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COMPACT FOUR-DIMENSIONAL
EINSTEIN MANIFOLDS

NIGEL HITCHIN

l Introduction

There are few known examples of compact four-dimensional Einstein mani-
folds, namely,

(a) flat riemannian manifolds,
(b) compact symmetric spaces S\ S2 X S2, CP2,
(c) manifolds whose universal coverings are the corresponding noncompact

symmetric spaces (see Borel [5]).
On the other hand, there are few examples of four-manifolds which do not

admit an Einstein metric. Berger [3] proved that a four-dimensional Einstein
manifold X must have Euler characteristic χ > 0 with equality iff X is flat, and
so for example Γ 4 #Γ 4 and Sι X S3 do not admit Einstein metrics. However, if
X is simply connected, then χ is necessarily positive, and this led Eells and
Sampson to pose the following question [8]: Are there simply connected
compact manifolds which do not carry an Einstein metric?

Theorem 1 gives an inequality between the signature τ and Euler character-
istic χ of a four-dimensional Einstein manifold which allows us to answer this
question.

Theorem 1. Let X be a compact four-dimensional Einstein manifold with
signature τ and Euler characteristic χ. Then

Furthermore, if equality occurs then ±X is either flat or its universal cover-
ing is a K3 surface. If the universal covering of X is a K3 surface, then X is
a K3 surface (πλ = 1), an Enriques surface (πx = Z2) or the quotient of an
Enriques surface by a free antiholomorphic involution with πx = Z2 X Z2.

(A K3 surface is a complex surface with first Betti number bx = 0 and first
Chern class cλ = 0, and an Enriques surface is a complex surface with bx = 0
and 2ci = 0. Note that all K3 surfaces are diffeomorphic to a quartic surface
i n C P 3 ; see Kodaira [9].)

The examples (a), (b) and (c) above all have a further property: their sec-
tional curvatures are nonnegative or nonpositive. With this as an additional
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hypothesis we have the stronger inequality of Theorem 2.
Theorem 2. Let X be a compact four-dimensional Einstein manifold with

nonnegative (or nonpositive) sectional curvature. Then

d 2) | r | < (f)3/2χ

Since (f )3/2 is irrational, clearly equality can only occur if X is flat.

2. Remarks

1. Let X = nCP2 (the connected sum of n copies of CP2). Then X is
simply connected, and τ = n, χ = n + 2 so applying Theorem 1 we obtain
that if X is Einsteinian, then n < § (n + 2), i.e., rc < 4. Hence «CP2 (rc > 4) is
a simply connected compact manifold which does not carry an Einstein metric.

2. It is not known (to the author) whether there exist Enriques surfaces
with free antiholomorphic involutions but, more importantly, it is not known
whether a K3 surface actually admits an Einstein metric. This seems an inter-
esting question, especially in view of the following equivalent formulations for
a K3 surface:

( i ) X admits a quaternionic Kahler structure,
(ii) X admits a Ricci-flat Kahler structure,
(iii) X admits an Einstein metric,
(iv) X admits a riemannian metric of zero scalar curvature.
A quaternionic Kahler structure is a reduction of the holonomy group from

50(4) to 5/?(l). Since Sp(l) = 5t/(2), (i) ^> (ii). If the Ricci tensor is zero,
then X is Einsteinian, so (ii) =̂> (iii). We shall see in the proof of Theorem 1 that
any Einstein metric on a K3 surface must have zero scalar curvature, hence
(iii) => (iv). To show (iv) => (i) we use the vanishing theorem of Lichnerowicz
for harmonic spinors [10]. A K3 surface is a spin manifold with nonzero A-
genus, and hence if X admits a metric of zero scalar curvature, then from [10]
there exists a parallel spinor. This implies a reduction of the holonomy group
to the isotropy subgroup of the spin representation J + or Δ~. The isotropy
subgroup of J + is 5E/(2) = Sp(l), and so (modulo a change of orientation)
(iv) => (i). Note that Calabi's conjecture implies (ii).

3. Let us apply Theorem 2 to X = nCP2. If X admits an Einstein metric
of nonpositive or nonnegative sectional curvature, then n < (f )V2(n + 2) <
f (n + 2) and so n < 2. We know CP2 admits an Einstein metric of nonnega-
tive sectional curvature Cheeger [6] has constructed a (non-Einstein) metric
of nonnegative sectional curvature on 2CP2.

4. Berger [3] has shown that for a four-dimensional Einstein manifold of
strictly positive sectional curvature, χ < 10 (in fact closer examination shows
that strict inequality must hold, so χ < 9). Applying Theorem 2 we see that
| r | < 4. This reduces slightly the number of possible homotopy types of such
manifolds.
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5. It is shown in [12] that if a compact four-dimensional manifold has
abelian fundamental group, then the inequality \τ\ < χ holds. It would be in-
teresting, in view of Theorem 1, to know if admitting an Einstein metric im-
plies anything about the fundamental group.

3. Proof of Theorem 1

We use the normal form for the curvature tensor at each point of a four-
dimensional Einstein manifold given in Berger [2] and Singer-Thorpe [11].

