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ALMOST SUBMANIFOLD STRUCTURES

ROBERT H. BOWMAN

1. Introduction

The purpose of this paper is the investigation of certain structures on an
^-dimensional C°° manifold determined by a second order connection, which
we call almost submanifold structures. The case of an almost submanifold
structure satisfying a certain additional condition is called an almost hypersur-
face structure, and is studied in detail. An almost hypersurface structure on a
manifold allows us to treat the manifold almost as if it were a hypersurface of
a second manifold. For example we may discuss the mean curvature and direc-
tions of curvature on a manifold bearing an almost hypersurface structure.
We show that an almost hypersurface structure is integrable (isometrically
imbeddable in a Euclidean space) if and only if the curvature tensor of the
structure vanishes.

Various conditions are obtained that there exists a submanifold whose geo-
desies are also second order geodesies of a second order connection, and the
mean curvature vector of and almost submanifold structure is investigated.

2. Preliminary remarks

In this section we will outline the results of [1] and [2] utilized in the main
body of this paper. The notation utilized is essentially that of [1] and [3] with
the summation convention employed on lower case Latin indices.

If 2M denotes the third term of the extended sequence [2] of a manifold

lπ \π lπ

( 1 ) °M <-?— ιM J— 2M <-? ,

then a second order connection [1] on M is a connection on the bundle
\π: 2M —> M, which naturally induces a connection on M (which we called the
first order connection induced on M). If JTΓ̂  denotes the tangent map of

\π\ TM -> M QM = TM), and K is the connection map of the induced first
order connection, then TTM and consequently 2M may be given a vector
bundle structure over M relative to these maps. If HM and VM denote the
horizontal and vertical subbundles of 2M respectively, then
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( 2 ) fr#: HMP - > Γ M i > r p l p

are isomorphisms of each p e TM; and if (J7, 0) is a coordinate chart of M,
then there are naturally determined bases {X1}} and {XI} of the horizontal and
vertical subbundles respectively, and coordinates of 2M (called vector bundle
coordinates) relative to (U, φ) and the first order connection on M.

A second order connection on M determines a covariant differentiation of a
section A of Q7Γ : 2M —• M with respect to a vector field X on M (here and
throughout the remainder of the paper we identify the horizontal subbundle
of 2M with TM) which has the local form

( 3 ) VXA = f

where X = ξ* d/dxj, and A = AUX\ + AUX\.
If X and Y are C°° vector fields on M, and ξ is a vertical vector field on M,

i.e., a C°° map f: M —» FM, then decomposing V into horizontal and vertical
components yields

( 4 ) VXY = VXΎ + a(X, Y) , Pxξ = Dxξ ,

where the horizontal component VXY is the covariant derivative of the induced
first order connection, the vertical component a(X, Y), which we call the
second fundamental form of F, is bilinear, and the vertical component Dxξ is
a connection in the vertical bundle.

If γ is a C°° curve of M, then f will denote the canonical lift of γ to TM,
and y" the canonical lift of f to 2M C TTM.

3. Almost snbmanifold structures

Suppose that g is a fiber metric on \π: 2M —• M, and that X(M) and ϊ υ ( M )
denote the modules of C°° horizontal and vertical vector fields on M respec-
tively. If V is a second order connection on M, then for all X, Y € 9£(M) and
f 6 3£υ(M) there is a unique field in ϊ ( M ) , which we denote by ^ζ(X) such
that

( 5 )

Using sf we define an operator V such that

( 6 ) F^y = VXY + α(Z, Y) ,

where F,α: and D are as in (4). Such an operator satisfying the additional
condition (5) will be called an almost submanifold structure or ^ίS-structure
on M. Thus by construction we see that to each pair consisting of a fiber metric
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on \π: 2M —> M and a second order connection on M there corresponds a
unique ^S-structure on M.

Suppose that for a given fiber metric g on 2

0π: 2M —> M and second order
connection F, the first order connection induced on M by F is metric with
respect to the metric on M obtained by restricting g to the horizontal subbun-
dle of 2M, and that the connection on the vertical bundle induced by F is
metric with respect to the metric obtained by restricting g to the vertical sub-
bundle of 2M. If in addition the torsion Tor (X, Y) of F with respect to any
X, Y, given by

( 7) Ίoί(X9Y) = FXY - FYX - [X, Y] ,

vanishes, we will say that F is Riemannian with respect to g.
Theorem 1. If F is Riemannian with respect to a fiber metric g, with the

additional property that vertical and horizontal vector are orthogonal at each
point of M, then F/ is Riemannian with respect to g.

