THE MEAN CURVATURE FOR p-PLANE

SHUN-ICHI TACHIBANA

Introduction

Let M be an n-dimensional Riemannian space. For the skew symmetric tensor $u_{\lambda_{1} \cdots \lambda_{p}}, F_{p}(u)$ for $p=1, \cdots, n$ are defined as follows:

$$
\begin{aligned}
& F_{1}(u)=R_{\lambda \mu} u^{2} u^{\mu}, \\
& F_{p}(u)=R_{\lambda \mu} u^{2 \rho_{2} \cdots \rho_{p} u^{\mu}{ }_{\rho_{2} \cdots \rho_{p}}+\frac{p-1}{2} R_{\lambda \mu \nu \omega} u^{2 \mu \rho_{3} \cdots \rho_{p}} u_{\rho_{3} \cdots \rho_{p}}, \quad p \geq 2,}
\end{aligned}
$$

where $R_{\lambda \mu \nu \omega}$ is the Riemannian curvature tensor and $R_{\lambda \mu}=R_{\alpha \lambda \mu}{ }^{\alpha}$ is the Ricci tensor of M. Throughout this paper indices $\lambda, \mu, \nu, \cdots$ range from 1 to n, tensors and vectors will be represented with respect to the natural basis unless stated otherwise, and the summation convention is assumed for these indices. Concerning $F_{p}(u)$ the following theorems are known.

Theorem A [5, p. 64], [3]. If the quadratic form $F_{p}(u)$ is positive definite in a compact Riemannian space, there exists no harmonic p-form other than the zero form.

Theorem B [5, p. 67]. If $F_{p}(u)$ is negative definite in a compact Riemannian space, there exists no Killing tensor field of degree p other than the zero tensor.

Theorem C [4], [2]. If $F_{p}(u)$ is negative definite in a compact Riemannian space for $p \leq n / 2$, there exists no conformal Killing tensor field of degree p other than the zero tensor.

In this paper in $\S 2$ we shall give a geometric meaning of $F_{p}(u)$ in terms of the sectional curvature for a special form u to be called a simple form u, and $\S 3$ is devoted to the discussion of the spaces in which $F_{p}(u)$ is independent of the simple form u.

1. Preliminaries

Let M be an n-dimensional Riemannian space. Consider a pair of orthonormal vectors $X=\left(X^{2}\right)$ and $Y=\left(Y^{2}\right)$ at a point $m \in M$. Then the sectional curvature of the 2-plane spanned by X and Y is given by

$$
\rho(X, Y)=-R_{\lambda \mu \nu \omega} X^{\lambda} Y^{\mu} X^{\nu} Y^{\omega} .
$$

Received July 6, 1971, and, in revised form, November 21, 1972.

Let π be a p-plane at m. An orthonormal base $\left\{e_{i}\right\}, i=1, \cdots, n$, is said to be adapted to π if e_{1}, \cdots, e_{p} span π. Denote $e_{i}=\xi_{i}{ }^{2} \partial / \partial x^{2}$, and define

$$
\pi^{\lambda_{1} \cdots \lambda_{p}}=\left|\begin{array}{ccc}
\xi_{1}^{\lambda_{1}} \cdots & \xi_{p}^{\lambda_{1}} \tag{1.1}\\
\cdots \cdots & \cdots & \cdots \\
\xi_{1}^{\lambda_{p}} & \cdots & \xi_{p}^{\lambda_{p}}
\end{array}\right| .
$$

Consider another orthonormal base $\left\{e_{i}^{\prime}\right\}$ adapted to π. Then

$$
e_{i}^{\prime}=\sum_{j=1}^{p} a_{i j} e_{j}, \quad i=1, \cdots, p
$$

where the $p \times p$ matrix $A=\left(a_{i j}\right)$ is orthogonal. Thus under the change of adapted bases we have

$$
\begin{equation*}
\pi^{\prime \lambda_{1} \cdots \lambda_{p}}= \pm \pi^{\lambda_{1} \cdots \lambda_{p}} \tag{1.2}
\end{equation*}
$$

and $\pi^{\lambda_{1} \cdots \lambda_{p}}$ is determined for π within a sign. We shall call the tensor $\pi^{\lambda_{1} \cdots \lambda_{p}}$ the simple p-vector of π, and denote it by π again. The ambiguity of signs does not matter in the following discussion.

