THE EQUIVARIANT COVERING HOMOTOPY PROPERTY FOR DIFFERENTIABLE G-FIBRE BUNDLES

EDWARD BIERSTONE

Let G be a compact Lie group, and X a differentiable G-manifold. If $p: E \to X$ is a differentiable fibre bundle, and G acts differentiably on E so that each $g \in G$ operates as a bundle map, then we call p a differentiable G-fibre bundle. We show that if p is a differentiable G-fibre bundle with Lie structure group or compact fibre, then it has the equivariant covering homotopy property. This generalizes the fact that a differentiable family of actions of a compact Lie group on a compact differentiable manifold is locally trivial.

We give some basic definitions in § 1, and in § 2 show that if X is a G-manifold and $E \to X$ a differentiable fibre bundle with Lie structure group H and associated principal bundle $P \to X$, then differentiable actions of G on E as a group of bundle maps are in natural one-one correspondence with such actions on P. In § 3 we establish the equivariant covering homotopy property for differentiable G-fibre bundles with compact Lie structure group, and show that if $p: E \to X$ is a differentiable G-fibre bundle with connected semi-simple Lie structure group H, then P can be reduced to a compact subgroup of H so that G still operates as a group of bundle maps, and hence P also has the equivariant covering homotopy property. Then in § 4 we define a notion of equivariant local triviality for G-fibre bundles, which implies the equivariant covering homotopy property, and show that any differentiable G-fibre bundle with Lie structure group or compact fibre is G-locally trivial. We conclude with some remarks relating G-local triviality to the equivalence of nearby differentiable actions of a compact Lie group.

The author is happy to acknowledge the generous advice of his thesis advisor, Richard S. Palais, and also some helpful conversations with Arthur G. Wasserman.

1. Basic definitions

Let G be a topological group. A G-space is a Hausdorff space X together with a continuous action of G on X, i.e., a continuous map $(g, x) \to gx$ of $G \times X$ into X such that $g_1(g_2x) = (g_1g_2)x$ for all $g_1, g_2 \in G$, $x \in X$, and 1x = x,

Communicated by R. S. Palais, August 7, 1972. Supported by a postgraduate scholar-ship of the National Research Council of Canada.

where 1 is the identity element of G. If G is a Lie group, then a (differentiable) G-manifold is a differentiable (C^{∞}) manifold X together with a differentiable action of G on X. The action is effective if whenever gx = x for some g and all x, then g = 1.

Let G be a compact Lie group, and X a differentiable G-manifold. Let G_x be the isotropy subgroup of a point $x \in X$. The map $G/G_x \to X$ defined by $gG_x \to gx$ is an equivariant embedding whose image is the orbit Gx. Let $V_x = TX_x/T(Gx)_x$ be the normal space to the orbit Gx at the point x. For $g \in G_x$, the differential of $g \colon X \to X$ induces an automorphism of V_x , so we have a representation $G_x \to GL(V_x)$, called a slice representation. The slice bundle $G \times_{G_x} V_x$ is the G-vector bundle constructed from the product $G \times V_x$ by identifying $(gh, h^{-1}v)$ with (g, v) for all $g \in G$, $h \in G_x$, $v \in V_x$; we let [g, v] denote the image of (g, v) in $G \times_{G_x} V_x$ under the identification map. Using the identification $G/G_x \to Gx$, we can identify the slice bundle $G \times_{G_x} V_x$ with the normal bundle of Gx in X by the map $[g, v] \to gv$. Hence, by an equivariant version of the tubular neighborhood theorem, there is an equivariant diffeomorphism from $G \times_{G_x} V_x$ onto a G-invariant open neighborhood of Gx in X, mapping the zero section G/G_x canonically onto the orbit Gx. We call the image of V_x a slice at x.

A fibre bundle is a continuous map $p: E \to X$ of a Hausdorff space E onto a Hausdorff space X such that p is locally trivial. Let $p_i: E_i \to X_i$, i=1,2, be two fibre bundles. A bundle map from p_1 to p_2 is a continuous map $F: E_1 \to E_2$ which carries each fibre homeomorphically onto a fibre. The induced map $f: X_1 \to X_2$ is clearly continuous. If $X_1 = X_2$ and the induced map is the identity (so that F is a homeomorphism), then the bundle map is called an equivalence.