Proof. Letting A = Ah + Av where Ah and Av are the horizontal and
vertical components of A we see that since horizontal and vertical vectors are
orthogonal and F Riemannian,

Xg(A,B) =

= g(FxA\Bh)

From (5) it follows that

g(a(X,Ah),B") + g(^BV(X),Ah) = 0 ,

g(a(X,B*),Aυ) + g(s/AX),Bh) - 0 ,

so that

Xg(A,B) = g(F'xA,B) + g(A,F'xB) .

Since

Tor7 (X, Y) = FXY - Ff

γX - [XY] = for (X, Y) = 0 ,

we see that F' is Riemannian with respect to g.
Theorem 2. // the AS-structure Ff is Riemannian with respect to the fiber

metric g, then the first order connection induced by Ff is Riemannian with
respect to the metric induced by g, and a(X, Y) = a(Y, X).

Proof. Since F' is Riemannian, using (6) we have

Fr

xY - F'YX - [X, Y] = FXY - FYX + a(X, Y) - a(Y, X) = 0 ,

hence
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FXY - VYX -[X,Y] = 09 a(X, Y) = a(Y, X) .

We define the first vertical space Vx{x) of an ^-structure at x e M by

( 8 ) Vx{x) = span {a(X, Y) \ X, Y e Mx) .

If V^x) has maximum dimension / at any point x e M, we call / the pseudo-
codimension of M.

4. Almost hypersurface structures

We first consider the case where the pseudocodimension of the ^-structure
is 1. Let

ί ( Z Y ) if ax(X, Y) Φ 0 for some X, Y ,ί
( 9 ) ξx= l\\ax(X,Y)\\

[ 0 i f ^ Ξ O .

If h(X, Y) = \\a(X, Y) ||, then a(X, Y) = h(X, Y)ξ. If we take s/(X) = s/ξ(X)
for the ξ defined in (9), the >45-structure becomes

(10) V'XY = VXY + a(X, Y) , Vxξ = -^(X) + Dxξ ,

where (Dzξ)x = 0 if ξx — 0, and we restrict ourselves to the case where s/ is
C°° henceforth.

On the basis of (10) we may define various notions analogous to those of a
hypersurface. At a point x e M the mean curvature H(x) is the trace of s/x,
and the total curvature K(x) is the determinant of Ax. If λ19 ,λn are the
eigenvalues of s/x, they are the principal curvatures at x, and the correspons-
ing eigenvectors are the directions of curvature at x. If two vectors at x have
the property that g{^{X), Y) = 0, then they are conjugate and if g(s/(X), X)
= 0, then X is asymptotic. If si = λ Id, then x is umbilical, etc.

We define the curvature tensor of the ^S-structure V in the usual manner
as follows:

(11) R\X, Y)Λ = V'xV
f

γA - V'γV
f

xA - F'ίXfT1A ,

and note that a standard calculation shows that the horizontal component of
R'(X, Y)Z is equal to

(12) R(X, Y)Z + h(X9 ZW(Y) - Λ(Y, Z)s/(X) ,

where X, Y, Z € 36(M), and R is the curvature tensor of the induced first order
connection. The vertical component is equal to

(13) (Fxh)(Y, Z)ξ - (FyhXX, Z)ξ + h(Y, Z)Dxξ - h(X, Z)Dγξ .
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Suppose that ^ Ξ O . Then from the horizontal component we have

(14) R(X, Y)Z = h(Y, Z)s/(X) - h(X,

or equivalently

(15) R(X, Y)Z = *(J*(Y), Z)s/(X) -

From the vertical component of R'(X, Y)Z it follows that at those x e M where
ξ is not continuous, Dξ = 0 (by definition) whence

At those x <~ M where ξ is C°°, we have g(ξ, ξ) constant and thus

Hence Dxξ and ξ are orthogonal, which together with (13) written in the form

(Fxh)(Y, Z)ξ - Fτh(X, Z)ξ = h(X, Z)Dγξ - h(Y, Z)Dxξ

implies that in either case

(16) (

or alternately

(17)

Hence in the case of an ̂ 45-structure of pseudocodimension 1, (6) becomes

(18) Ff

xY = FXY + a(X9 Y) ,

Theorem 3. On a manifold bearing a Riemannian AS-structure of pseudo-
codimension 1 such that for X,Y,Z e 3£(M) the horizontal component of
R'(X, Y)Z vanishes, the Rίcci tensor is given by

Ri (X, Y) = g(s/(X), Y) tr si - g(^2(X), Y) .

