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INFINITESIMAL RIGIDITY OF SUBMANIFOLDS

R. A. GOLDSTEIN & P. J. RYAN

Introduction

When a Riemannian manifold M occurs as a submanifold of another
Riemannian manifold M, rigidity questions naturally arise. Generally speak-
ing, a rigidity theory enumerates the different ways in which M can be iso-
metrically immersed in M. Two immersions are equivalent when they differ by
a motion (suitably defined) of the ambient space M. Rigidity is the term used
to denote uniqueness of the immersion up to equivalence.

Even though the word "rigidity" suggests a resistance to bending, the term
is generally used to refer to the following concept: M is rigid as a submani-
fold of M if whenever rλ and r2 are isometric immersions of M into M, there
exists an isometry φ of M such that r2 = φorλ. A second theory, continuous
rigidity, deals with one-parameter families of immersions. The third theory and
the subject of this paper is called infinitesimal rigidity. As a prototype we have
the classical Liebmann problem stated by Stoker [8] as follows:

Liebmann's problem. A closed convex surface in Euclidean three-space is
given. It is to be shown that the only small deformations of it which preserve
the line element within terms of second order in the deformation parameter
are small rigid motions.

Infinitesimal rigidity is a linearized version of continuous rigidity. It turns
out that no surface with a planar piece is infinitesimally rigid. In order to get
a solution to Liebmann's problem, it is necessary to assume that the given
surface has no planar open set. With this assumption, there is a solution, and
a proof of Liebmann's theorem may be found in Efimov [1].

In this paper, we formulate the theory of infinitesimal rigidity for submani-
folds in general, and then specialize to the case where the ambient space has
constant curvature to obtain some results concerning infinitesimal rigidity of
spheres. These results are compared and contrasted with those of the standard
rigidity theory.

In this paper, all manifolds and maps are assumed sufficiently differentiate
for all computations to make sense. All manifolds are assumed connected. For
a basic introduction to the theory of hyper surf aces, we refer the reader to [6].

The following notation will be used throughout. A submanifold S of M
consists of a manifold M and an immersion r of M into M. The Lie algebra
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of all vector fields on M is denoted by 3£(M). The group of isometries of a
manifold is written /(M).

1. Deformations of submanifolds

Let S = (M, r) be a submanifold of a Riemannian manifold M. Let / =

[—δ, δ] for some δ > 0. A map

γ: I X M->M

is said to be a deformation of S if γ0 = r and γt is an immersion for each t e /.
(We have written γt(x) for γ(t,x).) Each immersion ^ induces a Riemannian
metric ^ on M. Each closed curve on M has a length L(0 measured by the
metric gt.

Definition. Let γ be a deformation of 5. We say that γ is an isometric de-
formation (ID) of S if gt = g0 for each ί. We say that γ is an infinitesimal
isometric deformation (IID) of S if g'(0) = 0.

Remark. When we write g'(0), we are regarding gt as a curve in the finite
dimensional vector space of tensors of type (0, 2) at a point of M. It is easy to
check that γ is an ID if and only if L{t) is independent of t for each closed
curve on M. Furthermore, γ is an IID if and only if Z/(0) — 0 for each such
curve.

2. An example

Let M be the (open) unit disk in E2, and r the inclusion map into E3. Con-
sider the following deformation of S = (M, r) defined for — 1 < t < 1:

γ(t,x,y) = (x,y,t(l -x2-y2)) .

If U = (U19 U2) and V = (V19 V2) are tangent vectors to M, then it is easily

checked that

gt(U, V) = <£/, F> + M\x2ΌλVx + xy{UxV2 + U2Vλ) + y2U2V2) .

Observe that γ is an IID but not an ID.
We now generalize this construction to produce an IID of En embedded as

a hyperplane in En+1. Let ψ be a function with compact support on En. Assume
0 < ψ < 1. We call ψ a smooth bump. Consider

γ(t, x) = (x, tψ(x))

as a map of [—1,1] X En -+ En+1. If X and Y are in X(En), then we have

gt(X, Y) = <X, Y>
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Finally, we show how to construct an IID of any hypersurface in En+1 which
has a planar piece. That is, suppose S = (M,r) and there is some open set
Θ of M which is mapped one-to-one by r into a hyperplane. Without loss of
generality, we may assume that the hyperplane is the standard En in En+1.
Then choose ψ as above with support in r(Θ). Define

r(t,x) = ( r ( j c ) , t y r ( * ) ) if J C 6 0 ,

= r(x) if x $ Θ .

Then γ is an IID of the hypersurface S.

