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COMPLETE RIEMANNIAN MANIFOLDS
WITH (f, 8, u, v, )-STRUCTURE

SHIGERU ISHIHARA & U-HANG KI

Yano and Okumura [10] defined the so-called (f, g, u, v, 2)-structure, studied
its fundamental properties and gave a characterization of even-dimensional
spheres in terms of this structure. In the intrinsic geometry of (f, g, u, v, A)-
structures, some global properties of manifolds with such a structure have been
obtained (cf. [2], [5], [6], [8], [9] and [10]). On the other hand, submanifolds
of codimension 2 in an almost Hermitian manifold or in an even-dimensional
Euclidean space with canonical Kaehlerian structure, and hypersurfaces of an
almost contact metric manifold or of an odd-dimensional sphere with canonical
contact structure carry, under certain conditions, an (f, g, u, v, 1)-structure. In
the differential geometry of submanifolds of a sphere admitting the induced
(f, &, u, v, A)-structure, several results have been proved (cf. [1], [3], [6], [9]
and [10]). The main purposes of the present paper are to prove Theorem
3.1, which are closely related to a theorem due to Nakagawa and Yokote
[3], and to show that some known theorems concerning (f,g,u,v, )-
structure can be proved as consequences of the theorems established in the
present paper.

In § 1 we discuss properties of almost product structure in a Riemannian
manifold, and prove a lemma on the almost product structure and a theorem
on the characterization of product spaces of two spheres, using a theorem due
to Obata [4]. In § 2 we prove some lemmas on (f, g, u, v, 4)-stuctures for later
use. In § 3 complete Riemannian manifolds admitting an (f, g, u, v, A)-structure
and satisfying certain conditions are discussed, and some theorems are proved.

Theorem 3.5 stated in § 3 has been already proved by Nakagawa and Yokote
[3] under weaker conditions.

1. Riemannian manifolds with almost product structure

Let there be given an m-dimensional Riemannian manifold (M, g) with metric
tensor g, components of g being denoted by g;;. (Manifolds, functions, vector
fields and other geometric objects throughout this paper are assumed to be
differentiable and of class C~. The indices 4, i, j, k, I, r, s, t run over the range
{1, .-+, m} and the summation convention will be used with respect to these
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indices.) Let there be given in (M, g) a tensor field P? of type (1, 1) satisfying
1.1 PP = P,
1.2) PjPjg, = Py; ,

where P;; = P,'g;,. Such a tensor field P, is called an almost product structure
in (M, g). From (1.2), we have P;; = P,;. If we put Q;," = o} — P;", then we
see that Q,” is also an almost product structure and P;*Q;* = Q;*P;* = 0. Such
almost product structures P,* and Q;* are said to be mutually complementary.
In the sequel, we put Q,; = Q;°8;,. If M is connected, then the rank r of P,”
is constant, and Q;" is of constant rank m — r.

Lemma 1.1. Let P,* be an almost product structure in (M, g). If V' ,P;* =
V,P.*, then V .P;* = 0,

Proof. Differentiating (1.1) covariantly we obtain (V/,P,/")P;* 4+ P,*(V,.P;*)
= I P;", to which transvecting g;, gives

(1‘3) (Vszj)Pis + st(VkPiS) = VIcPij .

By taking the skew-symmetric parts of both sides of (1.3) with respect to i and
k, we have

(1.4) (Vszj)st —_ (ViPSj)Pks = 0 >

since P,; = P;; and V' ,P;;, = V ;P,;. Interchanging j and k in (1.4), we get

(1.5) (VJPsk)PZs —_ (ViPSk)Pjs = O .
Adding (1.3) to (1.5) yields
(1.6) 2(VkPJs)Pts = VICPJL

since V,P;; = V;P;; and P;; = P,;. Transvecting (1.6) with P,* and taking ac-
count of (1.1), we have 2(F ,P;)P,;* = (V,P;)P,*, from which follows (V' .P,,)P;*
= 0. Using this equation and (1.6), we find V,P;; = 0, which proves Lemma
1.1. .
We need the following theorem stated in [4]:

Theorem A. Let (M, g) be a complete connected Riemannian manifold of
dimension m. If there is a nonconstant function p in M satisfying

