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THE SPHERICAL IMAGES OF CONVEX HYPERSURFACES

H. WU

Helenalle rakkaudella

1. Introduction

The primary object of study in this paper is the spherical image of a con-
tinuous convex hypersurface in euclidean space. The original motivation for
this study comes from differential geometry. Therefore, for the benefit of dif-
ferential geometers, we first present the principal result of interest in the C°°
category before discussing the technical theorems in convexity theory. To this
end, recall that a subset K of the unit π-sphere Sn is (geodescially) convex iff
for any p, q e K, at least one of the minimal arcs joining p, q lies in K.

Main theorem. Let M be a complete noncompact orienίable C°° hypersur-
face in Rn+1 (n > 1) with nonnegative but not identically zero sectional curva-
ture. Let γ: M —> Sn be the spherical (Gauss) map. Then the following state-
ments are true:

(a) γ(M) has a convex closure and a convex interior (relative to Sn). More
precisely, there exist a unique totally geodesic k-sphere Sk C Sn (2 < k < ή)
and a unique open convex subset K of Sk [such that K C γ(M) CZ cl K (=closure
of K). In particular, γ(M) lies in a closed hemisphere of Sn.

(β) The total curvature of M (cf. Chern-Lashof [3]) does not exceed one.
(γ) M has infinite volume.
(δ) If the sectional curvature of M is everywhere positive, then M is

homeomorphic with Rn, γ: M —> Sn is a diffeomorphism onto an open convex
subset of Sn, and coordinates in Rn+1 may be so chosen that M is tangent to
the hyper plane {xn+ί = 0} at the origin and is the graph of a nonnegative strict-
ly convex function ( = Hessian is positive definite everywhere) defined in
{xn+ι = 0}. Moreover, for any c > 0, M Π {xn+i = c) is diffeomorphic to the
(n — l)-sphere.

Of the four assertions above, (a) is the crucial one from which (β)-(δ) fol-
low. Now we would like to describe the complete generalizations of (a) and
(δ) in the context of convex hypersurfaces. By definition, a convex hypersur-
face M in Rn+1 is the full boundary of a closed convex C with interior. (We
always assume C Φ Rn+ι.) We recall the definition of the (possibly multi-valued)
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spherical map γ: M —> Sn due to A. D. Alexandrow [1]: γ(p) = the set of all
outer unit normals to C at p. Then we have the following two theorems.

Theorem 1. Let M be a connected convex hypersurjace in Rn+1 (n > 1),
and γ: M —> Sn the spherical map. Then there exist a unique totally geodesic
k-sphere Sk C Sn (0 < k < ή) and a unique open convex9subset K of Sk such
that K C γ{M) C cl K.

Theorem 2. Let M = dC be a convex hypersurjace in Rn+1 homeomorphic
to Rn. Then coordinates can be so chosen that {xn+1 = 0} is a supporting
hyperplane to C at the origin, and it has the following additional properties:

(a) Let π: Rn+1—>{xn+i = 0} be the orthogonal projection, and A the con-
vex set π{C). Then over ήA {=the interior oj A relative to {xn+1 = 0}), M is
the graph oj a nonnegative convex junction f:ύA—>R.IjMis C°% then j is a
C°° junction.

(b) For every a e A\ήA, M Π π~ι (a) is a closed halj-line (—semi-infinite
line segment).

(c) // in addition γ(M) has interior {relative to Sn), then jor any c > 0,
MΠ{xn+1 = c) is homeomorphic to the (n — l)-sphere; this homeomorphism
is a diffeomorphism ij M is C°°.

It remains to briefly discuss the background of these theorems. In 1897,
Hadamard [7] proved that an immersed compact orientable surface in Rz of
positive Gaussian curvature is necessarily imbedded and is a convex surface.
Forty years later, Stoker was able to extend Hadamard's theorem to the non-
compact case, replacing compactness by completeness [12]. In addition, he
proved the special case of our main theorem when n = 2 and the curvature of
the surface is everywhere positive. In 1958, Chern and Lashof [3] proved that
Hadamard's theorem remains valid if positive curvature is replaced by non-
negative curvature. Further progress in this direction was made by van
Heijenoort [8], but it remained for Sacksteder to prove in 1960 [11] the fol-
lowing comprehensive convexity theorem.

