + ZZIfzd% == A:_:; (9Ifn - 91fu +2 Z; c;wzf,,)@,, VAN 78
SV = v p=
For a differentiable (0, 1)-form y = Zn} 87, we define
A=1

(¢,l)=fxﬁ]=1fx§adX,

where dX = i™™ o, A\ -+ N, AN @ -+ N\ @y

Let 9 be the adjoint operator or d with respect to the inner (, ). For a dif-
ferentiable function g we have

(99, 8) = (p, 3g) = L S 1.8 dx = —jx (3 6,408 dX .

Hence 9¢ = —-Zn: 0,f,- Assume that ¢ is harmonic so that dp = 0, 9p = O.
=1

Consequently

0,f, — 0.f, + 2 Zlc,wz f,, =0, AZi 0, =0.
P -

Define the Laplacian ] by
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Then Of = O implies of = O for a function f. Hence f is holomorphic on X,
and is constant.

Of, = =2 X Cuabif,
Ap=1

Since X is nilpotent, we have c,,, = 0 (v> g or 2 > ). Thus (Of, = 0, which
implies that f, is constant. From this it follows that

Dfn-l = _Zécnn—lk 01fn =0.

Thus f,_, is constant. Inductively we conclude that any f, is constant. Since
d =0, f,=0(<2). Hence p = } f,5, where f,’s are constant, i.e., i*! = r.
=1

Theorem 4. If X is solvable and its Lie algebra has the Chevalley decom-
position, then we have b, = 2r.

Proof. First we assume X to be nilpotent. Consider the following exact
sequence :

0 C 4 do 0.

Then we hove
0 - HYX,d0) - H(X,C) -» H(X,0) — -- - .

From theorem 3 it follows that b, < 2r, while in general b, > 2 dim; H'(X, d0).
Hence we complete the rroof in case that X is nilpotent.

Now we assume X not to be nilpotent. Then the Mostow decomposition
(X, m, B) is nontrivial. Set dim B = s (>1) and dim X = n. Then we can take
a system of coordinates (z,, - - -, z,) of the universal covering C* of X satisfy-
ing the following two conditions :

(1) = is the projection to the first s factors, and (X, =, B) is a holomorphic
fiber bundle with nilpotent F as fiber:

X:C"/FB(ZI, "'9Zn)

| l

B: CS/FB(ZU "',Zs) .

(2) 6, ¢, are represented in the forms (2.5) and (2.6), and g, € I'; induces
an analytic automorphism of F and Alb F; hence g, operates on (z;,,, - - -,
Zs,rry) @s an affine transformation.

Denoting the v-th coordinate of z-g, by (z-g,), = z/, we have z,/ = Z a,z,

p=s+1
+c¢,s+1<v<s+ r(F), where q,, is constant and ¢, = ¢,(z;, - - -, Zs, &)-
By induction on » we can check that any c, is constant depending only on g,
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in view of the representation (2.5) of ¢,. Consider the following spectral se-
quence :

EP? = H?(B,Rr 0x) = H?*Y(X, 0) .
Then we have the exact sequence :

0 — H'(B, Op) » H'(X, 0x) —» H'B, R't,,0,;) — - - -
Ul
H3'(X)

Since F is nilpotent, H}'(F, Oy) is generated by dZ,,, - - -, dZ;,,x,, and there-

fore any element +» of HB,R'r,0y) can be written in the form + =
s+7(F)
>, f(2)dZ, where f,(z) is holomorphic in z,, - - -, z,. By the above arguments,

A=s+1
+r can be viewed as a (0, 1)-form on X, and can therefore be written as + =

f} 8.5, where g, = gz, -+, 25, Z» * - +» Z,) is antiholomorphic in zg,,, - - -,
A=s+1
Zp-

By Proposition 2.3 we see readily that oy = 0, 9 = — Zn} 6.8, = 0, and

A=s+1

consequently that + itself can be viewed as an element of H'(X, ¢) = H>'(X).
Hence HY(X,0y) = H'(B, 0p) ® H'(B, R'r,0y), that is, any element + of
H3}'(X) can be represented in the form

s S+ 7(F) s n
Y= ;lcxdzz + > f(dz;, = xZ; ¢4z, +1_Z‘Elgzjzx ,

A=s+1

where c, is constant, and f,, g, are the same as above. We shall calculate the
dimension of real harmonic 1-forms on X. Let ¢ be a real differentiable 1-
form given by

o= 28w+ 2 8%
A=1 A=1
where g, is a differentiable function. Set + = f} g:0;- Then ¢ = ¥ + .
i=1
Define d, ¢ by

do=0+ W+, o=@+ +V) .