We also consider fibre bundles with a specified structure group which acts effectively on the typical fibre. When a structure group is specified, bundle maps are understood to be induced by principal bundle maps between the associated principal bundles. Note that if $p_i \colon E_i \to X_i$, i = 1, 2, are fibre bundles with structure group the identity and fibre Y, then E_i is equivalent to $X_i \times Y$, i = 1, 2, and over each map $f \colon X_1 \to X_2$ of the bases there is only one bundle map, corresponding to $f \times$ id: $X_1 \times Y \to X_2 \times Y$.

We will mainly be concerned with differentiable (C^{∞}) fibre bundles. In this case the spaces are differentiable manifolds, the maps are C^{∞} , and a structure group is a Lie group acting differentiably (from the left) on the typical fibre (and so differentiably from the right on the total space of the associated principal bundle).

2. G-fibre bundles

In the remainder of this paper G will denote a compact Lie group. Let X be a G-space, and $p: E \to X$ a fibre bundle over X. If there is a continuous action of G on E such that each $g \in G$ operates as a bundle map over the given map $g: X \to X$ (hence, in the case that p has a specified structure group, is induced by a principal bundle map), then we say that G acts on $p: E \to X$ as a group of bundle maps and that p is a G-fibre bundle (differentiable if p is a differentiable fibre bundle and X, E are G-manifolds). Note that p is equivariant. A G-fibre bundle map (resp. G-fibre bundle equivalence) is a map (resp. equivalence) of G-fibre bundles which is equivariant with respect to the actions of G.

Example 1. Let X, Y be G-spaces. G acts on $X \times Y$ by g(x, y) = (gx, gy) for $g \in G$, $(x, y) \in X \times Y$. The projection $p: X \times Y \to X$ is equivariant, and G acts as a group of bundle maps if we consider p as a trivial fibre bundle with structure group G. We call p a *trivial* G-fibre bundle.

Example 2. A G-vector bundle is a G-fiber bundle with structure group a general linear group. The results in this paper are given by Segal [7] for G-vector bundles over compact spaces, and by Wasserman [8] for differentiable G-vector bundles over G-manifolds.

Proposition 2.1. Let $p_i \colon E_i \to X_i$, i=1,2, be G-fibre bundles with the same structure group and fibre. If $f \colon X_1 \to X_2$ is equivariant, then the induced bundle f^*E_2 over X_1 is naturally a G-fibre bundle, and the induced map $f^*E_2 \to E_2$ is a G-fibre bundle map. If $F \colon E_1 \to E_2$ is a G-fibre bundle map over f, then E_1 is G-equivalent to f^*E_2 , and F is the composition of a G-equivalence $E_1 \to f^*E_2$ and the induced map $f^*E_2 \to E_2$.

The proof is clear.

Now let $P \to X$ be a differentiable principal bundle with structure group a Lie group H. Let Y be an effective H-manifold, and $E = P \times_H Y \to X$ the bundle with fibre Y associated to P. In other words E is obtained from the product $P \times Y$ by identifying (p, y) with $(ph, h^{-1}y)$ for all $p \in P, y \in Y, h \in H$, and the projection $E \to X$ is induced by the projection $P \to X$. Since H acts effectively on Y, there is a one-one correspondence between actions of G as a group of bundle maps of $E \to X$ and actions as a group of bundle maps of $E \to X$, the associated bundle map from $E \to X$ to itself, and vice-versa. If $E \to X$ acts differentiably as a group of bundle maps of $E \to X$, then the induced action on $E \to X$ is differentiable. Conversely, we have

Theorem 2.2. If G acts differentiably as a group of bundle maps of $E \to X$, then the induced action on the associated principal bundle $P \to X$ is differentiable.