(1.7) Vil = —o8;:/a

a being a positive constant, and if dim M = m > 2, then (M, g) is isometric to
a sphere S™(a) of radius a defined by (x})* + ... + (x™*Y)? = a® with respect
to rectangular coordinates (x', - - -, x™*Y) in an (m + 1)-dimensional Euclidean
space E™*' and po i~ coincides with the function kx', k being a positive con-
stant, in S™(a) where i: M — S™(a) is the isometry.
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We now give an example of Riemannian manifolds for later use. Let S7(a) X
S4(b) be the pythagorean product of an r-dimensional sphere $7(a) with radius
a and an s-dimensional sphere $*(b) with radius b. If, for two points (p, g) and
', q) of S7(a) x S*(b), p’ and g’ are the antipodes of p and g respectively,
then we say that (p, q) is equivalent to (p’, ¢), or that (p,q) ~ (p’,q’). The
factor space S7(a) X S%(b)/ ~ with Riemannian metric induced from that of
S7(a) x S8%(b) by the projection : §7(a) X S*(b) — S7(a) X S¢(b)/ ~ is denoted
by [S7(a) X S*(b)]*. We now prove

Theorem 1.2. Let (M, g) be a complete connected Riemannian manifold of
dimension m, and let there be given in (M, g) two complementary almost pro-
duct structures P, and Q" such that V,P;* = Q. Assume that P;* is of rank
r, 2 <r < m — 2. If there is a nonconstant function 1 in (M, g) satisfying

(1.8) P/PSV VA= —AP;/a*,
(1.9 Q0,0 V VA= —20;/b*,

where a and b are positive constants, then (M, g) is isometric to S7(a) X S™~7(b)
or [S"(@) X S™"(b)]*.

Proof. Since IV ,P;* = 0, we have V/,Q;* = 0. Thus the distribution D: ¢ —
PT (M) is integrable, where ¢ is an arbitrary point of M, P denotes the linear
endomorphism determined by the tensor field P,*, and T,(M) the tangent space
to M at ¢. The distribution D determined by Q,” is also integrable, and the
integral manifolds of D and D are all totally geodesic in (M, g). Thus any
maximal integral manifolds ¥ and ¥ of D and D respectively are connected
and complete with respect to their induced Riemannian metrics y and 7 respec-
tively.

Consider a maximal integral manifold ¥ of D, and denote the restriction of
A2 to V by p. The p satisfies

(110) VﬁVupz —p‘rﬁa/az

because of (1.8), where y,, are the components of y in ¥, and the indices «
and 8 run over the range {1, - .., r}. Since 2 is not constant in M, there is in
M a point ¢ at which 1 # 0, so that we may assume that V' passes through
such a point ¢. Since p # 0 at ¢ e V, due to (1.10) p is not constant in V.
Therefore, by Theorem A and (1.10), V is isometric to S7(a). If i: V — S7(a)
is the isometry, where S7(a) is a sphere defined by (x!)* + --- + (x"*1)? = ¢@?
in E**!, then po i~ coincides with kx', k being a positive constant. Thus the
set of all zero points of p is X, = i7(S""(a)), S""'(a) being a great sphere of
S7(a), and X, is a bordered set in V.

We now take a point ¢ of ¥V — X,, and denote by ¥, the maximal integral
manifold of D passing through ¢. Then the restriction g of 2 to ¥V, satisfies

(1‘11) VFva = - p?,uv/bz >
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because of (1.9), where 7,, are the components of 7 in V,, and the indices p
and v run over the range {r + 1, ---,m}. Since A0 atoeV — X,, p #0
at ¢ and hence p is not constant in ¥, in consequence of (1.11). Therefore, by
Theorem A and (1.11), ¥, is isometric to S™~7(b). If j: V, — §™~7(b) is the
isometry, where S™~7(b) is a sphere defined by (y"*')* + ... + (y™)* = b*
in Em~7+!, then poj~! coincides with ky™*!, k being a positive constant.