Assume ¢ is harmonic. Then dp = 0, dp = 0, and therefore oy = 0, ¥ +
oy = 0. Since oy + oy = 3, (6,9, — 6,8,)0, \ @,, we have

4.1 0,2, = 0., .

On the other hand,
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From this it follows that 9y = — i} 0.8; = 0. Since oy» = 0 and 9 = 0,
2=1

is an element of H}'(X). Thus 4 = 3 ¢,dZ, + Zn; 8,5, for some constant cjs.
=1 A=s+1
From (4.1) we conclude that any g, is constant. Since dp = 0, we have g, = 0

(2 > r). Accordingly it follows that ¢ = Z cp: + Z C,p, Where c}s are com-

plex numbers. This implies that dimg H’(X R) = 2r i.e., b, = 2r.

Remark 4.1. In the proof of Theorem 3 we have given an explicit descrip-
tion of elements of H}'(X). Since 6O is isomorphic to ¢*, H>(X, 0) is spanned
by 6,0 (i = 1, - - -, n) for elements ¢ of H}*(X).

Remark 4.2. If X is not nilpotent, then X = C” X F/I', for a nilpotent
manifold F and a group [, of analytic automorphisms of C* X F. Any element
g of I'; induces an automorphism g* of C* X AIb F. Set I'} = {g*; ge I'}}.

"Since [I'; operates on C* X F properly discontinuously without fixed points,
I'¥ operates on C* X Alb F in the same way. Thus X* = C* X Alb F/I'} is
a compact complex manifold, and is therefore parallelisable and solvable. Using
this fact we infer that a parallelisable manifold with the following basis {¢,} of
H'(X, 2Y) does not exist:

dSDlzoa dﬁoz:@l/\ﬁf’z, d903:_2(#+1)§01/\903a
do, = po, N\ oy, dps =+ Do, A\ o5 + 0, A\ o,

where g is constant, and u(y + 1) + 0.
Proof. If a parallelisable manifold X of this type exists, X* is a parallelis-
able manifold with a basis {y;, ¥y, V5, ¥} of H'(X*, Q%) such that dvy,, = O,

dry, =y A g, Ay = —2( + Dy A s, db, = pdy A 4. This contradicts
Lemma 1.4.

5. Proof of Theorem 5

First for brevity we assume g to have the Chevalley decomposition. Let {¢,}
and {6;} be dual bases of H%(X, ") and H(X, ©) which satisfy (2.1) and (2.2)
respectively. The assumption means that Hy'(X,®) is generated by 6,5,

A=1,---,n,and i=1,...,r. Define a (n — r, n — r) matrix 4 = (4;;)
by
Ai]' = 2’00 Z Ci+7‘2vcj+7‘1v ) l,] = 15 cery,h—71,
A<y

where v(,:j dX:i-ﬂ“‘f OA AP AGA - A G
X X
Lemma 5.1. det (4,;) # 0.



104 IKU NAKAMURA

PrOOf. (agoi“., ang_H-) == (d¢i+7’ d¢j+1‘) = ’UO ;: CH”,,C”M, = 2A1,j. Thus,
in order to prove Lemma 5.1, it suffices to show the following:
If for a 1-form + = Zn: o OV, 00,) =0, v=r+1,.--,n, then we
A=r+1

have ¢» = 0, where ¢}s are constant. However this is obvious. q.e.d.
It follows from Lemma 5.1. that there exists (n — r, n — r) matrix (4Y)

such that 3" A, A4 = G,.
=1

Lemma 5.2. For a (0, 2)-form ¢ = }; a,@, /\ &, with some constants a,,,
A<y

¢ is cohomologous to zero in HY(X) if and only if ¢ = i a,dp,, where dis
A

=r+1
are constants.
Proof. For a (0, 2)-form ¢ = }; a,6, A\ ¢, the adjoint operator -9 of J is
i<y

defined by
Yp =2 21 Conlu®i = 2 35 Ciyrn@3Pir -
12» ll<u
Set
HSD =0 — Dy Z Aﬂci+rlua1vd¢j+r .
2
If dp = 0, then Hy is harmonic, i.e., d(Hp) = 0, 9(Hp) = 0. In fact, d(Hyp)
= op = 0. Moreover,

‘9(HSD) =2 Z cilva2v¢i - 47]0 Z’:c ci+rlva1»Aﬂck+raﬁcj+raﬂ¢k+r
22» 1<v7',{r<ﬁ

=2 ) % — 2 2, ci+n»a1uAjiAlcj¢k+r =0.