3. Vector fields along an immersion

Consider an immersion r: M —> M as before. Let E be the restriction of the
tangent bundle T(M) to M. A section of £" is called a vector field along r, and
the set of such sections is denoted by Γ(E). We make E a Riemannian vector
bundle by restricting g to the fibres of E. This restriction will be denoted by

The connection on E is defined as follows. Let X 6 3£(M) and u e Γ(£). For
p e M, let 0 be a neighborhood of p on which r is one-to-one. Then there is
an open set d containing r(jρ) and vector fields X and ΰ on 0 agreeing with r^X
and u respectively on r(Φ). Thus define

( 1) Φχu){p) = ψxu)r(p) .

It is easy to check that DΣu(p) is well defined by (1), and hence Dxu is a
section of E.

Lemma. In the above construction, the formulas
(i)

(ii) [X,Y]or=[X,Y]or
are valid for X, Y 6 3£(M) and f a function on M.

Proof. Choose p 6 M. Then

X(f°r)\p = dp(for)Xp = {df)rm{r^Xp) = (df)rmYn

This proves (i). Now

[X, Y]rmf = Xr(p)(7f) - Yr(P)(Xf)

= Xp(Ϋfor)-Yp(Xfor)

= XpY(f°r)-YpX(for) by (i)

= [X, Y]p(for) - rJX, Y]vf = [X, Y]rmf
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Every normal vector field is naturally a section of E as is every tangent vector
field. In fact, each u e Γ(E) has a unique decomposition into tangential and
normal components.

If u e Γ(E), then the exterior derivative du is the E-valued 1-form defined
by

duiX) = Dxu .

If θ is an E-valued 1-form, then the E-valued 2-form dθ is defined by

, Y) = DX{ΘY) + DY{ΘX) - Θ[X, Y]

for X, Y e 3£(M). For further details on vector bundle valued forms, see
Matsushima [4].

Certain E-valued forms arise naturally from an immersion.
Proposition. The differential r^ of the immersion r is a closed E-valued 1-

form.
Proof. Choose X, Y e £(M). Then

Extending to € as in the definition, the right side becomes

F~ V U V Γ Ύ VΊχl — V yΛ — \_Λ., I J .

But for p e M, the value of the right side at r{p) is

F~ V U Ύ XY VI Πx± — V Ϋ Λ — [yi , I J — U .

Thus the original expression is zero at p.
Recall that if X, Y and Z are vector fields on M, then the curvature tensor

R of the connection V is defined by

R(X, Y)Z = VXVYZ - VYVXZ - FίXfY1Z .

Now if X, Y e 3£(M) and u e Γ(E), the following formula has a natural
interpretation

( 2 ) R(X, Y)u = DΣDγu — DγDxu — DίX>Y1u .

We use the same symbol ^ to denote the curvature operator for the vector
bundle E. The following proposition shows the relationship between the curva-
ture and the exterior differentiation.

Proposition. If u e Γ(E) and X, Y <= £(M), then

d(du)(X, Y) = R(X, Y)u .
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Proof. d(du)(X, Y) = Dx{du Y) - Dγ(du X) - du[X9 Y]

= DxDγu - DxDγu - DίXY^u = R(X, Y)u .

Corollary. // M is Euclidean and u e Γ(E), then d2u = 0.
Remark. If M is Euclidean, then r is a section of E and r^ = dr. This

This gives another proof that r^ is closed.

4. Vector fields associated with a deformation

Let S = (M, r) be a submanifold of M, and γ a deformation of S. For each
x € M, let zx be the tangent vector to the curve t —> f(ί, JC) at t = 0. Thus z is
a section of E whose value at x is the "initial velocity" of the motion of x
under the deformation. We call z the deformation field of γ. It is, in fact, z
which determines the infinitesimal properties of γ. In particular, we have the
following characterization of infinitesimal isometric deformations.

Theorem. A deformation γ is an ΠD // and only if for X, Y e 9£(M)

( 3 )

Proof. Suppose first that M is a Euclidean space. Let xs be a curve in M
with initial point x and initial tangent vector X. Then

where all expressions involving s and / are understood to be evaluated at s =
t = 0. Thus

^γt)*XΛγd*Y>\t=» <Dxz,Y> + <x,Drz> .
dt

Now consider the case of a non-Euclidean M. By the well-known theorem
of Nash [3], there is an isometric imbedding r of M into a Euclidean space
Em. Let f = ro?-, 5 = (M,For). Since

for Z , Y € 36(M), we see that f is an ΠD of S if and only if γ is an ΠD of S.
It is straightforward but slightly tedious to verify that

<ArZ, Y> - <D z z, Y> ,
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where D is the covariant differentiation in the bundle E determined by r or,
and z = r^z is the deformation field associated with f.