Theorem of Sacksteder-van Heijenoort. Let M be a C°° n-dimensional
(n > 1) complete orientable Riemannian manijold oj nonnegative sectional
curvature which is not identically zero, and let x: M —• Rn+1 be an isometric
immersion.

(A) Then x is an imbedding and x(M) is a convex hypersurjace.

(B) // r is the maximal rank oj the second jundamental jorm oj x(M)
{necessarily 2 < r < ή), then Rn+1 can be decomposed into an orthogonal direct
sum Rn+1 = Rr+10 Rn~r in such a way that the orthogonal projections oj Rn+1

into the two jactors yield an isometry x{M) = M1®Rn~r, where M is a convex
hypersurjace in Rr+1 containing no complete lines.

We may observe, in view of this theorem, that Theorems 1 and 2 are honest
generalizations of {a) and {3) of the main theorem. It is also clear that the
results of this paper together with the Sacksteder-van Heijenoort theorem form



CONVEX HYPERSURFACES 281

a complete extension of Stoker's theorem to n dimensions. Beyond this, Theo-
rems 1 and 2 have applications in the theory of convex surfaces, cf. for instance
Alexandrow's theory of spherical measures on an open convex surface
(Busemann [2, p. 31]) and the rigidity and nonrigidity theorems of Pogorelov
and Olovyanishnikov for open convex surfaces [2, pp. 167-168]. We should men-
tion that the spherical image of a convex hypersurface was previously thought
to be convex (cf. [2, p. 25, Theorem (4.4)]). In the appendix, we will present
a counterexample to this assertion. Consequently, the more delicate statements
concerning γ(M) in Theorem 1 are actually optimal. It may also be of interest
to point out that, coupled with Alexandrow's imbedding theorem for surfaces
[2, p. 150, Theorem (20.1)], (γ) of the main theorem implies that a 2-dimen-
sional C°° Riemannian manifold, which is complete noncompact and has non-
negative curvature, necessarily has infinite area. However, this result was al-
ready anticipated by Cohn-Vossen [4, p. 47, Theorem 4] (cf. also Huber, [9,
p. 69, Theorem 14]).

Slightly weaker and less complete versions of the above theorems were first
announced in [13]. Subsequently, do Carmo and Lawson [5] have found a
different proof of one-half of (a) of the main theorem (the convexity of cl γ(M))
within the framework of calculus, and using only this half of (a) do Carmo
and Lima in [6] gave another proof of (β) and parts of (γ) and (δ) of the main
theorem. The author would like to take this opportunity to acknowledge his
indebtedness to Stoker's paper [12]. The theorems of this paper were originally
inspired by [12], and were first proved along the lines of [12] even now, the
proof of (γ) of the main theorem is entirely based on Stoker's idea.

This paper is written for differential geometers. While certain concepts in
convexity theory are used in a very essential way in the proofs, only a few ele-
mentary and plausible theorems from that discipline are drawn upon. The
author would like to believe that this paper is completely intelligible to an
average differential geometer.

2. Preparatory materials

We follow Rockafellar [10] as regards notation and terminology; definitions
and elementary theorems from [10] will sometimes be used without com-
ment.

As usual, C will denote a closed convex subset of Rn+1 with interior, and
M = dC is a convex hypersurface (we always assume C Φ Rn+1). The follow-
ing general fact is easily proved (Busemann [2, p. 3]).

Lemma 1. If C contains no lines, then M is homeomorphic to either Sn or

Rn.
Given an arbitrary convex subset D of Rn+\ we recall the definition of the

relative interior ήD of D. The affine hull aff D of D is the minimal aίfine set
containing D, and ήD is by definition the interior of D relative to aff D. We
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have ri (cl D) = ri D and cl (ri D) = cl D [10, p. 46, Theorem 6.3]. A subset
K of Rn+1 is called a cone i f f x e ^ implies Λx € K for all Λ > 0. Given an
arbitrary subset Γ, we denote by ray T the cone generated by T in other
words, ray T = {λy: λ > 0, y e T} (see [10, p. 14]).