Proof. By definition

Ri (XY) = trace of the map Z -> R(Z, X)Y

using (15) is a standard fashion we obtain the desired formula.
We will say that an ̂ S-structure of pseudocodimension 1 on M is integrable

if there is an isometric imbedding of M into Rn+1 with second fundamental
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tensor j / the tensor determined by the symmetric transformation of the ΛS-
structure in (18).

Theorem 4. A Rίemannian ΛS-structure of pseudocodimensίon 1 on a
connected simply connected manifold is ίntegrable if and only if R' = 0.

Proof. Suppose that R' = 0. Then from (15) and (17) we see that the
symmetric linear transformation si satisfies the Gauss-Codazzi equations. The
integrability of the v4S-structure on M then follows from the fundamental
theorem for hypersurfaees [3]. On the other hand suppose that the ^-structure
on M is integrable. Then j / satisfies the Gauss-Codazzi equations, and equa-
tions (15) and (17) imply that R\X, Y)Z = 0 for arbitrary X, Y, Z €
From (18) it follows that

R'(X, Y)ξ = VzV'γξ - V'γΨ'xξ - V[x^ξ

(19) = (Fγs/)(X) - (FX^)(Y) - st (Tor (X, Y))

a(Y,

Since the Codazzi equation (17) is satisfied, (Fγs/)(X) — iVzs/){Y) = 0; and
since V is Riemannian, sί (Tor (Z, Y)) = 0. Noting that g(a(X,Y),ξ) =
g(s/(X), Y) we see that

g(a(X, s/(Y)), ξ) =

= g(a(Y, s/(X))9 ξ)

so that R'(X, Y)ξ = 0.
Remark. Although an imbedding of M, to within an isometry of Rn+1, is

determined by an integrable ^S-structure, an imbedded submanifold of Rn+1

may be determined, within an isometry of Rn+\ by several ^-structures.
Suppose that M admits a global nonvanishing C°° vector field and is imbedded
in Rn+1 with second fundamental form h. If ξ and ξ' are C°° unit vector fields
on M (these exist globaly since M admits a nonvanishing C°° vector field and
a connection map K) take a(X, Y) = h(X, Y)ξ and a\X, Y) = h(X, Y)ξ', then
the y45-structures so obtained yield the same imbedding of M into Rn+1, to
within an isometry of Rn + 1.

Theorem 5. Suppose that M bears a Riemannian AS-structure of pseudo-
codimension 1 having the properties that the vertical component of R' vanishes,
and that the type number t(x) of sf at each point x e M is constantly I on an
open neighborhood U of M. Then through each x e U there passes a maximal
submanifold S of dimension n — / having the property that each geodesic of S
is also a second order geodesic of S {in the sense that V and V agree on S).

Proof. Let £&x — kernel $0x for each x of the open submanifold U of M.
If Xx e 3)x and YxeMx, then from

(20) g(^(Xx), Yx) = g(Xx, s/(Yx)) = 0
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we see that s/(Mx) = 2)^ (in the horizontal subbundle). Suppose that
X\ -,Xn are C°° vector fields which form a basis of Mp at each p in a
neighborhood of x. Then from the set

(21) Km, ,4ift)}

we may select a minimal subset which spans S^. Since these are C°° and
linearly independent at x, they are linearly independent and thus span £d^ at
each p in some neighborhood of x. Consequently Q)L is a C°° distribution of
dimension / on U, and hence C^ 1 ) 1 = S is a C°° (n - /)-dimensional C°°
distribution on U. Suppose that X, Y e ̂ . Then

(

(

Since the vertical component of i^ vanishes, the Codazzi equation (Fxs/)(Y)
= (Fγs/)(X) holds, and since j*(X) = J / ( Γ ) = 0 we have

(23) ^{VXY - VYX) = 0 .

However, since the ̂ 45-structure is Riemannian, VXY — VYX = [X, Y], and
thus

(24) J*{[X9 Y]) = 0 .

Thus £d is an involutive distribution on U, and consequently through each
x € U there passes a maximal integral (n — /)-dimensional manifold S of 2.
Since J / vanishes on tangent vectors to 5 and

(25) S(J*(*), Y) = h(X, Y) , α(Z, Y) = A(Z, Y)f ,

we see that the second fundamental form a of the v4S-structure vanishes on
tangent vectors to S, and hence that each geodesic of S is also a second order
geodesic of S.