In the calculation, the normal component of Dxz is annihilated by taking
the inner product with Y. The desired result now follows from the first part
of the proof.

The E-valued 1-form dz is called the rotation form. We denote it by the
letter p. Since pX = Dxz for each X e 9£(M), the condition for γ to be an IID
now becomes

( 4 ) <pX,Y> + ζX,pY} = 0.

Proposition. The rotation form p of a deformation of a submanifold of
Euclidean space is closed.

Proof.

dp(X, Y) = d2z(X, Y) = R(X, Y)z = 0.

5. Statement of the problem

In its most general form, our problem may be stated as follows. What in-
finitesimal isometric deformations of a given submanifold S = (M,r) are pos-
sible? If φ(t) is a curve in I(M) with φ(0) = 1, then

r(t,x) = φ(t)r(x)

gives an isometric deformation of S since

Definition. Any deformation γ, whose deformation field z coincides with
that of a deformation induced by a curve φ(t) in I(M), is said to be trivial.

Proposition. A deformation of a submanifold of Euclidean space is trivial
if and only if for some skew-symmetric matrix a and some vector b,

zx = ar(x) + b

for all x e M.

Proof. Every curve φ(t) e I(M) can be written

φ(t)r(x) = a(t)r(x) + β(t) ,

where a(t) is special orthogonal, β(ί) is a vector, and a(t) acts on r{x) by
matrix multiplication. We also have a(0) = 1, β(0) = 0. Then

Zχ -
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It is well-known that a\O) is skew-symmetric. Conversely, if a and b are given,
put

γ(t, x) = exp (ta)r(x) + ίb .

Then γ is an isometric deformation with deformation field

( 5 ) z = ar + b .

We are interested only in the nontrivial deformations since they reflect prop-
erties of the immersion, while the trivial ones are completely determined by M.

Definition. A submanifold S = (Λf, r) of M is infinitesimally rigid (IR) if
the only sections of E which satisfy (3) are trivial.

6. Nonrigid Hypersurfaces

In this section, we give some examples to illustrate the distinction between
infinitesimal rigidity and ordinary (finite) rigidity.

Theorem. Any hypersurjace in Euclidean space, some open subset of which
lies in a hyperplane, admits a nontrivial infinitesimal isometric deformation.

Proof. Let us check that the IID of the hyperplane in § 2 is nontrivial.
We see first that z = (0, ψ) and hence z = 0 on an open set in En. However,
any trivial z (affine map) which is zero on an open set is identically zero. We
conclude that z is nontrivial unless ψ> = 0.

The same argument applies to a small open set Θ of a hyperplane situated
anywhere in space. We need only choose ψ so that its support is in Θ. Then z
is zero on an open set and hence is nontrivial. Extend z to the whole surface
by making it zero at points not in the hyperplane.

Remark. It is not surprising that a hyperplane is not IR since there exist
isometric deformations of the hyperplane, the clearest of which is the bending
of it into a cylinder. However, a complete convex hyper surf ace in Euclidean
space is known to be rigid if the second fundamental form has rank > 3 at
some point [2, p. 46]. In particular, a convex hypersurface with one strictly
convex point admits no isometric deformation except the trivial ones.

It is also known that any isometric immersion of Sn(R) in Sn+1(R) is the
standard one. Thus Sn(R) is rigid in Sn + 1(R). This is a result of O'Neill and
Stiel [5]. However, the infinitesimal story is quite different.

Theorem. There exists a nontrivial IID of the great sphere Sn(R) in

Sn+1(R).
Proof. There is no loss of generality in assuming that R = 1. We may re-

gard Sn as a hypersurface of En+1. The deformation γ of En+1 in En+2 gives
rise to a deformation field z which is normal to En+1 in En+2. The restriction
of z to Sn is tangent to Sn+ι and hence qualifies as a deformation field for Sn

in Sn+ί. As in §4, z\Sn satisfies the IID condition. Since every isometry of
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Sn+1 is the restriction of an orthogonal transformation of En+2, the nontriviality
of z implies the nontriviality of z\Sn. We need only be careful to choose the
support of ψ to include an open set of Sn and also to exclude an open set of
Sn.