We can now deal adequately with convex subsets of Sn. As mentioned above,
T <z Sn is convex iff for any p, qeT, either the shorter arc of the great circle
through p, q (in case p and q are not antipodal) lies in T or at least one semi-
great circle through p and q (in case p and ςr are antipodal) lies in T. It is easy
to see that Γ C 5W is convex iff ray T is a convex cone I?TO+1. Equivalently, a
cone K cz Rn+1 is convex iff J£ ΓΊ S7* is convex in Sn. Since a convex cone
either is Rn+1 itself or possesses a supporting hyperplane at the origin 0, we
have the following well-known fact:

Lemma 2. A convex subset of Sn is either Sn itself or a subset of a closed
hemisphere.

Let T c : Sn be convex. Then ray T is convex so that we have the affine set
A = aff (ray T). Thus Sr = A f) Sn is the unique minimal totally geodesic r-
sphere containing T. We now define the relative interior of Γ, also denoted by
ri T, to be the interior of T relative to this 5 r . Clearly, ri T = {ri (ray Γ)} Π S\
Therefore every fact about the relative interior of a convex set in Rn+1 has an
analogue pertaining to the relative interior of a convex set in Sn. In particular:

Lemma 3. Let T(ZSn be convex. Then ri T and T are both convex in Sn,
and ri (cl T) = ri T, cl (ri T) = cl T.

Returning for a moment to a nonempty closed convex subset C of Rn+\ we
recall the concepts of the barrier cone and the recession cone of C. (C may
have empty interior in this discussion.) C is said to be bounded in the direc-
tion of a vector ξ Φ 0 iff sup <JC, f ) < oo, that is, iff C is contained in some

xζ.C

half-space with outer normal ξ. By definition, the barrier cone B(C) of C is
the set of all vectors ξ with this property together with the origin 0 [10, p. 15]
B(C) is a (not necessarily closed) convex cone. Since C is clearly bounded in
the direction of an outer normal of C, every outer normal of C belongs to
B(C). Now let C have interior, and let M = dC. Since by definition the spher-
ical image γ(M) consists of all outer unit normals of C, we have

γ(M) C B(C) Π Sn .

The recession cone 0+C of C is by definition the set of all vectors y such that
y + CςiC (vector sum) 0+C is a closed convex cone [10, pp. 61-63]. Equiv-
alently, y Φ 0 is in 0+C iff C contains a translate of the half-line {λy: λ > 0}
[10, p. 63, Theorem 8.3]. Using this alternate description of 0+C, we prove

Lemma 4. Let C be a closed convex subset of Rn+1, and let an n-dimen-
sional subspace H be such that H Π 0 + C = {0}. Then C Π Hf is bounded for
all translates Hr of H.

Proof. Suppose C Π H' is unbounded for one Hf then it must contain a
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half-line {x + λy: λ < 0} for some x e H and some y Φ 0. Thus y € 0+C. Of
course, y ε H also, so that 0 φ y e 0+C Π # , a contradiction, q.e.d.

0+C and B(C) are related. To state this relationship, we introduce the notion
of the polar cone K° of a nonempty convex cone K [10, p. 121]. By definition,
K° = {x*: <JC, x*} < 0 for all xeK}. K° is a closed convex cone, and # 0 0 =
c\K. Then according to [10, p. 123, Corollary 14.21] we have B(C)° = 0+C.

3. Proof of Theorems 1 and 2

In this sectin, C is a closed convex proper subset of Rn+1 with interior, and
M = dC is a connected convex hypersurface. We first prove Theorem 1.

Let Hr be the affine hull of B(C), and assume dim Hr = r. Note that r > 1.
Let / = #(C) Π Sn. Then / is convex in Sn. We will prove

( * ) ri / c r(M) c cl / .