Since H is nothing but the projection of the harmonic part, we have Hp = 0 if
¢ is cohomologous to zero. “If”” part of the lemma is obvious.
Lemma 5.3. Under some algebraic relations between t,, (i = 1, - - -, n, and

A=1,...,r), there exists a vector (0, 1)-form + = f o (t) for some n, < n
a=1

such that

(5.1 o — ¢y, vl =0,

where r, = i i} t..0:0,, and r, is the homogeneous term of total degree «
i=12a=1

in t;,.

Proof. Set + = f] () and , = f} i} t,.0,0,, where v, is the homo-
a=1 =0 2=1
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geneous term of total degree « in #,,. Since [0,5;, 6:0,]1 = [6;, 6:15;, N\ &;, We
have!

1# = %qu ‘!’1] - Z Z axyz(t)ﬁi% N, -

7= Z a6, /\ @, is cohomologous to zero in H}*(X). Hence from Lemma
5.2 1t follows2 that 5} = 3 b.,(0)dp, for some b}, (¢) and
#EQ2

(5.2), a, () =2 3 b (Dc,, -

(In general (5.2), is nontrivial ; see (3.3).) Then we have

a‘!’s [V, ‘!’2] = Z Z amai% N, .

i=0 2€
”€Q2

Again from Lemma 5.2 it follows that

= QZQIaﬁm-@ N g = Z b2dp, for some b2, ,

BeEQ
vEQ2 :

(5.2), @, (1) = 2 2 bl (0)c,,, -

Inductively we define +, and b%(¢) under additional relations (5.2),, - - -,
(5.2),,, Since |, Q, is bounded, we obtain the desired + after finite steps
of processes. q.e.d.

(5.2), + -+, (5.2),,,_, define an algebraic set 4 in C*. Set A, = {(t;) e 4;
ZE] 3 |tal < e} for a sufficiently small positive number e. Lemma 5.3 implies
=0 2=1

that there exists a maximal complex analytic family of deformations of X de-
pending on ar parameters ¢;,. A, is the Kuranishi space of deformations of X,
[3].

Lemma 5.4. The system of differential equations
(5'3) SC«—W(t)Ca:()y adx = 1)"'5"

can be solved in C* X A, under the initial condition £ (0) = z,, where O ¢ A,
denotes the origin of C™.

Proof. Since (5.3) is the integrability condition of the system of differential
equations (5.3), we can formally solve it by the interation method. To this
end we must show that the formal solutions converge in C* X A, for a suffi-
cient small positive number e.

In view of Propositions 2.3 and 2.4 together with Lemma 5.3, + is repre-
sented by

L2 See (1.4) as for Q,, Qs, etc.
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V=3 N6b6+ 533 00,

k=7+1 p=7+1 p=2

where m = #0 (see (1.2)), and 4§, denotes the homogeneous term of total

degree B in t;;. Then we have Y a5, = f} bt (t, 2)dZ, for a polynomial
p=r+1 pr=r+1

bi.(¢,2) in Z,, - -+, Zp_y, t;;, Which is of degree g in t;,. Therefore the system
of differential equations (5.3) is equivalent to the system of equations:

0L = 2 105+ 3 3 bh(L DO,

B=21i=r+1

(5.4) 5.0 = 31,0+ 5 3 bi(tDOL
i=1 =2 i=r+1
0L =73 > bigC  forpeQul>2),
B=li=r+1
=0 for pe Q.. .