2. The mean curvature for π

Let π be a p-plane at m, and $\left\{e_{i}\right\}$ an adapted base. Put

$$
\rho\left(\pi_{e}\right)=\frac{1}{p(n-p)} \sum_{i=1}^{p} \sum_{j=p+1}^{n} \rho\left(e_{i}, e_{j}\right),
$$

and prove that its value depends only on π. In fact, it will be seen as follows that $\rho\left(\pi_{e}\right)$ is independent of the choice of $\left\{e_{i}\right\}$.

Let $F_{p}(u)$ be the quadratic form of u defined in the introduction. Denote by $F_{p}\left(\pi_{e}\right)$ the $F_{p}(u)$ with $u^{\lambda_{1} \cdots \lambda_{p}}$ to be $\pi^{\lambda_{1} \cdots \lambda_{p}}$ of (1.1), and define

$$
\bar{\rho}\left(\pi_{e}\right)=\frac{1}{p!(n-p)} F_{p}\left(\pi_{e}\right),
$$

which is independent of the choice of adapted bases to π, because of (1.2). Thus for our purpose mentioned above it is sufficient to show that $\rho\left(\pi_{e}\right)=$ $\bar{\rho}\left(\pi_{e}\right)$.

As $F_{p}\left(\pi_{e}\right)$ is a tensor equation, we may consider it written with respect to the adapted base $\left\{e_{i}\right\}$ of π. Then the components of e_{i} are $\delta_{i}{ }^{\lambda}$, and the simple p-vector has the components

$$
\pi^{\lambda_{1} \cdots \lambda_{p}}= \begin{cases}\operatorname{sign}\left(\lambda_{1}, \cdots, \lambda_{p}\right), & \text { if }\left(\lambda_{1}, \cdots, \lambda_{p}\right) \text { is a permutation of }\{1, \cdots, p\} \\ 0 & \text { other cases. }\end{cases}
$$

Thus we have for $\lambda, \mu, \nu, \omega=1, \cdots, p$

$$
\begin{align*}
& \pi^{\lambda \rho_{\rho} \cdots \rho_{p}} \pi_{\rho_{2} \cdots \rho_{p}}=(p-1)!\delta_{\lambda \mu} \tag{2.1}\\
& \pi^{\lambda \mu \rho_{3} \cdots \rho_{p} \pi^{\nu \omega}{ }_{\rho_{3} \cdots \rho_{p}}}=(p-2)!\left(\delta_{\lambda \nu} \delta_{\mu \omega}-\delta_{\lambda \omega} \delta_{\mu \nu}\right),
\end{align*}
$$

and the following equations are valid:

$$
\begin{aligned}
R_{\lambda \mu} \pi^{\lambda \rho_{2} \cdots \rho_{p}} \pi^{\mu}{ }_{\rho_{2} \cdots \rho_{p}}=(p-1)! & \sum_{\lambda=1}^{p} R_{\lambda \lambda}=(p-1)!\sum_{\lambda=1}^{p} \sum_{\mu=1}^{n} \rho\left(e_{\lambda}, e_{\mu}\right), \\
\frac{p-1}{2} R_{\lambda \mu \nu \omega} \pi^{\lambda \mu \rho_{3} \cdots \rho_{p} \pi^{\nu \omega}{ }_{\rho_{3} \cdots \rho_{p}}} & =(p-1)!\sum_{\lambda, \mu=1}^{p} R_{\lambda \mu \lambda \mu} \\
& =-(p-1)!\sum_{\lambda=1}^{p} \sum_{\mu=1}^{p} \rho\left(e_{\lambda}, e_{\mu}\right)
\end{aligned}
$$

Hence $\bar{\rho}\left(\pi_{e}\right)=\rho\left(\pi_{e}\right)$. Since $\rho\left(\pi_{e}\right)$ depends only on π, we denote it by $\rho(\pi)$ and call it the mean curvature for the p-plane π. We notice that the mean curvature for the p-plane spanned by e_{1}, \cdots, e_{p} coincides with that for the ($n-p$)-plane spanned by $e_{p_{+1}}, \cdots, e_{n}$.