Let us assume (*) for the moment, and also observe, using Lemma 3, that
cl (ri /) = cl / and that ri / is a convex open subset oi S7"1 = Hr Π Sn. Then
(*) implies Theorem 1 (with K = ri/) except for the uniqueness statements.
Since we have already pointed out in § 2 that γ(M) CZ / CI cl /, to prove (*) it
suffices to prove ri / (Z γ(M).

Let us first assume r = n + 1, i.e., B(C) has interior. In this case r i/ =
{int J5(C)} Π S" (int = interior). Hence ri / C (̂Λί) is equivalent to int B(C) c
ray ^(M). Since ray ^(M) consists of all the outer normals to C, what we are
trying to prove is that a nonzero vector ξ e int B(C) is necessarily an outer
normal to C. Suppose not, then we shall show that ξ is approached by vectors
not in B{C), thereby arriving at a contradiction. To this end, recall that ξ is
an outer normal of C iff there exists x° e C such that sup (x, ξ> = <V, ξ),

xec

[10, p. 100]. Therefore the assumptions that ξ e B(C) and ξ is not an outer
normal imply the existence of a sequence of points xι e C such that \\xί \\ —> oo
and (x1, ξy —> sup ζx, ξ) < oo. We may assume that the sequence {x1} has

xζ.C

been so chosen that the unit vectors xil\\xi || converge to a vector e. For every
λ > 0, we then have

so that (ξ + λe) $ B(C) for every λ > 0, and hence f cannot be an interior
point of B(C).

Before treating the general case, we pause to note that the preceding argu-
ment depends on n > 1 (which is part of the assumption of Theorem 1). Thus
we have proved Theorem 1 in a euclidean space of dimension >2, provided
the barrier cone of C has interior.

Now suppose r < n + 1, and we will reduce this case to the preceding case.
We first note that we may assume r > 2. Indeed, if r = 1, then γ(M) c: B(C)
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Π Sn cz H 1 Π Sn = {— 1,1} so that γ(M) would consist of one or two points.
If γ(M) consists of one point, then there is nothing to prove. If γ(M) consists
of two points, then M would consist of two parallel hyperplanes and therefore
would be disconnected, contrary to assumption. Hence we may assume r > 2.
Now recall that C always admit a direct sum decomposition

C - L 0 (C ΓΊ ZA) ,

where L, the so-called lineality space of C, is the maximal vector subspace
contained in the recession cone 0+C [10, p. 65]. We claim: Hr = ZA First
we show ^ C L 1 . Since H r = span B(C), it suffices to show B(Q e ZA Let
x e B(C) then x <= (0+C)°, implying ζx, L> < 0 and <JC, —L> < 0 (because
—L = L). Consequently, <x, L> = 0 and x € ZA Conversely, we show LLClHr.
This is equivalent to HrJ- c L. Let t 6 H r ± then <*, #(C)> = 0, implying
x € 0+C because 0+C = £(C)°. Since also — x e HrL, —x e 0+C. Thus span x
c: 0+C, and by definition of L we have Λ: € L, thereby proving the claim.

As a result of this claim, we have a decomposition:

(**) C = ff'-L 0 (C Π HO .

Clearly, ^(M) = ^(3(C Π H r)) and 5(C) = B(C Π H r ) . In particular, since
B(C) is a convex subset of Hr with interior (relative to Hr), the barrier cone
of the convex subset C Π Hr of H r also has interior (relative to Hr). As men-
tioned above, we may assume r > 2. Therefore (*) follows by considering the
space Hr instead of Rn+1 and its closed convex subset C Π Hr instead of C.

To finish the proof of Theorem 1, it remains to prove the uniqueness asser-
tions. Let us use the notation in the statement of Theorem 1. To show thatK
is unique, suppose another open convex subset K' of some totally geodesic k'~
sphere in Sn also satisfies Kf c γ(M) c cl K!. Then cl Kf = cl γ(M) = cl K.
By Lemma 3, K' = riK7 = ri (dXO = ri (dX) = r iX = X. The uniqueness
of the /:-sphere 5Λ is now trivial, q.e.d.