Let M, = (JV,and M; = |J V,. Then M, is an open submanifold of

€V cEV—-Xg
M, and Mj is dense in M,. Taking account of the arguments developed above

we see that the Riemannnian manifold (M}, g) with restriction of g is locally
isometric to a pythagorean product S7(a) X S™~7(b) and hence is locally sym-
metric. That is, denoting the curvature tensor of (M,, g) by K, we have FK = 0
in (M;, g) and therefore also in (M,, g), since FK is continuous and (M}, g) is
dense in (M,, g). Thus the restricted linear holomomy group of (M,, g) coin-
cides with that of (M}, g), which is the direct product R(r) X R(m — r) of the
rotation groups R(r) and R(m — r) of the respective dimensions. Consequently,
by a theorem of de Rham, the universal covering space (M,, §) of (M,, g) with
Riemannian metric § induced naturally from g in M, is isometric to the py-
thagorean product M, X M,, where M, and M, are irreducible Riemannian
manifolds of dimension r and m — r respectively, since (M3, g) is locally iso-
metric to §7(a) X S™"(b), (M,, §) is isometric to S7(a) x S™"(b). Since M,
is compact, M, is also so. On the other hand, M, is open in M, and M is con-
nected. Thus M coincide with M,. Summing up, we can say that the universal
covering space (M, £) of (M, g) is isometric to S7(a) X S™ 7(b). Thus, if M is
simply connected, then (M, g) is isometric to S7(a) X S™"(b).

Next, we assume that (M, g) is not simply connected, and denote the cover-
ing projection by z: (M, §) — (M, g). Taking account of the arguments develop-
ed above we see that 1 = 107 coincides with the function Axly™*! in (M, 2,
h being a positive constant, if (M, §) is identified with S7(a) X S™7(b). We
obtain 1 = hab only at two points (p,, q,) and (p}, g;) where p, € §7(a) has co-
ordinates (4,0, -.-,0) in E"*!, g e S™7(b) has coordinates (b,0, ---,0) in
E™7*1 and p] and g, are the antipodes of p and g respectively. Thus M, )
is a double covering of (M, g), so that z(p, q) = =(p’, ¢’) implies that p’ and
q’ are necessarily the antipodes of p and g respectively. Consequently, for any
two points (p, g) and (p’, ¢’) of M = S7(a) x S™"(b), n(p, q@) = =(p’, ¢) if and
only if (p,q) ~ (', q’). Hence (M, g) is isometric with [S7(a) X S™ 7(b)]* =
S7(a) X S™7(b)/ ~, and Theorem 1.2 is proved.

2. (f,g,u,v, A)-structures

Let M be a manifold of dimension m (> 2) with an (f, g, u, v, A)-structure,
that is, a Riemannian manifold (M, g) which admits a tensor field f,* of type
(1,1), two 1-forms u; and v; (or two vector fields #* = u,g'* and v* = v,g'?)
and a function 2 satisfying
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fi*ff = —oF + uut + ’Uj'Uh > fi¥°8es = 850 — uju; — Vv,

2.1
fifu, = 2v;, ffv,=—2u;, uu=v0v'=1-—-2, uyvt=0,

where (g7%) = (g;,)'. f;; defined by f;; = f,’g;; is skew-symmetric and of rank
m — 2 or m, and the manifold M is necessarily of even-dimension, i.e., of
dimension m = 2n, where n > 2 (cf. [11]).

Define a tensor field S;* of type (1.2) by

(2.2) Sj,;h == Njih + (Vjui — Viuj)uh + (VJ'UZ —_— Vivj)vh s

where N;* =,V f* — fV f* — V., — V.f;)f,"* are the components of the
Nijenhuis tensor of f. In the sequel, we put Ny = {p e M|a(p) = 0}, N, =
{peM|A(p)) =1}, Ny=M — N, and N, = M — N,. In this section, we es-
tablish some lemmas concerning (f, g, u, v, A)-structures for later use.

Lemma 2.1. Assume that in a Riemannian manifold (M,g) with an
(f, g, u, v, A)-structure, A is not zero almost everywhere, and

(2.3) Viug — Viuy = 2f;;
2.4 Vv, — V; = 26f;

hold, where ¢ is a certain function in M. Moreover, assume that there be given
in M a symmetric tensor field H;; of type (0,2) satisfying

2.5) Vu, + Vu; = —22H,, ,
and that v; satisfies

(2.6) Vi, = — Hyf' + 28
Then in M

2.7 Vu, =f;; —AH,; ,
2.89) V2= H;u —v;,
(2.9 H,f' — Hf! = 2¢f;; .

Proof. (2.3) and (2.5) imply (2.7). Transvecting (2.7) with «’ and using
(2.1) we have AV;2 = — Av; + 2H;;u* from which follows V;2 = — v; +
H,u' in N,. Thus we have (2.8) in M because of the continuity of its both
sides and the nonvanishing of 2 almost everywhere in M. If we take the skew-
symmetric parts of both sides of (2.6), then we obtain (2.9) by means of (2.4).
Hence Lemma 2.1 is proved.