Proof. Let $g_0 \in G$, $x_0 \in X$. Choose neighborhoods U of x_0 in X, V of g_0x_0 in X, and W of g_0 in G such that the bundle $E \to X$ is trivial over U and V, and $W \cdot U \subseteq V$. With respect to trivializations $U \times Y$, $V \times Y$ of $E = P \times_H Y$ over U, V, the action of elements of G contained in W is given by a C^{∞} map $W \times U \times Y \to V \times Y$, taking $(g, u, y) \in W \times U \times Y$ into $(gu, \alpha(u, g)y)$, where $\alpha(u, g) \in H$. We must show that the map $\alpha: U \times W \to H$ is C^{∞} .

Since H acts effectively on Y, there is a finite subset $\{y_1, \cdots, y_n\}$ of Y such that the Lie subgroup $\{h \in H | hy_i = y_i, i = 1, \cdots, n\}$ of H is zero-dimensional (see Gleason and Palais [2, Th. 8. 2, p. 646]). Let H act on $Z = Y \times \cdots \times Y$ (n copies) by the given action on each factor, and let $z = (y_1, \cdots, y_n) \in Z$. Then the isotropy subgroup H_z is zero-dimensional. Now the map $U \times W \to Z$ taking $(u, g) \in U \times W$ into $\alpha(u, g)z \in Z$ is C^{∞} , and the image of this map lies in the orbit Hz, which is diffeomorphic to H/H_z . In other words, the map $U \times W \to H/H_z$ taking (u, g) to $\alpha(u, g)H_z$ is C^{∞} . Since H_z is zero-dimensional, then $\alpha: U \times W \to H$ is C^{∞} .

3. The equivariant covering homotopy property for differentiable G-fibre bundles reducible to a compact Lie structure group

Using Theorem 2.2 we can prove the following theorem and corollary in the same way they are proved by Wasserman [8, Th. 2.4, Cor. 2.5, p. 134] in the case where the structure group is an orthogonal group. I denotes the interval [0, 1], and G always acts trivially on I.

Theorem 3.1. Let G be a compact Lie group, and $E \to X \times I$ a differentiable G-fibre bundle with structure group a compact Lie group H. Then there is a differentiable G-fibre bundle equivalence $E \to (E \mid X \times 0) \times I$.

Corollary 3.2. If $E \to X$ is a differentiable G-fibre bundle with compact Lie structure group, and f_0 , $f_1: Y \to X$ are G-homotopic (resp. differentiably G-homotopic) G-maps from a differentiable G-manifold Y to X, then the induced bundles f_0^*E and f_1^*E are G-equivalent (resp. differentiably G-equivalent).

Using Corollary 3.2, we easily deduce the following *equivariant covering* homotopy property for differentiable G-fibre bundles with compact Lie structure group.

Corollary 3.3. Let $E_i o X_i$, i = 1, 2, be differentiable G-fibre bundles having the same fibre and structure group, a compact Lie group. Let $F_0: E_1 o E_2$ be a G-fibre bundle map over $f_0: X_1 o X_2$, and $f: X_1 imes I o X_2$ be a G-homotopy of f_0 . Then there is a G-homotopy of f_0 , which is a G-fibre bundle map $F: E_1 imes I o E_2$ over f. Moreover, if f_0 is differentiable and f is a differentiable homotopy, then there is a differentiable covering homotopy f.

The above results clearly hold as well for any differentiable G-fibre bundle whose structure group can be reduced to a compact Lie group so that G still acts as a group of bundle maps on the reduced bundle. The following theorem then shows that a differentiable G-fibre bundle whose structure group is a connected semi-simple Lie group has the equivariant covering homotopy property.

Theorem 3.4. Let G be a compact Lie group, and $E \to X$ a differentiable G-fibre bundle with structure group a connected semi-simple Lie group H. Then the structure group of $E \to X$ can be reduced to a compact subgroup of H so that G still acts as a group of bundle maps on the reduced bundle.

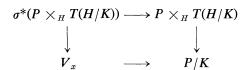
Remark. In the case that H is a general linear group, such a reduction to

the orthogonal group can be given by a G-invariant Riemannian metric on the associated vector bundle.