Keeping the same notation, we proceed to prove Theorem 2. Thus let M be
homeomorphic to Rn. In the orthogonal direct sum decomposition (**) above,
recall that r > 1 and that Hr is the affine hull of B(C) as well as being identi-
cal with L1, where L is the maximal vector subspace contained in 0+C. We
claim: 0+(C Π Hr) Φ {0}. For if 0+(C Π H) = {0}, then C Π Hr is bounded
[10, p. 64, Theorem 8.4], and hence d(C Π Hr) would be homeomorphic with
the sphere Sr~ι. This means M = 3C would be homeomorphic with Hr x S7"1

(r > 1), which is never homeomorphic with Rn. Thus there is a nonzero
y e 0 + ( C n HO. In view of (**), 0+C = ^ Θ O + ( C Π HO, so that
0+(C Π H r ) = 0+C Π H r . Thus 0 Φyz 0+C Π H r . Now, no complete line
parallel to y can be contained in C, for otherwise, span y C 0+C Π H r , con-
tradicting the maximality of L = H r ± . Hence every line parallel to j and
intersecting C intersects M = 3C at one point or a closed half-line.
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Now we further claim that y can be so chosen that — y e ri B(C) in view of
(*), this means among other things that — y is an outer normal of C. We shall
prove this claim by contradiction. So suppose no such y exists. Then, in Hr,
the interiors of — B(C) and 0 + C Π Hr are disjoint. By the separation theorem
[10, p. 97, Theorem 11.3], there exists an (r — l)-dimensional subspace of Hr

separating — B(C) and 0+C Π Hr. This means that there exists a nonzero
ξ e Hr such that <*, ξ> > 0 for every x e -B(C), and (y, ξ> < 0 for every
y e 0+C Π Hr. The first inequality may be rephrased as ζx, f ) < 0 for every
x e £(C) since 0+C = J5(C)°, this implies ξ e 0 + C. Hence substituting £ for j
in the second inequality, we get (β, ξ) < 0, and thus ξ = 0, a contradiction.

In summary, we have located a nonzero j € 0+C Π # r such that — y e ri 5(C),
and any line parallel to y and intersecting C intersects M at one point or a
closed half-line. The proof of Theorem 2 now follows rapidly. Indeed, we
choose an orthogonal coordinate system {x19 , xn+1} so that y points in the
direction of the positive *w+1-axis. (*) implies that —y is the outer normal
vector of some supporting hyperplane to C; we may therefore assume that
{xn+1 = 0} is a supporting hyperplane to C at the origin 0 and that C Q {xn+1

> 0}. Let π: Rn+1 —> {xn+ί = 0} be the orthogonal projection, and A = π(C)
as in the theorem. Since ττ(intC) = ήA, clearly a line parallel to the ;cw+1-axis
through p e A intersects M — dC at a point iff p e ri A. Thus every line through
a point of A\ήA parallel to the *n+1-axis must intersect M at a closed half-
line, and the portion of M over ri^4 is the graph of a function /: ήA —• R.
That / is convex follows from the fact that M is a convex hypersurface. This
proves (a) and (b) except for the statement that / is C°° whenever M is. Prov-
ing / is C°° is a local question, so if p e ήA, we only need to show that / is C°°
in a neighborhood of p. We first observe that the normal to M at (p, /(/?)) is
never,orthogonal to the xn+1-axis for if it were, then the supporting hyperplane
to C at (p, f(p)), which in this case is the tangent plane to M at (p, f(p)), would
contain the line / through p parallel to the xn+ί-axis. Since p e ri A, we know
from the preceding analysis that I Π M = {/?}. Thus the half-line of / lying
above (p, f(p)) is in int C. This would mean that interior points of C also lie
in a supporting hyperplane, a contradiction. Therefore the normals to M is a
neighborhood of (p,f(p)) are never orthogonal to the ;tn+1-axis. This is equiv-
alent to saying that each tangent plane of M in this neighborhood is mapped
isomorphically by dπ onto the corresponding tangent plane of {xn+1 = 0}.
Hence π \ M (the restriction of π to M) is a diίfeomorphism in this neighbor-
hood. Since the map φ given by p —> (p, f(p)) is the inverse of π \ M, φ is C°° in
this neighborhood and hence so is /.

