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MORSE THEORY ON QUATERNIONIC GRASSMANNIANS

GEORGE D. PARKER

Hangan has shown in [4] that one obtains a simple Morse function on a real
or complex Grassmann manifold by embedding the manifold in a suitable
projective space via the Plϋcker determinants (see [5, Chapter VII]) and then
restricting a natural function on the projective space to the resulting variety.
The method does not immediately work for the quaternionic case due to a lack
of determinants over skew fields and the fact that HG(p, q) is not a "quater-
nionic projective variety." We shall show his method may be adapted and ex-
tended to include the quaternionic case.

We denote the Grassmann manifold of p-planes in Kp+q by KG(p, q), where
K = R,C,H. KP(ri) = KG(l,ή) denotes a projective space. We assume a
knowledge of Morse theory as may be found in [6].

1. HG(p, q) as a real projective variety

The right H space Hn may be identified with Rin together with three linear
operators Jr(r= 1, 2, 3) which correspond to right multiplication by i,j, k. For
example if φ(a + bί + cj + dk) = (a, b, c, d) gives the identification of Hι

with R\ then Jx is represented by the matrix

Let φ:Hp+q->Rup+q) be the identification. If OφveHp+q, then the
quaternionic line {vq \ q e H) has as its ^-image the real 4-ρlane {(al + bJλ +
cJ2 + dJ3)φ(v) \a,b,c,de R}. Similarly we obtain HG(p, q) c RG(4p, Aq) c
RP(N — 1), where Λf = binomial coefficient C 4 ( P + β ) ϊ 4 p . The second containment
is given by the quadratic p-relations, which are homogeneous equations on
RN ^ Aip(Ri(p+q)). The first containment is given by the homogeneous linear
equations Λip(Jr)(x) = x, x 6 Λip(RHp+q)), r = 1, 2, 3. These latter equations
reflect the statement that a real 4/?-plane is the ψ image of a quaternionic p-plane
if and only if it is invariant under the Jr. Thus we have HG(p,q) as real
projective variety.
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2. The function / and the ordering of the Schubert Symbols

Let 5 denote the set of Schubert symbols of 4p elements in 4(p + <?)-sρace,
and T the set of Schubert symbols of p elements in p + q space. Thus σ € T
means that a — (σ19 , σp) with 1 < σx < σv < p + q. Two Schubert
symbols are said to be neighbors if they have all but one element in common,
e.g., (1,2, 3) and (1, 3,4) are neighbors.

Let F be the function on RP(N - 1) given by F(M) = Σcp(xp)
2/Σ(xp)

2,
where both sums run over all p e S (which will be given a total ordering below),
[x] = [χ19 .. -,xN] are homogeneous coordinates, and cp is real with cp < cτ

for p < τ. Then we have

Theorem 1. / = restriction of F to HG(p, q) is a nondegenerate Morse
function, and the critical points are the planes spanned by p of the coodinate
axes. If σ eT denotes the critical plane spanned by the σx-th, , σp-th axes,
then the Morse index at σ is 4d(σ) = 42T(σί — 0? and the Poincarέ polynomial
isP(HG(p,q);t) = Σt*M.

The proof will be given in §§ 3, 4.
To complete the definition of F we will need an ordering on S which differs

from the standard lexicographic order. (T will be given the lexicographic order.)
The new ordering is useful in establishing which points are critical for /. If A,
B are subsets of S, then A < B means that a < β for all a e A, β e B.

Let p = (pn, p12, pιz, pu, pn, p22, , ppi) 6 S. Define SibySi = {peS\ 4/ -
3 < ρn < 4/}, and set St <Sj if / < / . For fixed / define % = {peSt\pu = 4i},
% = {p € S,| A s < M < pu}, 25, = {p ε St\p12 < 4/ < Pί3}9

 35, = {p € 5 t |p u <
4Ϊ < p12}, and set °54 < X5< < 2St < 3St. For r = 1, 2, 3 give r5< the lexicographic
order. For °5t we repeat the process by considering p21, p22, p23, p2i.

°Si is partitioned into sets 5< ι < + 1,5< j i + 2, . Each StJ is partitioned into sets
rSij, and each °5^ is further partitioned. The process ends at the stage °5 i r.. ί p

since this latter set has only one element. Thus we get our desired ordering.

3. The critical points of /

Let π <= HG(p, q). We may choose a basis X19 , Xv of π over H so that
if the Xt are the rows of a matrix, then the matrix is in row echelon form (*).
φ{π) is spanned by the real vectors whose matrix is (**), where {a + bi + cj

a b e d '

+ dk] denotes the 4 X 4 matrix , ,
— c —d a b
—d c —b a
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If T = (TU , τ4 p) e 5, let vτ(π) be the r-th Plucker determinant of (**), that
is, the determinant of the submatrix of (**) consisting of the r r t h , τ2-th, .
columns. (Recall, these determinants give the embedding of RG(4p,4q) in
RP(N — 1)—the N-tuple [ ,v£π), •] satisfies the quadratic p-relations,
and if any other choice of basis of π is made, then the resulting N-tuple from
the Plucker determinants is a nonzero multiple of the one above.)

If π is spanned by p basis vectors Xi = ea. (and the qiά = 0 in (*)), by abuse
of notation, we shall denote π by σ. φ(σ) € RG(4p, Aq) is spanned by the 4σj
- 4 + k axes (/ = 1, . . , p k = 1, , 4). φ(σ) = p = (4σ1 - 3, 4σx - 2,
• •) e S. π = <τ is critical for / since vT(π) = 0 for τ Φ p, and every N-tuple
with all but one entry zero is critical for F.