Proof of Theorem 3.4. Let $\pi\colon P\to X$ be the principal bundle associated with $E\to X$, and K a maximal compact subgroup of H (assume H is not compact). It suffices to find a G-equivariant section of the bundle $P/K=P\times_H(H/K)\to X$.

The homogeneous space H/K with any H-invariant Riemannian metric is a complete simply-connected Riemannian manifold of negative curvature, so that for each $h \in H$ the exponential map at $hK \in H/K$ is a diffeomorphism from the tangent space $T(H/K)_{hK}$ onto H/K (Helgason [3, Chap. I, Th. 13.3]). Now $P \times_H T(H/K)$ is a G-vector bundle over P/K, called the tangent bundle along the fibres, and the exponential map for T(H/K) induces a G-equivariant map $P \times_H T(H/K) \to P/K$, taking $[ph, h^{-1}v]$ (where $p \in P$, $h \in H$, $v \in T(H/K)$) into $[ph, \exp(h^{-1}v)] = [ph, h^{-1} \exp v]$.

For each $x \in X$ the isotropy subgroup G_x acts on the fibre H/K of P/K over x via a homomorphism $G_x \to H$. Since all maximal compact subgroups of H are conjugate (Helgason [3, Chap. VI, Th. 2.2]), the image of this homomorphism is contained in hKh^{-1} for some $h \in H$, so that hK is a fixed point for the action of G_x on H/K. Since π induces a submersion of P/K onto X, there is a G_x -equivariant section σ of P/K defined on some slice V_x for X at X, with $\sigma(X) = hK$. We have then a pull-back diagram:



so that $\sigma^*(P \times_H T(H/K))$ is a G_x -vector bundle over V_x , and the exponential map $\sigma^*(P \times_H T(H/K)) \to (P/K) | V_x$ is a G_x -equivariant fibre-preserving diffeomorphism.

We now construct a C^{∞} equivariant section of $P/K \to X$. For each $x \in X$, shrink V_x equivariantly to U_x , $\operatorname{Cl}(U_x) \subset V_x(\operatorname{Cl} = \operatorname{closure})$, and choose a countable number of points x(1), x(2), \cdots such that the slice neighborhoods $G \cdot U_{x(i)}$ of the orbits Gx(i) cover X. Set $A_0 = \emptyset$, and define A_n inductively by $A_n = G \cdot \operatorname{Cl}(U_{x(n)}) \cup A_{n-1}$. Suppose C^{∞} equivariant sections s_i of $P/K \to X$ are defined on A_i for i < n, such that $s_i | A_{i-1} = s_{i-1}$. Since there is a $G_{x(n)}$ -equivariant fibre-preserving diffeomorphism from $(P/K) | V_{x(n)}$ to a $G_{x(n)}$ -vector bundle over $V_{x(n)}$, s_{n-1} extends to a C^{∞} equivariant section s_n over A_n . Define s by $s(x) = s_n(x)$ for $x \in A_n - A_{n-1}$. Since X is the union of the interiors of the A_n , we see s is a C^{∞} equivariant section $X \to P/K$.

4. G-local triviality and the equivariant covering homotopy property

Let $p: E \rightarrow X$ be a differentiable G-fibre bundle. We say p is G-locally trivial

if for each $x \in X$ there is a G_x -invariant neighborhood U_x of x such that $p \mid U_x$ is differentiably G_x -equivalent to the trivial G_x -fibre bundle $U_x \times p^{-1}(x)$.

By the equivariant covering homotopy property (Corollary 3.3), a differentiable G-fibre bundle with structure group a compact or semi-simple Lie group is G-locally trivial. On the other hand, the following theorem implies that if $p: E \to X$ is a differentiable G-fibre bundle which is G-locally trivial, then p has the equivariant covering homotopy property.

Theorem 4.1. Let G be a compact Lie group, and $p: E \to X \times I$ a differentiable G-fibre bundle which is G-locally trivial (G acts trivially on I). Then there is a differentiable G-fibre bundle equivalence $E \to (E \mid X \times 0) \times I$ (the map is understood to be induced by a principal bundle map in the case that p is a G-fibre bundle with Lie structure group H).