Set { = i} {, where {, denotes the homogeneous term of total degree § in ¢;,.
8=0
Case 1. Assume {(0) = z, or requivalently {, = z, (@ = 1, - - -, r). Then
we have

a#CIZta#’ p<r; 9pC1:09 ﬂ>r

4 r
Hence setting ¢, = 3 ¢,,Z,, we obtain the solution { = z, + 2 £,.Z,-
#=1 p=1

Case 2. Assume {, = z, (o« € Q). Denote by D,(f) the degree of a polyno-
minal f with respect to z,. Since 9,§, = ¢,, (¢ < r), 3,{, = 0 (> r), we have

¢ = i} t,,Z,. From Proposition 2.4 it follows that for x (<m)
pg=1

0z=0@G>pori<s), 0z,=1, 6z, =G, (g>i>5s),

[’

where G;, is a polynominal in z,, ---,z;_,. Hence we have (D,() =0,
D) =0 (G >a. If D,_,({) =N, then D,_,({) =N — 1, D) =0
(y > @). Inductively we obtain D, ,({y,,) =0 D,({y,,) =0 (y > @). For a
sufficiently large integer N, we have

DT(CNH-a):Oy 7’21,“',”, 5=19"‘sn1,

Ni+é
so that we may set {, = O for any 3> N, + 6. Hence { = } {, is the desired
B=0

solution.
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Case 3. Assume §; = z, (@ € Q.., i.e., « > m + 1). Similarly, as in Case
2 we have D,({y.,) =0, y=s+1,.--,n, 6 =1,--.,n. Therefore the
problem is reduced to the case where

r=s, and {, isa polynomial in e*1,z,, ---,2,,

and it suffices to prove the covergence of the series }; {, only for {, =
=0

esz,*- . .z, Moreover, the system of differential equations (5.4) takes the
form:

= Z t,ulazc
=1
Define the norms || || by

b= FSlal, =S5l = 5 ezt 2]

2o
for a polynomial f = 37 a,,...;,2,%*- - - zfr. Since 9,{, = )] 1,,0,L,, We have

Cx == Z tpx(axCo)Z—p s

HZII2

and therefore |8, < (7] 2]l 1G]l 3,5 = 3 ,:8:C,. Thus |&] < ”’”Z AILNIEd Sy

Idductively we have |£,| < ﬁ”;”,ﬂllc‘? |, and

k!

ez, 6t (k1) , , ., z¢r (Er) .
R AT @) @

L® =

1 T
Therefore ||{P| < (—kk—_)—'M G(z) where ¢, = Y e, G(2)=|e"|
—_ 0 v=1
3T 1z |z,%- - -|z,77|, and M is a sufficiently large positive number inde-
0<ju<ey

pendent of k. Hence

ZCk

k=eo

]ch<yzlck

% - el

yoexp (7] f1z[h - g.e.d.

In view of the proof of Lemma 5.4 we have

ag, \ «e- NdC, NdT N - N dE,
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=c®dz; \ --- Ndz, Ndz; N\ -+ N\ dZ, ,

where a differentiable function c() of ¢;, is independent of z,, - - -, z, and satis-
fies ¢(0) = 1. Hence by the same argument as in §3 we conclude that any
small deformation X, (t € A,) has C™ as the universal covering for a sufficiently

small positive number e.
In the general case we can apply the following lemma which is a weaker

form of Propositions 2.2 and 2.3.
Lemma. Let G be a connected solvable complex Lie group. Then we can

choose a global coordinate (z,, - - -, z,) of G (= C") and a basis {¢,}, {6} of
right invariant 1-forms and vector fields respectively such that

2 n
0= 5 Fu@dz,, 0= 3 Gi(2)9]z, ,

where F]p = ny(zl’ Tty Zv—l)? Gly == GZu(Zb ) zv-l) and (015 SDV) = 51::'
By quite similar arguments we can also prove Theorem 5.

6. Classification of four- and five-dimensional complex solvable manifolds

By an elementary calculation together with Lemma 1.4 and Remark 4.2 we
classify four and five-dimensional complex solvable Lie groups which may
have uniform subgroups as follows :