7. Rigidity of the sphere

Theorem. The standard sphere of radius R in En+ι is inftnitesimally rigid.
Proof. We may regard M = Sn(R) as a subset of En+1, and take the in-

clusion map as the immersion defining the hyper surf ace. The unit normal at a
point x is ξx = xjR and the second fundamental form at x is Ax = —I/R
where / is the identity.

Let z be a vector field satisfying (3). We may write

Z = τ +

where τ is tangential, and φ is a (smooth) function. Note that for X e 36(M)

( 6 ) Dxz = Vxτ + g(Aτ, X)ξ + ${Xφ)ξ - \φAX .

Then

if and only if

( 7 ) g(VΣτ, Y) + g(X, Vγτ) - φg(AX, Y) .

This is equivalent to saying that the Lie derivative of the metric g satisfies the
following identity

( 8 ) Lτg(X, Y) = φg(AX, Y) .

Now if we have an umbilic surface, say A = λl, then (8) becomes

( 9 )

In our case, this means

Thus τ is a conformal vector field on M.
The conformal vector fields on Sn have been classified. It is known [9]£that

every conformal vector fields is of the form

V ,
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where b is a constant vector field in En+\ and V is a Killing vector field on
Sn. Furthermore, every Killing vector field is of the form Vx = ax where
a e Θ(n + 1) (the set of skew-symmetric matrices). Finally, a computation [9,
p. 85] yields

L.S =--§•<&,£>*•

Hence we have

φ = 2<6, £ > , z = τ + iφξ = b+V, i.e., z* = ax + b .

We conclude that z is trivial, and hence the sphere is infinitesimally rigid.
Theorem. The small spheres on Sn+1(R) are infinitesimally rigid.
It should be noted that in this theorem only, the letter r is a positive real

number less than R.
Proof. We consider

where c is a unit vector in En+2. Then Sn is a small sphere of radius VR2 — r2.

Now

ξ = R(c - rR~2x){R2 - r2)-* , A = rR\R2 - r2)"*/ .

We will also need to consider

Nx = (x- rc)(R2 - r2)-* .

This is the unit normal for Sn considered as a hypersurface of the hyperplane
<*, c> = r.

We now consider possible infinitesimal isometric deformations of Sn in 5 n + 1 .
Let z satisfy (3). We again write

Formula (9) shows that r is a conformal vector field on Sn with

Lτg = ψrR\R2 - r*)-*g .

On the other hand, every conformal vector field on Sn is of form

Γ = V + b ~(b,

where (b, c> = 0, and F is a Killing vector field on Sn.
As before,
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Equating the expressions for Lτg gives

φ= - — <b,N> .
r

Thus

z = V + b - (b,N}N - ~(b,N}ζ

We claim that z is trivial. A computation shows that there exist a0 and aλ in
0{n + 2) such that

zx = (a0 + ajx .

In fact, a0 may be chosen so that aox = Vx. Then

where (v, c) = ζv, by = 0. It is then clear that we should define

aλv = 0 , ^ c = — , axb = — -L-Lc .
r r

Remark. By the classical rigidity condition (rank A > 3 everywhere) the
spheres of this section are also rigid.

8. Normal deformations

Throughout this section we assume that S = (M, r) is a submanifold of a
Riemannian manifold M.

Definition. A deformation z of S is normal if the tangential component of
z is everywhere zero.

Proposition. // S is a hypersurface, and z is a normal ΠD of S, then S is
totally geodesic wherever z is nonzero.

Proof. In this situation, (6), (7) and (8) are still valid. Since z is normal,
ψA is identically zero as required.
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Remark. This shows that the example of § 2 is typical of normal infini-
tesimal isometric deformations. Note that the same equations show that if z is
tangential, it must be a Killing vector field. Furthermore, if S is known to be
totally geodesic, the tangential component of z is automatically Killing.

Rigidity of submanif olds of higher codimension is usually very difficult. The
easiest such case is that of a complex hypersurface. The real codimension is 2
but the complex structure is an aid in the classical rigidity proofs. The same
is true of the infinitesimal case as the following propositions shows.

Proposition. Let S be a complex hypersurface in a Kdhler manifold M. If
z is a normal IID of S, then S is totally geodesic wherever z is nonzero.

Proof. For details on complex hypersurfaces see Smyth [7]. Let ξ be a
field of unit normals. Then we may write

Z = iφξ +

If X and Y are tangent vector fields, a computation gives

<pA y> + < Z , D F Z > = -iψΛX, y> - <ψΛ4z, y> .

Thus z is an IID if and only if

φA + ψJA = 0 .

But this implies that

φJA — ψA = 0 ,

and hence that

(φ2 + ψ2)A = 0 ,

which completes the proof.
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