Proof. The proof is similar to that of the equivariant covering homotopy property for locally trivial fibre spaces given, for example, in Husemoller [4, pp. 49–51]. We choose a locally finite countable invariant covering $G \cdot U_i$ of X such that U_i is a slice at x(i), $i = 1, 2, \cdots$, and there is a $G_{x(i)}$ -equivalence $h_i : U_i \times I \times Y_i \to E | (U_i \times I)$, where $Y_i = p^{-1}(x(i))$ (when p has structure group H, $G_{x(i)}$ acts on the H-manifold Y_i by a homomorphism $G_{x(i)} \to H$).

There is a G-invariant C^{∞} map $u_i: X \to [0, 1]$ such that $u_i^{-1}(0, 1] \subseteq G \cdot U_i$ and $\max_i u_i(x) = 1$ for all $x \in X$. Define G-fibre bundle equivalences

$$k_i: G \times_{G_{x(i)}} (U_i \times I \times Y_i) \rightarrow E \mid (G \cdot U_i \times I)$$

by $k_i[g,(u,t,y)] = gh_i(u,t,y)$ for $g \in G$, $u \in U_i$, $t \in I$, $y \in Y_i$, and define G-fibre bundle maps

$$E \xrightarrow{F_i} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \times I \xrightarrow{f_i} X \times I$$

as follows:

$$\begin{split} f_i(x,t) &= (x,t(1-u_i(x))) \;, \qquad (x,t) \in X \times I \;; \\ F_i &= \text{id} \quad \text{outside} \quad p^{-1}(G \cdot U_i \times I) \;; \\ F_i \circ k_i[g,(u,t,y)] &= k_i[g,(u,t(1-u_i(u)),y)] \;, \\ [g,(u,t,y)] &\in G \times_{G_{x(i)}} (U_i \times I \times Y_i) \;. \end{split}$$

Then $F = \cdots \circ F_3 \circ F_2 \circ F_1$ is a G-fibre bundle map over $f = \cdots \circ f_3 \circ f_2 \circ f_1$ (F, f are well-defined since all but a finite number of terms in the infinite compositions are equal to the identity near any point).

By Proposition 2.1, E is G-equivalent to f^*E , which is G-equivalent to $(E|X \times 0) \times I$ by the definition of f. This completes the proof.

Using Theorem 4.1, we can now deduce the equivariant covering homotopy property for a differentiable G-fibre bundle with structure group any Lie group:

Theorem 4.2. Let G be a compact Lie group, and $E \rightarrow X$ a differentiable G-fibre bundle with structure group a Lie group H. Then E is G-locally trivial.

Proof. Let $\pi: P \to X$ be the associated principal bundle, and let $x \in X$. The isotropy subgroup G_x acts on the fibre H of P over x via a homomorphism $\alpha: G_x \to H$. Consider the bundle $P/\alpha(G_x)$ with fibre $H/\alpha(G_x)$ associated with P. The point $1\alpha(G_x)$ in the fibre over x is a fixed point for the action of G_x . Since $P/\alpha(G_x) \to X$ is an equivariant submersion onto X, there is a G_x -equivariant section σ of $P/\alpha(G_x)$ defined on some G_x -invariant neighborhood U_x of X, which is G_x -contractible to X.

Hence $E \mid U_x$ can be reduced to the compact subgroup $\alpha(G_x)$ of H so that G_x still acts as a group of bundle maps. The result now follows from the equivariant covering homotopy property for G-fibre bundles with compact Lie structure group (Corollary 3.3).

We conclude with some remarks relating G-local triviality to the equivalence of nearby differentiable actions of a compact Lie group.

If $p: E \to X$ is any differentiable G-fibre bundle with *compact* fibre, then we can obtain the equivariant covering homotopy property for p by proving an analogue of Theorem 3.1. Hence p is also G-locally trivial.