We regard the curvature tensor R as a symmetric linear transformation of
the bundle Λ2 of 2-forms defined by

R(et A βj) = Ω) = iΣRίjklek A et

relative to a local orthonormal basis {e^ of the 1-forms. The theorem on the
normal form of R then states that there exists such an orthonormal basis such
that relative to the corresponding basis {ex A e2,eι A e3, ex A e4, ez A e4, e4 A e2,
e2 A e3} of Λ2, R takes the form

\Λ

IB

where

R. o
0 2 i,

B =

The Bianchi identity implies that Σμt = 0. Moreover, Σλt = J trace R = \X
scalar curvature. It will be convenient to regard (λuλ2,λ3) and (μλ, μ2, μ3) as
vectors λ, μ e R3 in what follows.

Now by the Gauss-Bonnet theorem, the Euler characteristic χ of X is given
by integrating the following form over X:

1 -ΣεijklΩ) AΩk

t= .A-ΣetjjttRiei A βj) A R(ek A et)
2 V 2 ! °J^ J b 2V

(Since |Λ|2 + \μf > 0 with equality iff λ = μ = 0, we have here Berger's result.)
The first Pontrjagin class px of X is given by integrating the following form

over X:

-— trace Ω2 = -^-ΣR(e{ Λ e.) A R(et Λ e , )
r 22! 8π2 J
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= -rWift + ^μ2 + hμ*) * 1 = — U , μ) * 1
π2 π2

We have the inequality \λf + \μ\2 > 2(λ, μ) with equality iff λ = μ, and so
from the above two expressions we get χ > \px by integration. X with opposite
orientation is still an Einstein manifold, so we also have χ > —\ρλ. By the
Hirzebruch signature formula we obtain the signature τ = ^pλ and hence the
inequality (1.1) of Theorem 1.

Now let us consider the case where equality occurs, say — τ = fχ. In this
case λ = — μ and so Σλt — —Σμi = 0 by the Bianchi identity; hence X has
zero scalar curvature. Since X is Einsteinian, the Ricci tensor (=kgi3) vanishes.

Suppose X is not flat. Then by Berger's result we have χ > 0. We claim
that the fundamental group πx(X) is finite. First we show that bx = 0. Suppose
not, then by Hodge theory there exists a harmonic 1-form on X. Since the
Ricci tensor is zero, every harmonic 1-form must be parallel by the vanishing
theorem of Bochner and Myers [4]. In particular we have a nonvanishing
vector field on X. Since χ ψ 0, this is impossible and so bλ = 0.

Note that this is also true for any finite covering X of degree k for we can
pull back the Einstein metric on X to X, and then X again satisfies the
hypotheses of our theorem since τ = kτ, χ = kχ. We now apply the Cheeger-
Gromoll splitting theorem [7, Theorem 3]: X has nonnegative Ricci curvature,
and so either πλ is finite or there is a finite covering of X with bxΦ 0. Since
bλ = 0 for all finite coverings, we see that πx is finite.

We now consider the bundle of 2-forms Λ2. A2 splits as a direct sum
Λ+ 0 Λ~ where Λ± are the eigenspaces of the Hodge star operator. In our case
we shall show that Λ+ is a flat bundle relative to the connection induced by
the riemannian connection. The decomposition above corresponds to the de-
composition of the second exterior power representation λ2 of 5Ό(4) into irre-
ducible subspaces λ2 = λ+ 0 λ~. The representation λ+ defines a homomorphism
/+: 50(4) -> 50(3) with kernel SU(2) under the standard inclusion. We can
identify the Lie algebra of 50(4) with λ2, and then the kernel of dl+ is just λ~.

Now the curvature tensor R of X is a section of Λ~ ® A2, and so to show
that A+ is flat we must show that R is a section of A~ ® A2. From the normal
form of the curvature tensor we have λ = — μ. In terms of the given local
orthonormal basis we then get

R = χ^ A e2 — ez A e4) (x) (eλ Λ ^ - 3̂ Λ e4) + similar terms.

In particular, R is a section of A~ ® A2, and so the bundle A+ has zero
curvature and is therefore flat. Take the universal covering X of X, Since π^X)
is finite, X is compact and simply connected, and the bundle Λ+ onX has three
linearly independent parallel sections. These reduce the holonomy group from
50(4) to the kernel of /+, that is, 5C/(2). Hence X is a compact Ricci-flat,



EINSTEIN MANIFOLDS 439

two-dimensional Kahler manifold. The first Chern class cλ is represented in the
de Rham cohomology by the Ricci form, and so cγ = 0 since X is simply con-
nected. We thus have a complex surface with bι = 0 and cx = 0, so that it is
a K3 surface.

Now to get the nonsimply connected manifolds we have to consider the
possible free actions of a finite group G of isometries of X. First, the order of
such a group must divide the signature and Euler characteristic of X. For a
K3 surface, τ = —16, χ = 24 so the order of G must divide 8.