3. A theorem analogous to Schur's theorem

In this section we shall determine the spaces in which $\rho(\pi)$ is independent of the p-plane π at each point. First we have

Lemma 1. Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix whose diagonal elements are all zero. If A satisfies

$$
\begin{equation*}
\sum_{n, k=1}^{p} a_{i_{h}, i_{k}}=0 \tag{3.1}
\end{equation*}
$$

for any $i_{1}<\cdots<i_{p}$ taken from $\{1, \cdots, n\}$ and $n-1>p>1$, then A is the zero matrix.

Proof. For $\left\{i_{1}, \cdots, i_{p}\right\}=\{1, \cdots, p\}$ and $\left\{i_{1}, \cdots, i_{p}\right\}=\{2, \cdots, p+1\}$ from (3.1) we have, respectively,

$$
\begin{equation*}
\sum_{i, j=1}^{p} a_{i j}=0, \quad \sum_{i, j=2}^{p+1} a_{i j}=0 \tag{3.2}
\end{equation*}
$$

which imply, due to $a_{i j}=a_{j i}$, that

$$
\sum_{i=1}^{p+1} a_{i 1}=\sum_{i=1}^{p+1} a_{i, p+1}
$$

Similarly,

$$
\sum a_{i 1}=\sum a_{i 2}=\cdots=\sum a_{i p}=\sum a_{i, p_{+1}}
$$

where \sum denotes the summation over i from 1 to $p+1$. If we use $p+2$ instead of $p+1$, then

$$
\Sigma^{\prime} a_{i 1}=\Sigma^{\prime} a_{i 2}=\cdots=\Sigma^{\prime} a_{i p}=\Sigma^{\prime} a_{i, p+2}
$$

where Σ^{\prime} denotes the summation over i from 1 to p and $p+2$. Therefore we get

$$
\begin{aligned}
a_{p+1,1}-a_{p_{+2,1}} & =a_{p_{+1,2}}-a_{p+2,2}=\cdots=a_{p_{+1, p}}-a_{p_{+2, p}} \\
& =\sum a_{i, p+1}-\sum^{\prime} a_{i, p+2}=\sum a_{p+1, i}-\sum^{\prime} a_{p+2, i} .
\end{aligned}
$$

If we denote the above common value by k, then

$$
p k=\sum_{i=1}^{p}\left(a_{p_{+1, i}}-a_{p_{+2, i}}\right)=\sum a_{p_{+1, i}}-\sum^{\prime} a_{p_{+2, i}}=k
$$

from which follows $k=0$. Thus we have

$$
a_{p_{+1, i}}=a_{p+2, i}, \quad i=1, \cdots, p
$$

Similarly,

$$
a_{p+1, i}=a_{p+2, i}=\cdots=a_{n i}, \quad i=1, \cdots, p
$$

The similar process for $\{1, \cdots, p-1, p+1\}$ leads us to

$$
a_{p i}=a_{p+2, i}=\cdots=a_{n i}, \quad i=1, \cdots, p-1, p+1
$$

and finally we get

$$
a_{i j}=k_{j}, \quad j=1, \cdots, p ; \quad i=1, \cdots, n ; \quad i \neq j
$$

As $a_{i j}=a_{j i}$, we obtain $a_{i j}=c$ for $i, j=1, \cdots, p$, and hence $c=0$ follows from (3.2). In a similar way, we know all the elements of A to be zero. q.e.d.

Now let us assume that $\rho(\pi)$ is independent of the p-plane at each point and takes the value $k /(n-p)$, where k is a scalar function. By the assumption we have $F_{p}\left(\pi_{e}\right)=p!k$, and hence

$$
\begin{equation*}
L_{\lambda \mu \nu \omega} \pi^{\lambda \mu \rho_{3} \cdots \rho_{p} \pi^{\nu \omega}{ }_{\rho_{3} \cdots \rho_{p}}=0 ~} \tag{3.3}
\end{equation*}
$$

on taking account of (2.1), where

$$
\begin{align*}
L_{\alpha \mu \nu \omega}= & (p-1) R_{\lambda \mu \nu \omega}-k\left(g_{\lambda \nu} g_{\mu \omega}-g_{\lambda \omega} g_{\mu \nu}\right) \tag{3.4}\\
& +\frac{1}{2}\left(R_{\lambda \nu} g_{\mu \omega}-R_{\lambda \omega} g_{\mu \nu}+R_{\mu \omega} g_{\lambda \nu}-R_{\mu \nu} g_{\lambda \omega}\right) .
\end{align*}
$$