It remains to prove (c). If γ(M) has interior, then B(C) has interior and
r = n + 1 in the preceding analysis. In this case, the negative ;cri+1-axis, which
is the direction of —y, would be in the interior of B(C), and the positive xn+1-
axis would be in 0+C. The former implies that every nonzero vector in
{xn+ι = 0} will have a positive inner product with at least one x e B(C). Since
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0+C = B(C)°, only the zero vector of {xn+1 = 0} can be in 0+C. Equivalently,
0+C Π {xn+1 = 0} = {0}. By Lemma 4, C Π {jcn+1 = c) must be bounded for
every c e R. If c > 0, this intersection must be nonempty since the whole
positive *n+1-axis lies in C. Thus M ΓΊ {xn+ι = c) is a bounded convex hyper-
surface for every positive c consequently it must be homeomorphic with Sn~ι.
To show that this homeomorphism is a difϊeomorphism when M is C°°, we de-
fine a height function h: M-*Rby h(q) — <<?, (0, , 0,1)>. An elementary
computation shows that q is a critical point of h iff f(g) is either (0, , 0, — 1)
or (0, , 0,1). Since the positive *n+1-axis is in C, the second possibility never
arises. Furthermore, if xn+1(q) = β > 0, then γ(q) = (0, ,0, — 1) would
imply that M lies above the hyperplane {xn+ι = β}, which is absurd since M
contains the origin. Thus no q e M with xn+1(q) > 0 can be a critical point of
h. Since M Π {xn+1 = c] = h~ι(c), and h~\c) for c > 0 contains no critical
point of h, we see that M ΓΊ {̂ cw+1 = c) is a C°° submanifold of M for c > 0.
Since it is the boundary of a bounded convex set with interior in {xn+1 = c],
it is difϊeomorphic to Sn~\

4. Proof of the main theorem

By part (A) of the theorem of Sacksteder-van Heijenoort quoted in § 1, M
is a C°° convex hypersurface. Let us say M = dC, where C is a closed convex
set in Rn+1.

(a) is an immediate consequence of Theorem 1 and Lemma 2 the fact that
2 < k follows from the assumption that the sectional curvature of M is not
identically zero.

We now approach (/3). Let us first recall the definition of total curvature
τ(M) of M (cf. Chern-Lashof [3]). Let B denote the unit sphere bundle of M
in Rn+\ and for each v € B let SΌ: Mp —> Mp be the second fundamental form
of M determined by v. Then by definition,

τ(M) = — I det Sv I dvB ,

where det denotes determinant, dvB is the volume form on B induced by the
metric of M, and σn is the volume of Sn. Now in our case, B is just two copies
of M corresponding to the outer and inner unit normals of M. So if we let S
be the function which assigns to each p <ε M the second fundamental form of
M corresponding to the outer unit normal at p, then clearly det S > 0 since M
has nonnegative curvature. Consequently,

r(M) = — [ (det S)ω ,

where ω is the volume element of M. To handle this improper integral, we
make a digression. Now as later, we shall need the following
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Observation. If (det S)(r) > 0, then for any p e M, γ(p) = γ(r) implies
that p = r.

Indeed, we know that M bounds C, so every tangent plane of M is the sup-
porting hyperplane to C. Thus the tangent planes Mr and Mp are both support-
ing hyperplanes to C. Since γ(p) = γ(r), Mr and Mp are parallel supporting
hyperplanes with outer normals pointing in the same direction. This is possible
only if Mr and Mp, when considered as hyperplanes of Rn+1, are identical.
This being the case, the line segment pr is contained in Mr. By the convexity
of C, pr (Z C. Now suppose p Φr. Then Mr ΓΊ C ID pr 2 {r}. However, since
(det 5)(r) > 0, the standard interpretation of the second fundamental form as
the Hessian of a function shows that, locally near r, C can intersect the tangent
plane Mr only at r. Since C is convex, this implies that C Π Mr = {r}, a
contradiction.