Remark. If (M, g) is a hypersurface of a sphere $***'(1) of radius 1, the
(, g, u, v, A)-structure of (M, g) is the induced one, and H; is the second funda-
mental tensor of the hypersurface M immersed in $***!(1), then (2.6), (2.7) and
(2.8) hold (cf. [1], [6], [7] and [10]). Thus (2.3), (2.5) and (2.6) hold and (2.4)
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is equivalent to (2.9) for a hypersurface M of $?**'(1). In [3] Nakagawa and
Yokota have studied hypersurfaces of $"*!(1) satisfying the condition (2.4).

Under the assumptions in Lemma 2.1 the set N, is a bordered set. In fact,
if we suppose that there is an open subset U contained in N,, then by means
of (2.7) we have f;; + H;; = 0 in U, because u;u* =1 — 2* =0 in U and
hence #; = 0 in U, which together with (2.7) implies that f;; = 0 in U, since
f;: is skew-symmetric and H;; is symmetric. This contradicts the fact that f;;
is of rank m — 2 or m in M. Consequently N, is necessarily a bordered set
(cf. [3D).

Lemma 2.2. Assume that in (M, g) with an (f, g, u, v, A)-structure, 2 is not
zero almost everywhere, (2.3), (2.4) and

(2.10) Siin = v,V v, + Viv, — 228:n) — vV v, + Vv, — 22851)

hold, and there is a symmetric tensor field H;; of type (0,2) satisfying (2.5),
where S;;, = S,;,'8n,. Then in M we have (2.6), (2.7), (2.8) and (2.9).

Proof. (2.7) and (2.8) can be proved by using (2.3) and (2.5). We are now
going to prove (2.6). For any (f, g, u, v, 2)-structure we have the identity (cf.
[9, (1.1D)

'Uj[Sjih - (fjtftih - fitftjh)]
(2.11) = Fw, + Vav) — o', + Vv — AT oun + Viuy)
— 2V, — V) + Qff — w0V — Vi)

where f;;, = Vfin + Vifn; + Vrfji. Substituting (2.3), (2.4) and (2.5) into
(2.11) and using f;;;, = 0 which is a direct consequence of (2.3), we obtain

VIS = Wy + Vv — o0 W, + Viv,) + 22 H,,
—22¢fin + 221 — w0 -
On the other hand, transvecting (2.10) with v7 gives
VISin = (1 = YW wn + Vave — 228:) — vi(F0n + Vv )0 4 2200, .

Thus using (2.1), from the above two equations we have Vw, + V,v,/=
— 2H,,ft + 228:n + 2¢f;,, which together with (2.4) implies (2.6) in N, and
consequently in M. Finally we have (2.9) by substituting (2.6) into (2.4). Thus
Lemma 2.2 is proved.

Lemma 2.3. Under the assumptions in Lemma 2.1 we have

(2.12) H' = 2n
in M, and

(2.13) H;u = au; + Bv;,
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(2.14) H;v' = pu; + yv;,
2.15) a+7=2%

in N,, where H* = H;g", and a, B and y are functions in N, defined by
(1 — a =Hwu!, (1 — )= H,uv and (1 — )y = H,v*vt respec-
tively.

Proof. Transvecting (2.9) with f,* gives

H,ff® + Hj, — Hyu'u, — Hyv'v, = 2685, — Uuy — 00y .
By taking the skew-symmetric parts of the above equation we obtain
(H;uu, — (Hpuu; + (Hpv9)v, — (Hpv)v; =0

Thus transvecting the above equation with #* and v* and using (2.1), we have
(2.3) and (2.14) respectively, because u; and v; do not vanish in N,.
Next, transvecting (2.9) with f/* = g/*f;* and using (2.1), we obtain

(2.16) H} =24(n — (1 — ) + Hu'w + Hwv .

On the other hand, transvecting (2.9) with w/v* and using (2.1) yield
AH; 't + Hw'') = 22(1 — 29)¢. Thus we have

2.17 H,u'u® + H,w'v® = 2(1 — ¢

in N, and consequently in M. Restricting (2.17) to N, gives (2.15). Finally by
substituting (2.17) into (2.16) we have (2.12) in M. Thus Lemma 2.3 is
proved.