Now we may consider that (3.3) has been written with respect to the adapted base of (1.1). Then by virtue of (2.1) we get

$$
\sum_{\lambda, \mu=1}^{p} L_{\alpha \mu \lambda \mu}=0
$$

for the base. Similarly, the analogous equations are valid for any p indices.
Thus, if we put $a_{\lambda \mu}=L_{\lambda \mu \mu},(\lambda, \mu=1, \cdots, n)$, then the $n \times n$ matrix $A=\left(a_{\lambda \mu}\right)$ satisfies the condition of Lemma 1 ; consequently $a_{\lambda \mu}=0$ follows.

On the other hand, we know [1, p. 196]
Lemma 2. Let L be a tensor of type $(0,4)$ satisfying

$$
L_{\lambda \mu \nu \omega}=-L_{\mu \lambda \nu \omega}=-L_{\lambda \mu \omega \nu}, \quad L_{\lambda \mu \nu \omega}+L_{\mu \nu \lambda \omega}+L_{\nu \lambda \mu \omega}=0
$$

If $L_{\lambda \mu \lambda \mu}$ for all λ and μ with respect to any orthonormal base are zero, then L is the zero tensor.

The tensor $L_{\text {人 } \mu \nu \omega}$ of (3.4) clearly satisfies the condition of Lemma 2. Thus we get

$$
\begin{equation*}
L_{\lambda \mu \nu \omega}=0 . \tag{3.5}
\end{equation*}
$$

Transvecting $g^{2 \omega}$ with the last equation, we have

$$
\begin{equation*}
(2 p-n) R_{\mu \nu}=[R-2 k(n-1)] g_{\mu \nu}, \tag{3.6}
\end{equation*}
$$

where $R=g^{2 \omega} R_{\lambda \omega}$ is the scalar curvature. If $2 p \neq n$, it follows that

$$
k=\frac{n-p}{n(n-1)} R, \quad R_{\mu \nu}=\frac{R}{n} g_{\mu \nu}
$$

and substituting these values into (3.5) we get

$$
R_{\lambda \mu \nu \omega}=\frac{R}{n(n-1)}\left(g_{\lambda \omega} g_{\mu \nu}-g_{\lambda \nu} g_{\mu \omega}\right)
$$

which shows M to be a space of constant curvature, provided that $n>2$.
When $n=2 p$, from (3.6) it follows that

$$
k=\frac{R}{2(n-1)},
$$

and (3.5) becomes

$$
\begin{aligned}
(n-2) R_{\lambda \mu \nu \omega} & +R_{\lambda \nu} g_{\mu \omega}-R_{\lambda \omega} g_{\mu \nu}+R_{\mu \omega} g_{\lambda \nu}-R_{\mu \nu} g_{\lambda \omega} \\
& -\frac{R}{n-1}\left(g_{\lambda \nu} g_{\mu \omega}-g_{\lambda \omega} g_{\mu \nu}\right)=0
\end{aligned}
$$

which shows M to be conformally flat, provided that $n>3$.
Thus we have the following theorem including the trivial cases where $p=1$
and $n-1$; the converse part is proved by making use of $F_{p}\left(\pi_{e}\right)$.
Theorem. In an n-dimensional Riemannian space M, if the mean curvature for p-plane is independent of the p-plane at each point, then
(i) M is an Einstein space, for $p=1, n-1$ and $n>2$,
(ii) M is of constant curvature, for $n-1>p>1$ and $2 p \neq n$,
(iii) M is conformally flat, for $n-1>p>1$ and $2 p=n$.

The converse is also true.

Bibliography

[1] E. Cartan, Leçon sur les géométrie des espaces de Riemann, 2nd ed., GauthierVillars, Paris, 1951.
[2] T. Kashiwada, On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968) 67-74.
[3] I. Mogi, On harmonic fields in Riemannian manifold, Kōdai Math. Sem. Rep. 2 (1950) 61-66.
[4] S. Tachibana, On conformal Killing tensor in a Riemannian space, Tôhoku Math. J. 21 (1969) 56-64.
[5] K. Yano \& S. Bochner, Curvature and Betti numbers, Annal of Math. Studies, No. 32, Princeton University Press, Princeton, 1953.

Ochanomizu University, Tokyo