We now return to the consideration of τ(M). To prove τ(M) < 1, it suffices

to prove that (det S)ω < \an. For this purpose, we partition M into two sets
J M

A and B, where A = {peM: (det S)(p) > 0} and B = {p <= M: (det 5)(p) = 0}.
A is a submanifold of M, and obviously

ί (det S)ω = ί (det 5)
J M J A

By the above observation, γ is an injection on A. Furthermore, it is a classical
fact that (det S)ω = γ*Ω, where Ω is the canonical volume element of Sn. Thus
γ is nonsingular at every point of A, and hence γ: A -» fG4) is a diffeomorphism.
This leads to

ί (detS)ω= ί Ω .

Since γ(A) C ^(M) C a closed hemisphere, clearly Ω < \σn. Thus
/» J rU)

(det5)β < \an, as desired.
J itf

To tackle (γ), we need to distinguish between two cases. First, we assume
that the maximal rank of the second fundamental form S of M is strictly smaller
than n. By part (B) of the theorem of Sacksteder-van Heijenoort quoted in § 1,
M is then isometric to a direct product Mx x Rs, where s > 1. In this case,
volume M = (volume MJ x (volume Rs) = oo. The second case where the
maximal rank of S is n is slightly more difficult. We want to apply Theorem 2,
and to this end we must show that M is homeomorphic to Rn. This we now do.

For the rest of this section, we assume that the maximal rank of S in n. Let
r 6 M be a point at which rank S is n. Thus (det S)(f) > 0. Notation as in the
proof of (/3), the identity γ*Ω = (detS)ω implies that (γ*Ω)(r) Φ 0. In parti-
cular, γ is nonsingular at r, and therefore γ(M) has interior (relative to Sn).
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We claim: For a convex hypersurface M, γ(M) having interior (relative
to Sn) and M being noncompact imply that M is homeomorphic to Rn. Indeed,
this means B(C) has interior since γ(M) C B(C) Π Sn. 0+C is therefore the
polar cone of a cone with interior (because 0+C = B(C)°) and consequently
cannot contain any line. This implies that C contains no line. By Lemma 1,
M is homeomorphic to Rn.

We can now apply Theorem 2 to our C°° M. We may therefore assume that
orthogonal coordinates {JC15 , xw+1} have been so chosen that M is tangent to
{xn+1 = 0} at 0 and that M e {*n+1 > 0}. Furthermore, if π: Rn+1 -> {xn+1 = 0}
is the orthogonal projection and A is the convex set τr(C), then M is the graph
of a C°° function / above ri A. If c > 0, M Π {;cn+1 = c) is diffeomorphic to Sw.
Also, we know from the proof of Theorem 2 that (0, , 0,1) <= 0+C.

We can now finish the proof of (γ). Take any c > 0, and let β = M Π
{*n+1 = c}. β is then diίϊeomorphic to Sn. We erect a cylinder <€ over β, i.e.,
^ = {(x1? . . , xTO, /): (jc1? , JCTO , c) 6 Q a n d ^ > c} ^ thus consists of all
closed half-lines in the direction of (0, , 0,1) issuing from Q, and hence
# c= C because (0, . , 0,1) e 0+C. Let M c be that portion of M above
{xn+1 = c}; then it is clear that the volume of Mc is not less than the volume of
<g (this is just Cavalieri's principle). Hence volume M > volume Ή. But it is ele-
mentary to show that <€ has infinite volume, so the proof of (γ) is complete.

Using the same notation, we now prove (δ). If the sectional curvature of M
is everywhere positive, then the second fundamental form S has rank n every-
where. In particular, γ(M) has interior (relative to Sn), and we have already
seen that this implies that M is homeomorphic to Rn. The fact that γ is every-
where nonsingular follows from γ*Ω = (det S)ω and the fact that det S > 0
everywhere. The injectivity of γ follows from the observation found in the proof
of (β). Thus γ(M) is an open subset of Sn. (a) now implies that γ(M) is itself
convex. Hence γ: M —> Sn is a difϊeomorphism onto an open convex subset of
Sn. It remains to show that A(=π(C)) is open in Rn (so that M is the graph
of the C°° function / defined on riv4 = A), and that / has everywhere positive
Hessian. If p e A\ήA, then π~\p) Π M i s a closed half-line (Theorem 2(b)).
By the classical lemma of Synge, M will have nόnpositive sectional curvature
along the half-line π~\p) Π M, contradicting the positivity of the curvature of
M. Thus A —x\A. To prove i^]\dxidx^)^iJ<n is a positive definite matrix,
let U be the outer unit normal vector field of M, and 5 be the second funda-
mental form of M corresponding to U. Let Xt = F^d/dxt), ί = 1, , π ,
where F: A -* Rn+1 is the map F(x19 -—9xn) = (xX9 , xn, /(*Ί> > *n))
Then X19 , Xn form a basis of the tangent space at each point of M, and
furthermore