Lemma 2.4. If in Lemma 2.1 the tensor H;; satisfies the condition

(2.18) ViH;, — V;H,; =0,
then we have in N,
(2.19) ¢l —p) =e,
(2.20) vV, = ul,p .
Proof. Differentiating (2.13) covariantly gives
Ve Hu' + H;(Vut) = Fyedu; + TP + oV qu; + AV 0,5

in N,. Taking skew-symmetric parts of both sides of the above equation and
using (2.18) we obtain

H;(Vu') — Hy(Vjut) = Vyedu; — V0)u, + Vi pv; — (7 ;P)v,
+ C((Vkuj — Vjuk) + ,B(Vlcvj - Vjvk) .
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Next, if we substitute (2.3), (2.4), (2.6) and (2.7) into the above equation and
use (2.9), then we have

2.21)  2{¢(1 — B) — alfe; = Tra)u; — Vdu, + Wipv; — By,

from which it follows that /& and F;3 are linear combinations of u; and v;,
i.e., that

(2.22) Vja = AIUj + AZ’Uj ) VJ‘B = Bﬂlj + BZ,UI )

where A4,, A,, B, and B, are certain functions in N,. Thus (2.21) reduces to
2{¢(1 — p) — a}fr; = — (A, — B)(uv; — uyv,), which implies that #(1 —
p) = a and 4, = B, since f;; is of rank 2n — 2 > 2 in N, by assumption.
Thus we have (2.19) and (2.20), and Lemma 2.4 is proved.

Remark. If (M, g) is a hypersurface of a sphere $**'(1), the (f, g, u, v, A)-
structure of (M, g) is the induced one, and H; is the second fundamental tensor
of the hypersurface, then the condition (2.18) is nothing but the structure
equation of Codazzi for the immersion of M into S?*+!(1).

Lemma 2.5. Under the conditions in Lemma 2.4, the equation

H,H}' — 2¢Hm' + {ﬁ + ¢2(1 + ﬁ)}gki

(2.23)
=1 =76 + DA + ¢)(ugu; + v4v,)

holds in N,, and the function ¢ is constant in M.
Proof. Differentiating (2.14) covariantly and using (2.6) and (2.7), we
have

VeH;)v" + Hj(—Hy f** + 207)
= WPu; + Vupv; + Bfe; — AHyy) + y(—Hyf;t + 28 -

By taking the skew-symmetric parts of the above equation and using (2.9) and
(2.18), we obtain

— 2H ;H . f" — 2(B + 1d)frs

(2.24)
= (Vkﬁ)uj — (Vjﬁ)uk + (VkT)”j — (Vﬁ’)?)k .

Transvecting (2.24) with v* gives that F/,y is a linear combination of u; and
Vj, i.e., that

(2.25) Vi =Cu; + Cyuy;,

where C, and C, are certain functions in N,. Using (2.22) and (2.25), we can
reduce (2.24) to

(226) —_ 2HﬂHk3f” - 2(‘8 + ¢7‘)ka = (Bz - C1)(vku]‘ - ,vjuk) .
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Transvecting (2.26) with v*u’ gives that 2A(ay — f# — B — 14) = (B, — C)
.(1 — 29 in N,, which together with (2.15) and (2.19) implies

(2.27) — 22801 + A + ¢) =B, — CH(1 — 2)
in N,. Substituting (2.27) into (2.26) and using (2.9), we have in N,

(Hyof F — 20Hy)f* — (B + 1)fx;
= 21— D78 + DA + PO — uv) -

Transvecting the above equation with f,7 and using (2.13), (2.14), (2.15) and
(2.19), we obtain (2.23) in N,.

Next, we are going to prove that ¢ is constant in M. Let p be an eigenvalue
of H,* associated with an eigenvector of H,"”, which is orthogonal to u* and v*.
Then using (2.23) we see that p satisfies the quadrastic equation

(2.28) =200+ {B+#A+Py=0

in N,, which implies that j is nonpositive because p is real due to H;; = H,;.
Differentiating covariantly the second equation of (2.22) yields F,F; =
WBYu; + B,(Vyuy) + VB)v; + BVv,;. By taking the skew-symmetric
parts of this equation and using (2.3) and (2.4), we obtain (V,B)u; — (V;B,)u;
+ (PyByv; — (7 ;B)v, = 2(B, + ¢B,)f ;. Since f;; is of rank 2n > 4 in N,,
we have

in N, N N, and consequently in N,. If we now differentiate (2.19) covariantly,
then we have Va0 = (1 — BV ;¢ — ¢V ;8, which together with (2.22) implies

(2.30) Au; + Aw; = (1 — BV ;6 — ¢(Bu; + By;) .