Suppose π is not spanned by coordinate axes. Then there is a least integer
/ such that Xι is not a basis vector eσi, and for that choice of i there is a least
integer / > at such that qtj Φ 0. Let these /, / be fixed in the discussion below.

Define a path in HG(p, q) by Yk = Xk if k Φ i, and Y^ = (1 + t)Xi — te,i9

(the ek are the standard basis vcetors of Hp+q). We set π(t) to be the plane
spanned by the Yk, and prove below that (d/dt)(foπ(i)) | ί = 0 Φ 0, and hence π
is not a critical plane since τr(O) = π.

Denoting vτ(π) by v r and v£π(t)) by wr, we compute that df/dt =
2[(ΣcTwτw'XΣ(wη)

2) - (Σcη(wηy)(Σwτw0]/(Σ(wτyy. Hence we need to know
w^(0). By choice of / we have wτ = vτ = 0 unless τ € Sσi...σ._lλ for some λ > σt.
Thus we have five cases for possible nonzero terms:

(0) τ*0S.1....t,wv = v
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(1) τ 6 tf.,...,,, wτ = (1 + i)vτ, w'M = vτ

(2) r 6 *Sn....t, wr = (1 + ί)2vτ, H<(0) = 2vτ

(3) r 6 *Sn...ti, wτ = (1 + ί ) 3 ^
(4) r e $.,...„_„„ Λ > σt, wt = X J r

Note that (0) < (1) < (2) < (3) < (4). If we let Σm<n denote Σ(c. - c >
the sum running over all τ e (m), η e (n), then a simple calculation yields

(df/dt)(0) =
0<s<r<4

Each term in the numerator is nonnegative, so /'(0) > 0. Now p € (0) and
vp(π) = 1. For & = 1, , 4, let pk e (1) be the neighbor of p having 4/ — k
+ 1 instead of 4 ^ . Then v^ = ±q*j9 where ^ , = q\j + q*μ + (fij + q$jk.
Since qiS φ 0, we have that one of the qk

tj Φ 0, the term (cPk — cP)v2

Pkv
2

P > 0
in Σh0, and f (0) > 0.

Hence π is not critical, and the only critical points are those planes spanned
by p of the coordinate axes.

4. The Hessian of /

Let σ e T correspond to a critical point p = φ(σ). A neighborhood of σ is
given by all matrices of the form (#). There are pq arbitrary quaternionic
entries in (#), and hence 4pq real coordinates. Under φ, (#) goes over to a
similar display (##) which we shall omit.

( # )

&ι ff2

1 0
0 1

0 0

0
0

1 J

Consider the function vτ on (##): it is a homogeneous polynomial in the
real coordinates. vp = 1, while vr is linear if and only if τ is a neighbor of p.
Let {/Ί, , jq} be the set of indices complementary to the elements of σ
arranged in increasing order, and pa,m,b,n be the neighbor of p where pβajm is
replaced by 4/δ -f n — 4, (m, /? < 4). If J denotes the product on the Klein
4-group on the symbols 1, , 4, with 1 as identity, then it is easy to com-
pute that (vPatm>btny = ( c Γ ) 2 .

Now / = g/h where g and Λ are polynomials with no linear terms. If x and
y represent two coordinates of the form qs

ab and qζd, then one has fxy(0) =
lgxy(0)h(0) - g(0)hxy(0)]/(h(0))2 Furthermore, g(0) =-c,, A(0) = 1, and the
second order terms of g and h are squares of coordinates by the previous
paragraph. Hence fxy(0) = 0 for x Φ y, and fxx(0) = 2Σ(cPamtbn - cP) where
the sum runs over all m\n = s. Note that the order of ρa^m^,n a n d P does not
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depend on ra, n so that fxx(0) Φ 0 and σ is a nondegenerate critical point.

The index of / at σ is the number of <fah such that ρa,m,b,n < p f°Γ aU m%n

= s. This is the same as four times the number of pairs (a, b) such that jb < σa,
which is the same as four times the number of neighbors of σ which are less
than σ. Hence the index λσ = 4d(σ). Since the indices are all even, the Morse
inequalities are equalities and HG(p, q) has torsion-free homology. Its Poincare
polynomial for any field of coefficients is thus given by P(HG(p, q);i) = ΣtAd(σ).
Hence Theorem 1 is proved.

5. The case of critical manifolds

By changing F so that certain of the cτ = 1 and the rest = 0, we can arrange
it so that there are two submanifolds of critical points—one consists of all p-
planes containing the basis vector ei9 the other all p-planes orthgonal to eγ.
These critical submanifolds are nondegenerate in the sense of Bott [1]. This
same alteration can also be carried out with Hangan's function in the real and
complex cases.

The Morse-Bott inequalities [2, p. 323] and [3, p. 44] are equalities in the
cases CG and HG by induction since the indices are even. In the case of RG
one applies a technique due to Frankel [3], namely, to combine the Morse-
Bott inequalities with opposing inequalities derived by Floyd in the study of
fixed points of involutions, to prove equality as long as the coefficient field is
Z 2 . Thus, following Bott, one has

Theorem 2. KG(p, q) has the same homotopy type as KG(p — 1, (?) with
a dp-dimensional vector bundle over KG(p,q — 1) attached, (d = dimRK).
P(KG(p, q);t) = P(KG(p -l,q);t) + t^P(KG(p, q - 1) t), for Z 2 coeffi-
cients if K = R, and for any field of coefficients if K — C,H.
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