Type IV:
1. dp,=0, 1<2<4.
2. do;, =0, 1<2<3, do=—¢p,\ g, .
3. dpy=0, dp,=0, do,=—¢o Nog,, do,= —20, N ¢ .
4. do, =0, dp,=0, do,=¢, Ny, do,= —¢, N\ ¢, .
5. dp, =0, dp, =0 N @, do;=ap N ¢,
do, = —(1 + o, A\ ¢, all +a) #0.
6. dp,=0, do,=0 Ny, dos= —p, N\ @3, do,= —p, N\ @5 .
7. dp, =0, dp,=¢ A ¢, do,= —20, N ¢,,
dp, = dp, /\ @1 — @1 N\ @y .
Type V:
1. dp,=0, 1<21<L5.
2. dp;, =0, 1<2<4, doy=—¢, N\ ¢, .
3. do,=0, 1<2<4, dpy=—p, Ny — @, N\ o, .
4. dp,=0, 1<2<3, do,=—p N, dos=—¢, N g;.
5. dp, =0, 1<2<3, dp,=—¢, N\ oy, dos= —20, N\ ¢, .
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6. dp,=0, 1<2<3, do,=—¢, N\ ¢y,
dp, = —20, \ o, — 0, N\ @5 .
dp, =0, 1<2<3, do=0;N\¢,, dps= —0; N\ ;.
8. dp, =0, 2=12, dpos=—¢p, N\N¢,, do,= —20, N ¢,
do, = —20, N\ ¢, .
9. dp,=0, 2=1,2, do;=—¢, N\ ¢,
doy, = —3¢, N\ ¢, .
10. dp, =0, 2=1,2, dp,=—¢, N¢,, dp,= —20, N\ ¢,
dos = =30, N oy — ¢, N\ 5 .
11. dp, =0, 2=1,2, dos=—p; Ny, do,=¢ N ¢,
dos = @1 N\ @5 -
12. dp,=0, 2=12, dp,=¢, \Noy, do,=¢, N\ ¢,
dp, = — (@ + @) N @5 -
13. dp,=0, 2=1,2, do,=¢, N\ s, dp,=ap, N\ ¢,,
do, = —(1 + @)p, N ¢, a(l +a) #0.
14. dp,=0, 2=1,2, do,=0 N ¢s, dp,= —20 N ¢,,
dos = o1 N\ @5 — @1 N\ 5 .
15. dp, =0, 2=1,2, do,=¢, N5, do,= —¢, \ ¢,
do, = —ps N\ ¢, .
16. dp, =0, 2=1,2, do,=¢, \N¢;, do,= —¢ N o,
dps = =03 N oy — o1 N\ @ -
17. dp, =0, dp,=¢, N\ @y, do,=ap, N\ ¢, do,= o N ¢,
do;=—(1+a+Po Nes,  apl+a+p+0.
18. dp, =0, dp,= —3p, \¢,, do;=¢ N ¢,
do, =@ N oo — @1 N\ @5 5 dos =01 N\ o5 — o1 N\ @5 .
19. dp, =0, dp,=¢, N\ ¢y, dps= —¢ N ¢,
do, =0 Ny — o Ngrs  dog=—0 Nos— o N gs.
20. dp, =0, do,=¢, N@,, dos=0¢, N\ o3 — ¢ N\ @3,
dp, = ap, \ ¢, dpy= —Q2 + o, Ny, a2+ a)#0.

, doy= —20, N\ ¢,

Lemma 6.1. Let A be a 3 X 3 matrix which induces an automorphism of
a complex torus of dimension 3. Assume that A has eigenvalues a, o and o™*.
Then « is a root of unity.

Proof. Let @ be the proper polynomial of A. Then

U(x) = 0(x)0(x) € Z[x] .
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Assume « is not a root of 1. We shall prove ¥ is irreducible in Z[x]. In fact,
if ¥ is not irreducible, there exist @,, @, € Z[x] such that ¥ = @,@0,. We may
assume deg @, > deg @, > 2. Two cases may occur. First, we assume deg @, =
4, deg @, = 2. Put F(x) = (x — a)(x — @) € R[x]. If F|®, in R[x], then F =
+ @,. Since the constant term of ¥ equals + 1, that of @, equals + 1. Hence
|e| = 1. Any conjugate of « has absolute value 1. Therefore « is a root of 1.
This is a contradiction. If Ft@, in R[x], then F?|®, in R[x], hence F? =
+ @,. Similarly, we are led to the contradiction. In case deg @, = deg @, = 3,
we also have a contradiction. Thus ¥ is proved to be irreducible. This con-
tradicts the fact that ¥ has a double root. q.e.d.

Similarly we obtain

Lemma 6.2. Let A be a 4 X 4 matrix which induces an automorphism of
a 4-dimensional complex torus. Assume A has eigenvalues o, a, 0, 2. Then
a Is a root of 1.

From these lemmas, we conclude that a parallelisable manifold of type IV-
6, V-14 or V-18 does not exist. In fact, in the case of IV-7 we consider the
Mostow decomposition 7 : X — B. Then B is an elliptic curve, the fiber F is a
complex torus of dimension 3,

X=c/I', g=(o,0p0,0)el,
and g: F — F is given by
(23, 23, 2) > (672, + @,, €25 + w5, €72, + €702, + ) .