On the other hand, we have already proved 4, = B, (cf. (2.20)) in the proof
of Lemma 2.4. Thus using (2.29), (2.30) and 4, = B, we find (1 — B/ ;¢ =
(A, + ¢B)u;. Since f is nonpositive, we have 1 — g % 0, and therefore the
above equation becomes F ;¢ = tu;, ¢ being a certain function in N,. Differ-
entiating this equation covariantly, taking the skew-symmetric parts, and using
(2.3), we obtain (Fyo)u; — (F;2)ui + 2¢f; = 0. Since fi; is of rank 2n > 4
in N,, = = 0. Consequently, ¢ is necessarily constant in N, and hence in M.
Thus Lemma 2.5 is proved.

Lemma 2.6. Assume that in Lemma 2.1 the tensor field H;; satisfies the
condition (2.18), and the sectional curvature K(6) of (M, g) with respect to the
section 6 spanned by u" and v* is constant in N,. Then a, § and y are all con-
stant and, in particular, 8 = 0 or — 1. Moreover, we have

(2.31) T, T = — Bl + ¢d},
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(2.32) Viji _ VkaZ = O s
Where Tji = H]’L - ¢g‘“ and Tjh = Tjtght.

Proof. Differentiating (2.7) covariantly and using (2.8) give V.V u; =
Vifijs — (Hyut — v )H;; — AV H;,. By taking the skew-symmetric parts with
respect to j and k from this equation and using the Ricci identity and (2.18),
we have

— Kyjoptt® = Vifsi — Vifeo — (Hyu' — v)Hy + (Hyju' — v)Hy,

where K, ;;; are the components of the curvature tensor of (M, g). Transvecting
the above equation with v? and using (2.13) and (2.14), we find

— i = e ;00 — (7 fu)v" — (ot + Bvi — v)(Bu; + 7v,)
+ (au; + pv; — v)Bux + 1vi) ,
which reduces to, in consequence of (2.1), (2.6), (2.7) and (2.8),
Ky jinviut = (ay — B + Du, — vivy) .
Thus the sectional curvature K(6) is given by
K@) = — Kijpv*uwvw® [[wud(wo)d)]l =ar — £+ 1.

Since K(6) is constant, ay — * 4 1 is also so. Thus «, g and 7 are constant
because of (2.15) and (2.19).

Since B and 7 are constant, we have B, = C, = 0, where B, and C, are func-
tions appearing in (2.22) and (2.25). Thus using (2.27) we obtain 3(8 + 1) = 0
in N and hence B=0or — 1 in M. Substituting 8(3 + 1) = 0 into (2.23)
gives

HH' — 2¢sz‘ + {,3 + ¢2(1 + ﬁ)}gm =0,

which is equivalent to (2.31). Next by means of (2.18) we have (2.32) since ¢
is constant. Hence Lemma 2.6 is proved.

Lemma 2.7. Let (M, g) be a Riemmannian manifold with an (f, g, u, v, A)-
structure satisfying the conditions in Lemma 2.6. If 8 = 0, then H;, = ¢g;;.
If B = — 1, then the tensor field P,* of type (1,1) defined by

(2.33) Pt =3 + (=6 + 1 + )0} + H)
is an almost product structure of rank n in (M, g) such that
(2.34) VkP“—V]szZO.

where P;; = P/'g;,.
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Proof. First we assume that 8 = 0. Then by substituting 8 = 0 into (2.31)
we have T';; = 0, which implies H;; = ¢g;;.

Next we assume that 3 = —1. Then substituting 3 = — 1 into (2.31) we
find
(2.35) T T = (1 + ¢)or .

On the other hand, using (2.33) and T,* = H,» — ¢ we have
(2.36) Pr =30 + (L + ¢H7°TH) .

(2.36) and (2.35) imply P,"P,* = P,", which shows that P,” is an almost pro-
duct structure. (2.32) and (2.36) imply (2.34). Contracting i and 4 in (2.33)
and using (2.12) we find P,' = n, which means that P,* is of rank n. Thus
Lemma 2.7 is proved.