Suppose the order of G = 8. Then for X = X/G we have τ = — 2, χ = 3.
Since bx = 0 this means b2 = 1, but then \τ\> b2 which is impossible, so G
must be of order 2 or 4, that is, G = Z 2, Z2 X Z2 or Z 4.

As mentioned in Remark 2, our K3 surface I is a quaternionic Kahler
manifold, i.e., it has three almost complex structures /, /, K, parallel with
respect to the riemannian connection and such that // = —//, etc. In fact, by
duality we can regard these as the three linearly independent 2-forms which
parallelize A+. Note that al + bJ + cK is also a complex structure where a,
b,c are constants and a2 + b2 + c2 = 1, so that any parallel Λ+ form on X
defines (after normalization) a complex structure.

The dimension b£ of the space of harmonic 2-forms in Λ+ on a four-mani-
fold with b1 = 0 is given from Hodge theory by

bi = i(* + X ~ 2)

For X, b% = \{—16 + 24 — 2) = 3, so every harmonic Λ+ form is parallel.
For X = X/Z2,bi = | ( —8 + 12 — 2) = 1, so that the Z 2 action on X leaves
fixed one harmonic (and therefore parallel) Λ+ form L. L/| |L| | is then a com-
plex structure left fixed by Z 2, so X is a complex surface with bλ = 0 and
2cx = 0, i.e., an Enriques surface.

For Z = X/G where G is of order 4, fc2

+ = J ( - 4 + 6 - 2) = 0. We can
regard X as the quotient of an Enriques surface by a free Z 2 action. Since
Z)+ = 0, the involution cannot leave fixed the complex structure on the Enriques
surface and must therefore take it into its conjugate. In other words, X is the
quotient of an Enriques surface by a free antiholomorphic involution.

It remains to rule out the case G = Z±. Let P be the principal 50(4) bundle
of orthonormal frames of X. Since a K3 surface is a spin manifold, P has a
double covering P which is a principal Spin (4) bundle. Let / be a generator
of G. Then / acts on P, and is covered by an action f on P (see Atiyah and
Bott [1]).

Suppose /4 = 1. Then G acts on P, and X = X/G is a spin manifold with
principal spin bundle P/G. If /4 = — 1, then we can define an action of G on
the principal Sρinc (4) bundle P X Z 2 S1 as follows:
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Thus X is a Spinc manifold with principal Sρinc bundle P χ Z a S
ιjG. In either

case we can define a Dirac operator on X which has index equal to A(X). But
A(X) = —^τ(X) = J which is not an integer. Hence Z4 cannot act freely on
a JO surface. Note that we cannot use the same argument for G = Z2 X Z2

since it may act on P as the non-abelian group of quaternions {± 1, ±i, ±j,
±k}.

Finally, if τ = fχ, then X with opposite orientation has — τ = fχ and we
can apply the above arguments.

4. Proof of Theorem 2

In the normal form of the curvature tensor, the numbers λl9 λ2, Λ3 are critical
values of the sectional curvature function, so suppose X has nonnegative sec-
tional curvature. Then the vector λ = (λ19 λ2, λ3) lies in the region {(x19 χ29 x3) e
2?3: xt > 0, 1 < / < 3}. On the other hand, μ is constrained by the Bianchi
identity to lie in the plane Σxt = 0, so that if λ, μ are nonzero, then the angle
θ between them must satisfy cos θ < V2J3. Therefore

(λ,μ)<V2β\*\'\μ\>

a n d t h i s h o l d s e v e n if λ o r μ v a n i s h e s . F r o m t h e i n e q u a l i t y \λf -\- | μ |2 > 2 1 λ | | μ |,
w e g e t

\λf + \μf>2</3/2(λ,μ).

Integrating and using the expressions for Euler characteristic and signature
in the proof of Theorem 1, we obtain the inequality (1.2). The case of non-
positive sectional curvature is similar.

Added in proof. Concerning Remark 2, we can in fact find Enriques sur-
faces with free antiholomorphic involutions the author is grateful to M. F.
Atiyah for the following idea. Let A and B be real 3 X 3 matrices, x and
y € C3, and consider the algebraic variety X in P5 given by the equations
ΣJ Aijjή + Bij-y) = 0 1 < i < 3. For generic A and B this is a complete
intersection of three nonsingular hyperquadrics. By the Lefschets theorem bλ

= 0 and by an easy calculation cγ = 0, so X is a K3 surface. We define the
commuting involutions τ and σ on Pδ by τ(x, y) = (x, —y), σ(x,y) = (x,y)
and since A and B are real, both τ and a act on X.

At a fixed point of τ on X, Σ Aijχ) = ° a n d Σ Bitf) = °> s o i f A a n d B

are invertible, then τ is free and holomorphic. At a fixed point of σ on X,
2 AijXjXj + Btjyjyj = 0, so if Alj9 Bίf > 0 for all /', then σ is free. At a fixed
point of στ on X, Σ A^xfij — Bijy5yύ = 0, so if A2j, —B2j > 0 for all /, then
στ is free. Thus choosing A and B appropriately, σ and τ generate the required
free Z2 X Z2 action on X.
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Finally we should point out that the inequality (1.1) has also been found by
A. Gray.
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