Definitions. Let G be a compact Lie group, and X, Y two differentiable manifolds. A differentiable family of actions of G on Y parametrized by X is a differentiable map $\Phi: X \times G \times Y \to Y$ such that for each $x \in X$ the map $\Phi_x \colon G \times Y \to Y$ taking $(g, y) \in G \times Y$ into $\Phi(x, g, y)$ is a differentiable action of G on Y. This family is said to be locally trivial at $x_0 \in X$ if there are an open neighborhood U of x_0 in X and a differentiable map $\Psi: U \times Y \to Y$ such that:

- 1. for each $x \in U$ the map $\Psi_x \colon Y \to Y$ taking y into $\Psi(x, y)$ is a diffeomorphism of Y, and $\Psi_{x_0} = \mathrm{id}_Y$;
- 2. $\Phi(x, g, \Psi(x, y)) = \Psi(x, \Phi(x_0, g, y))$ for each $x \in U$, $g \in G$, and $y \in Y$. A family of differentiable actions of G on Y is said to be *locally trivial* if it is locally trivial at each point x of the parameter space X.

Now if $p: E \to X$ is a product bundle $X \times Y \to X$ with compact fibre Y, and G acts on E as a group of bundle maps with the induced action on X trivial, then the G-local triviality of p is just a restatement of the fact that a differentiable family of actions of a compact Lie group on a compact manifold Y is locally trivial (Palais [5], Calabi [1]).

The conjecture of Calabi [1, p. 213] that such a family is locally trivial even when Y is not compact had already been shown to be false by Palais and Stewart [5], [6]. This shows that a differentiable G-fibre bundle $p: E \to X$ with noncompact fibre does not in general have the equivariant covering homotopy propery. (We note here also the observation of Palais and Stewart that a con-

tinuous family of actions of a compact Lie group on a compact space Y is not in general locally trivial. Hence, though Theorem 4.1, for example, is valid in the continuous case (when X is paracompact), we cannot hope for an equivariant covering homotopy property for a broad class of continuous G-fibre bundles.)

From the G-local triviality of G-fibre bundles with Lie structure group (Theorem 4.2), we deduce, however, the following result.

Theorem 4.3. Let H be a Lie group, and Y an H-manifold. Let $\Phi: X \times G \times Y \to Y$ be a differentiable family of actions of a compact Lie group G on Y such that for each $x \in X$, there is a homomorphism $\varphi_x: G \to H$, and $\Phi(x, g, y) = \varphi_x(g)y$ for all $g \in G$, $y \in Y$. Then Φ is locally trivial.

As a final remark we note a type of action of a compact Lie group G on a differentiable fibre bundle with Lie structure group which is more general than an action as a group of bundle maps and for which the equivariant covering homotopy property still holds. Let $\pi: P \to X$ be a differentiable principal bundle with Lie structure group H, on which G acts as a group of bundle maps, and let Y be an effective H-manifold. If G acts (on the left) on Y commuting with the action of H, there is an induced action on the total space $E = P \times_H Y$ of the associated bundle with fibre Y given by g[p,y] = [gp,gy], with respect to which the projection $E \to X$ is equivariant. The equivariant covering homotopy property for π clearly implies that for $E \to X$. This also gives a generalization of Theorem 4.3: with the same notation as in Theorem 4.3, if G acts on Y commuting with the action of H, and Φ is given by $\Phi(x, g, y) = \varphi_x(g)gy$, then Φ is locally trivial.

References

- [1] E. Calabi, On differentiable actions of compact Lie groups on compact manifolds, Proc. Conf. on Transformation Groups (New Orleans, 1967), Springer, New York, 1968, 210–213.
- [2] A. M. Gleason & R. S. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957) 631-648.
- [3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [4] D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1968.
- [5] R. S. Palais, Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961) 362-364.
- [6] R. S. Palais & T. E. Stewart, Deformations of compact differentiable transformation groups, Amer. J. Math. 82 (1960) 935-937.
- [7] G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968) 129-151.
- [8] A. G. Wasserman, Equivariant differential topology, Topology 8 (1969) 127-150.

BRANDEIS UNIVERSITY