Lemma 2.8. Assume thatin Lemma 2.1 the tensor field H ;; satisfies (2.18),
and the curvature tensor of (M, g) is of the form

(2.37) Kijin = 811851 — 8in8rki + HynHjy — HypHy,

If the scalar curvature K = K, ;;,8*"g’t is constant, then «, B and y are all con-
stant and the same conclusions as those stated in Lemma 2.7 are valid.
Proof. From (2.37), we have by contraction

(2.38) K =2nn — 1) + (H)? — H, H ,

where H'* = g'ig**H ;. On the other hand, from (2.23) we obtain by trans-
vecting with g*¢

(2.39) H,H® — 26H} + 2n{f + ¢#(1 + P} = 28 + DA +.¢) .

Using now (2.12), (2.38) and (2.39), we see that g is constant, since K is con-
stant. Thus from (2.15) and (2.19) it follows that « and y are also constant,
because 3 and ¢ are constant. Therefore we can derive the same conclusions
as stated in Lemma 2.7, and Lemma 2.8 is proved.

Remark. If (M, g) is a hypersurface of a sphere $?#*!(1), the (f, g, u, v, A)-
structure of (M, g) is the induced one, and H,; is the second fundamental
tensor of the hypersurface, then (2.37) is nothing but the structure equation
of Gauss for the hypersurface.

In the sequel we need the following lemma proved by Nakagawa and Yokote
[4].

Lemma 2.9. Assume that in Lemma 2.1 the tensor field H; satisfies (2.18),
and the curvature tensor of (M, g) is of the form (2.37). If (M, g) is compact,
then we have B(f + 1) = 0, thatis, B =0o0r — 1 in M.



552 SHIGERU ISHIHARA & U-HANG KI

3. Complete Riemannian manifolds with an (f, g, u, v, 2)-structure

First, we prove
Theorem 3.1. Let (M, g) be a complete connected Riemannian manifold

of dimension 2n > 4 with an (f, g, u, v, A)-structure such that 2 is not zero
almost everywhere in M and that there be given a tensor field H,; of type (0.2)
satisfying (2.5), (2.18). Further assume that the (f, g, u, v, A)-structure satisfies
(2.3), (2.4), (2.6) where ¢ is a certain function in M. If the sectional curvature
K(9) of (M, g) with respect to the section @ spanned by u® and v* is constant
in N,, then the function ¢ is necessarily constant, and (M, g) is isometric to
one of the following manifolds:

§(r) ,  SMr) X SUry) , [S*(r) X S*(rl*,
where

ri=14¢, m=21+¢+e/T 1+,
=21+ ¢ — VT 1)

Moreover, H;; takes the form

G.D Hj = ¢85

if (M, g) is isometric to S*(r), or

(3.2) Hj =2V1 + ¢P;i + (9 — V1 + g

if (M, g) is isometric to S™(r)) X S™(r,) or [S*(r) X S™(r)]*, where P;* is the
almost product structure of rank n determined by the local reducibility of
M,g), P = P,'gy and VP;; = 0.

Proof. Under the assumptions of this theorem, Lemmas 2.1, 2.3, - - -, 2.7
are all valid. By Lemma 2.6 we have 8 = 0 or —1, and therefore we consider
the following two cases.

Case I: B = 0. Using (2.13) and (2.19) with § = 0 we can reduce (2.8)
to V;A = ¢u, — v,. Covariant differentiation of this equation gives V; 4,4 =
—2(1 + ¢Yg;;, in consequence of (2.6), (2.7) and H;; = ¢g;; due to Lemma
2.7. On the other hand, 4 is not constant; otherwise, from (2.8) with ;2 = 0
and (2.13) it follows that 8 = 1, which contradicts to the assumption. Since
(M, g) is complete and connected, by Theorem A we thus see that (M, g) is
isometric to S™(r), where 1/r* = 1 + ¢

Case I1: § = —1. Using (2.13) and (2.19) with 8 = —1 we can reduce
(2.8) to ;2 = 2(¢u; — v,). Covariant differentiation of this equation and use
of (2.6) and (2.7) yields

3.3) ViVid = 2T pft — 22¢T ji — 22(1 + ¢°)g;. »
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where T;; is given in Lemma 2.6. From (2.35), (2.36) and (3.3) it follows that

PPV VA= =201 + ¢ + V1 + $)Py; ,

3.4 7
G4 00T a= —2( + ¢ — g/T T 0y,

where P;* is the almost product structure defined in (M, g) by (2.33) and Q,* =
8 — P;*. On the other hand, A is not constant (see Case I). Thus V,P;; =0
because of (2.34) and Lemma 1.1.