Remark. If we define in the usual manner

(26) R\W9 X, Y, Z) = g(R'(Y, Z)X, W)

for W, X,Y,Ze 3£(M), and the ̂ 5-structure is Riemannian, we see that if

g(X,X)g(Y,Y)-g\X,Y)

for all X, Y e ΪΓM), then

(28) R\X, Y)Z = k(g(Z, Y)X - g(Z} X)Y) ,
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and consequently the vertical component of R'(X, Y)Z vanishes. Hence the
condition on the vertical component of R'(X, Y)Z in Theorem 5 may be re-
placed with the above "constant curvature" condition (27).

Theorem 6. Suppose that M bears a Riemannian ΛS-structure of pseudo-
codimension 1, with the properties that si is parallel with respect to the induced
first order connection on M, and that the type number t(x) of stf at each point
of an open neighborhood U of M is constantly I. Then the conclusion of
Theorem 5 holds.

Proof. Suppose that S,Y e@ where Of is denned as in Theorem 5. If si
is parallel with respect to the induced first order connection on M, then

(29) VX^(J) = j*φzY) , Γγs/(X) = si(TτX) .

Since I J e S , it follows that si(VxY) = ^(FYX) = 0, and hence that
^{VXY - VγX) = si([X, Y]) = 0 due to the fact that the ̂ -structure is
Riemannian. Thus 2 is an involutive C°° distribution on U (that 2 is C°°
follows exactly as in Theorem 5) and the conclusion desired follows as in
Theorem 5.

5. The mean curvature vector

The mean curvature vector of a manifold bearing an AS-structure is giving
by

(30) η = tr st£t ,

where tr sit denotes the trace of the map X —> s/t(X), ξt is an orthonormal
basis of the vertical subbundle of 2M (which exists locally at least), and sit is
denned by

(31) g(s/ί(X),Y) = g(a(X,Y),ξί) .

We first note that in the case of an ̂ ^-structure of pseudocodimension 1, a
and ΎJ are linearly dependent.

Theorem 7. // a manifold M bears an AS-structure of pseudocodimension
1, then there exists a C°° map h: 36(M) x 3£(M) —> R such that

at each point of M except where η = 0 and a ψ 0.
Proof. Suppose that ξ19 , ξn form an orthonormal basis of the vertical

subbundle such that η and fx are linearly dependent. Since g(sit(X), Y) =
g(a(X, Y), ξi), we see that sit = 0 and consequently tr ̂  = 0, / — 2, , n.
Thus

(32) 9 = tr stfo = tr s/& .
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On the other hand

a(X, Y) = g(a(X, Y), ξ<)£< = £ « ( * ) , Y)£« - *( .<(*) , Y)ft ,

and ft = 37/tr «< = π/||^|| for η φ 0. Thus taking ft(X, Y) = gis/^X), Y)
we have

at each point of M where 57 Φ 0. If α = 0, then j ^ = 0, / = 1, , ft and
37 = 0; hence ft(AΓ, Y) = 0. If we define ηl\\η\\ — 0 when η == 0, we again
obtain the desired formula.

Suppose that we define the mean curvature of a manifold bearing an AS-
structure by

(33) H(x) = ll^ll ,

and define «s/ by

(34) ^ ( ^ W , Y) = g(cc(X, Y),

for 37 9̂  0 and J / = 0 for η = 0. Then J / is C°° except where η = 0 and
or =£ 0, as in Theorem 7 we have

g(^(X), Y) = (̂A(Z, y)9/ll9ll^/ll9ll) = A(*\ 10

except when η = 0 and « ΐ θ .

Theorem 8. // M w 0 manifold bearing an AS-structure, then

H(x) = iτstfx .

Proof. If JC is a point of M such that ηx Φ 0, then

), Yx) = g(a(Xx, Yx)9 (tr ^J\\Vx\\)

Thus

(35) j / = ( t r ^ <

and hence that

(36) tr ^ = (1/||^||) ΣU (tr ̂ , ) 2 - | | ^ | | = H(x) .

If ^^ = 0, then from (34) we see that s/x = 0 and hence that once again
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In the case where there are no points of M such that η = 0 and a Φ 0, we
may endow M with an ̂ -structure of pseudocodimension 1 via the formulas

V'XY = VXY + gWX,Y),η/\\η\\)η/\\η\\ ,

and the mean curvature is the same as that of the original ^-structure.
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