Lemma 6.1 shows that e is a root of 1. This contradicts the fact that {, ;
(01, 0, 05, ®,) € I'} are periods of the elliptic curve B.

Similarly it can be proved that a parallelisable manifold of type V-15 or V-
18 does not exist.

The author does not know whether there exist parallelisable manifolds of
types IV-5, V-11, V-13, V-16, V-19, V-20. In other cases we can construct
examples of each type. Now we summarize the results. In the following table
we omit z; 4+ y, for simplicity. For example, zxy = (z; + y; + ¥:2,) implies
2%y = (2 + Y1, % + Yo 25 + Y5 + 120

Type IV %y
1 abelian
2 nilpotent Z4+Ys+Y223
3 nilpotent Z3+Ys+Y12e, 2t Yst2y125+yize
4 solvable e Y223+ Y3, e¥2z4+ Y,
5 solvable eV1Zy+y,, e-Wizz+y;. etz fy,
6 solvable e Y1Zo+yq, €¥1Z3+Y3, Z4+Yst+eviysZs
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Z*xy
1 abelian
2 nilpotent 25+Y5+Ys2s
3 nilpotent Z5+Ys+Y123+Yals
4 nilpotent 24+ Y4+ Y122, Z5+Y5t+ Y123
5 nilpotent 24+ Ys+Yazs, Z5+Ys+2y924+Y323
6 nilpotent 24+ Ya+Y122, 25+ Ys+2y124+Yazs+yize
7 solvable e Ysz,+yy, e¥szs+ys
8 nilpotent 23+ys+yize, 2a+Yat+2y123+Yizs,
25+ Y5 +2y223+ Y123 +2y1Y922
9 nilpotent 23+ Y3+ Y122, Za+Yat+2y125+yize,
Z5+ Y5+ 3y124+3y3z3+ yizs
10 nilpotent | z3+ys+yi12e, 2a+Ys+2Y125+Y32s,
25+ Y5+ 3y124+ Gyi+2y2)zs+ 128+ (03 +2y1y2)2:
11 solvable 23+ Y3+ Y122, € V1Ze+Ys, €V1Z5+Ys
12 solvable e Vizg+ys, e Y2z4+ Yy, eVitvazgtys
13 solvable e V273+y3, €-aV2z,+y,, e+ @vazstyy
15 solvable e ¥2z3+ys, e¥224+Ys, Zs+Ys+ev2yszy
16 solvable e Y1z3+ys, eV¥izy+y4, 25+ Y5+ eViysze+yi2e
17 solvable € V1Za+ya, € Wizg+ys, e Flizgtyy, eQtatPizy,
19 solvable e vizy, eVizz+ys, e Vizyte Viy Zs, eVizy+ys+eviy z;
20 solvable e V1zZy+yg, e Vizg+ys+e Viy Zs, e Vi1z 4+ yy,

e—(a+2)ylz5_|,y5

Complex solvable manifolds of dimensions 4, 5 are classified as follows:

r ho:1 structure (Albanese mapping)

v: 1 4 4 complex torus

2 3 3 T'-bundle over T3

3 2 2 T2-bundle over T2

4 2 2,4 T2-bundle over T2

5 1 1,2,4 T3-bundle over T1?

6 1 1,3 (III-2)-bundle over T*
vV: 1 5 5 complex torus

2 4 4 T'-bundle over T*

3 4 4 T'-bundle over T*

4 3 3 T2-bundle over T3

5 3 3 T?-bundle over T3

6 3 3 T?-bundle over T3

7 3 3,5 T2-bundle over 13

8 2 2 T3-bundle over T2
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r ho:1 structure (Albanese mapping)
9 2 2 T3-bundle over T?
10 2 2 T3-bundle over T2
11 2 2,4 T3-bundle over T??
12 2 2,3,5 T3-bundle over T2
13 2 2,3,5 T3-bundle over T2?
15 2 2,4 (I111-2)-bundle over T?
16 2 2,4 (I11-2)-bundle over T32?
17 1 1,2,3,5 T*-bundle over T!
19 1 1,3 T4-bundle over T1?
20 1 1,2,4 T4-bundle over T1?

Here r = dim H'(X, d0®), h*!' = dim H'(X, @), T* = a complex torus of

dimension n.

Remark. A solvable manifold of dimension 4 or 5 has a Lie algebra with
the Chevalley decomposition, and so from Theorem 3 it follows that b, = 2r.
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