Since P,* is of rank »n and (M, g) is complete and conncted, taking account
of Theorem 1.2 and (3.4) we see that (M, g) is isometric to S*(r,) X S™(r,) or
[S™(r) x S™(r,)]*. Finally, we obtain (3.2) from (2.33). Thus Theorem 3.1 is
proved.

Theorem 3.2. Let (M, g) be a complete connected Riemannian manifold of
dimension 2n > 4 with an (f, g, u, v, A)-structure such that 2 is not zero almost
everywhere in M, and there be given in M a tensor field H;; of type (0,2)
satisfying (2.5) and (2.18). Assume that the (f,g, u, v, A)-structure of (M, g)
satisfies (2.3), (2.4) and (2.6), and further that the curvature tensor of (M, g)
is given by

(2.37) Kijin = 811851 — 8n8xi + HynHjy — HypHy,y .

If the scalar curvature K of (M, g) is constant, then the same conclusions as
those stated in Theorem 3.1 are valid.

Proof. Under the assumptions in Theorem 3.2, Lemma 2.7 follows from
Lemma 2.8. Therefore we can prove Theorem 3.2 in the same way as we
prove Theorem 3.1.

Taking account of Lemma 2.9, we can prove the following Theorem 3.3 by
the same devices as developed in the proof of Theorem 3.1.

Theorem 3.3. Let (M, g) be a compact connected Riemannian manifold
2n > 4 with an (f, g, u, v, 2)-structure such that 2 is not zero almost everywhere
in M, and let there be given in M a tensor field H;; of type (0,2) satisfying
(2.5) and (2.18). Assume that the (f, g, u, v, A)-structure of (M, g) satisfies
(2.3), (2.4) and (2.6), and that the curvature tensor of (M, g) is given by (2.37).
Then the same conclusions as those stated in Theorem 3.1 are valid.

Theorem 3.4. The conclusions in Theorem 3.1 (resp. Theorem 3.2,
Theorem 3.3) are valid, even if in Theorem 3.1 (resp. Theorem 3.2, Theorem
3.3) the condition (2.6) is replaced by

(2.10) Sy = v, 4 Vavs — 228:) — (Vv + Vavy — 22850)

Proof. By Lemma 2.2, the conditions (2.3), (2.4) and (2.10) imply (2.6).
Thus using Lemmas 2.7, 2.8 and 2.9 we can obtain Theorem 3.4.

By means of Theorems 3.1, 3.2 or 3.4 we can prove the theorem in [2],
Theorems 9.1, 9.2 in [7] and Theorem 3.2 in [10]. We now state
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Lemma 3.5. Let (M, g) be a complete connected hypersurface immersed
in a sphere S™*'(1) with induced metric g;;, and assume that in (M, g) there is
an almost product structure P}* of rank p such that V;P,* = Q. If the second
fundamental tensor H;; of the hypersurface (M, g) takes the form H;; = aP;; +
bQ;;, and m — 1 > p > 1, where a and b are nonzero constants, P;; = P8,
and Q;; = g;; — Pj;, then the hypersurface (M, g) is congruent to the hyper-
surfaces S?(r,) X S™2(r,) naturally embedded in S™*'(1), where 1/r* = 1 + &
and 1/ri =1 + b~

By means of Theorems 3.1, 3.2, and Lemma 3.5 we can prove

Theorem 3.6. Let (M, g) be a complete connected hypersurface immersed
in a sphere S**+'(1) with induced (f, g, u, v, 2)-structure such that 2 is not zero
almost everywhere in M. Assume that the induced (f,g,u,v,2)-structure
satisfies the condition V v, — V,v; = 2¢f;;, ¢ being a certain function in M.
If (M, g) satisfies one of the following conditions: (i) (M, g) is compact, (ii)
the scalar curvature K of (M, g) is constant, (iii) the sectional curvature K(6)
of (M, g) with respect to the section § spanned by u™ and v"* is constant, then
¢ is necessarily constant and the hypersurface (M, g) is congruent to S*"(r) or
S*(r) X S™(r,) naturally embedded in S*"*(1), where 1/r =1 + ¢, 1/ri =
21 + ¢* + ¢V 1 + ¢) and 1/r? = 2(1 + ¢ — ¢v/'1 + ¢°), (cf. Nakagawa
and Yokote [3], [4]).
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