Xi = (0, , 0,1,0, . . , 0,3f/dxt) 0-th spot) ,

U = -±-(0f/dxl9 • .,df/dxn9 -1) ,
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where W == (1 + Σί (d//dj^)2)*. The following is then routine:

9Xj> = -ζu9dXj/dXiy = Λ-

Since S is positive definite, the matrix (ζS(Xi)9Xjy) is also positive definite,
and this proves that \β2f IdXfdx^^u^n is positive definite.

Appendix

We shall produce a closed convex subset of I?3 with a connected boundary
whose spherical image fails to be convex.

Let R3 = {(x,y,z)}. The closed convex set in question will be a subset of
the first quadrant Q = {(x, y, z): x > 0, y > 0, z > 0}. We first describe the
boundary of this set. Let a be the curve in the yz-plane defined by z =
(l+y)~ι, and A be that portion of the first quadrant of yz-plane above a.
Precisely,

A = {(0,y,z): y > 0, z > (1 + y)"1)} .

Let β be the curve in the ty-plane defined by x = (1 + y)"1, and B be that
portion of the first quadrant of the xy-plane to the right of β. Precisely,

B = {(x,y,0):y>0,x>(l + y)~1} .

Let δ be the straight line segment in the xs-plane joining (0,0,1) to (1,0, 0),
and D be that portion of the first quadrant of the xz-plane above δ. Precisely,

D = {(x, 0, z): x + z > 1, x > 0, y > 0} .

Finally, we let E be the union of all the straight line segments joining points
of a Π Q and β ΓΊ Q with the same y-coordinate. Precisely, if

ιy = {/(o,y,d + y)-1) + (l - 0(d + y)~\y,oy. y > o, o < / < 1},

We define C to be the closed subset of Q with A, B, D, E as boundary. It is
easy to see that C is convex. Consider γ: dC —• S2, and take an interior point
p of A (relative to the yz-plane), then γ(p) = (— 1, 0,0). Take an interior point
q of B (relative to the xy-plane). Then γ(q) = (0,0, —1). The geodesic on S2

joining γ(p) and γ(q) is ξ: [0,1]^S 2 such that ξ(i) = ( — cos \πt, 0, —sin\πi).
In order that y(f) — ξ(i) for some r e dC, it is necessary for r to have an outer
normal lying in the xz-plane, or equivalently, it is necessary for r to have a
supporting plane parallel to the y-axis. By the construction of C, no support-
ing plane to C can be parallel to the y-axis unless it is the ry-plane or the yz-
plane. Thus γ(3C) Π Im ξ = { (-1,0,0), (0,0, -1)} , and γ(dC) is not covex.
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In the above example, 3C is not smooth. However, it is not difficult to see

that if we smooth out dC along a, β, δ and the z- and x-axes, the essential fea-

ture of C is retained. Thus we have a C°° convex hypersurface whose spherical

image contains (0,0, — 1) and ( — 1,0,0), but none of the other points on the

minimal arc connecting them.

Added in proof, (γ) of the main theorem has been generalized by S. T.

Yau (Nonexistence of continuous convex functions on certain Riemannian

manifolds, to appear) and independently by R. E. Greene and H. Wu. The

theorem of the latter implies that a noncompact complete Riemannian manifold

whose sectional curvature is nonnegative outside a compact set has infinite

volume see their paper Integrals of subharmonic functions on manifolds of

nonnegative curvature, to appear in Invent. Math.
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