MORSE THEORY ON QUATERNIONIC GRASSMANNIANS

GEORGE D. PARKER

Hangan has shown in [4] that one obtains a simple Morse function on a real or complex Grassmann manifold by embedding the manifold in a suitable projective space via the Plücker determinants (see [5, Chapter VII]) and then restricting a natural function on the projective space to the resulting variety. The method does not immediately work for the quaternionic case due to a lack of determinants over skew fields and the fact that HG(p,q) is not a "quaternionic projective variety." We shall show his method may be adapted and extended to include the quaternionic case.

We denote the Grassmann manifold of p-planes in K^{p+q} by KG(p, q), where K = R, C, H. KP(n) = KG(1, n) denotes a projective space. We assume a knowledge of Morse theory as may be found in [6].

1. HG(p, q) as a real projective variety

The right H space H^n may be identified with R^{4n} together with three linear operators J_r (r = 1, 2, 3) which correspond to right multiplication by i, j, k. For example if $\varphi(a + bi + cj + dk) = (a, b, c, d)$ gives the identification of H^1

with
$$R^4$$
, then J_1 is represented by the matrix
$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$
.

Let $\varphi: H^{p+q} \to R^{4(p+q)}$ be the identification. If $0 \neq v \in H^{p+q}$, then the quaternionic line $\{vq \mid q \in H\}$ has as its φ -image the real 4-plane $\{(aI + bJ_1 + cJ_2 + dJ_3)\varphi(v) \mid a,b,c,d \in R\}$. Similarly we obtain $HG(p,q) \subset RG(4p,4q) \subset RP(N-1)$, where N= binomial coefficient $C_{4(p+q),4p}$. The second containment is given by the quadratic p-relations, which are homogeneous equations on $R^N \simeq \Lambda^{4p}(R^{4(p+q)})$. The first containment is given by the homogeneous linear equations $\Lambda^{4p}(J_r)(x) = x$, $x \in \Lambda^{4p}(R^{4(p+q)})$, r=1,2,3. These latter equations reflect the statement that a real 4p-plane is the φ image of a quaternionic p-plane if and only if it is invariant under the J_r . Thus we have HG(p,q) as real projective variety.

Received August 11, 1971. The author held a National Science Foundation Graduate Fellowship at the University of California at San Diego.

2. The function f and the ordering of the Schubert Symbols

Let S denote the set of Schubert symbols of 4p elements in 4(p+q)-space, and T the set of Schubert symbols of p elements in p+q space. Thus $\sigma \in T$ means that $\sigma = (\sigma_1, \dots, \sigma_p)$ with $1 \le \sigma_1 \dots < \sigma_p \le p+q$. Two Schubert symbols are said to be neighbors if they have all but one element in common, e.g., (1, 2, 3) and (1, 3, 4) are neighbors.

Let F be the function on RP(N-1) given by $F([x]) = \sum c_{\rho}(x_{\rho})^2/\sum (x_{\rho})^2$, where both sums run over all $\rho \in S$ (which will be given a total ordering below), $[x] = [x_1, \dots, x_N]$ are homogeneous coordinates, and c_{ρ} is real with $c_{\rho} < c_{\tau}$ for $\rho < \tau$. Then we have

Theorem 1. $f \equiv restriction$ of F to HG(p,q) is a nondegenerate Morse function, and the critical points are the planes spanned by p of the coordinate axes. If $\sigma \in T$ denotes the critical plane spanned by the σ_1 -th, \cdots , σ_p -th axes, then the Morse index at σ is $4d(\sigma) \equiv 4\Sigma(\sigma_i - i)$, and the Poincaré polynomial is $P(HG(p,q);t) = \Sigma t^{td(\sigma)}$.

The proof will be given in §§ 3, 4.

To complete the definition of F we will need an ordering on S which differs from the standard lexicographic order. (T will be given the lexicographic order.) The new ordering is useful in establishing which points are critical for f. If A, B are subsets of S, then A < B means that $\alpha < \beta$ for all $\alpha \in A$, $\beta \in B$.

Let $\rho = (\rho_{11}, \rho_{12}, \rho_{13}, \rho_{14}, \rho_{21}, \rho_{22}, \cdots, \rho_{p4}) \in S$. Define S_i by $S_i = \{\rho \in S \mid 4i - 3 \le \rho_{11} \le 4i\}$, and set $S_i < S_j$ if i < j. For fixed i define ${}^0S_i = \{\rho \in S_i \mid \rho_{14} = 4i\}$, ${}^1S_i = \{\rho \in S_i \mid \rho_{13} \le 4i < \rho_{14}\}$, ${}^2S_i = \{\rho \in S_i \mid \rho_{12} \le 4i < \rho_{13}\}$, ${}^3S_i = \{\rho \in S_i \mid \rho_{11} \le 4i < \rho_{12}\}$, and set ${}^0S_i < {}^1S_i < {}^2S_i < {}^3S_i$. For r = 1, 2, 3 give rS_i the lexicographic order. For 0S_i we repeat the process by considering $\rho_{21}, \rho_{22}, \rho_{23}, \rho_{24}$.

 ${}^{0}S_{i}$ is partitioned into sets $S_{i,i+1}, S_{i,i+2}, \cdots$. Each S_{ij} is partitioned into sets ${}^{r}S_{ij}$, and each ${}^{0}S_{ij}$ is further partitioned. The process ends at the stage ${}^{0}S_{i_{1}...i_{p}}$ since this latter set has only one element. Thus we get our desired ordering.

3. The critical points of f

Let $\pi \in HG(p, q)$. We may choose a basis X_1, \dots, X_p of π over H so that if the X_i are the rows of a matrix, then the matrix is in row echelon form (*). $\varphi(\pi)$ is spanned by the real vectors whose matrix is (**), where [a + bi + cj]

$$+ d\mathbf{k}$$
] denotes the 4 × 4 matrix
$$\begin{bmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{bmatrix}$$
.

$$(*) \begin{bmatrix} \sigma_1 & \sigma_2 & \sigma_3 & \cdots \\ 0 \cdots 0 & 1 & q_{1,\sigma_1+1} \cdots 0 & q_{1,\sigma_2+1} \cdots 0 & q_{1,\sigma_3+1} \cdots \\ 0 \cdots 0 & 0 & 0 & \cdots 1 & q_{2,\sigma_2+1} \cdots 0 & q_{2,\sigma_3+1} \cdots \\ 0 \cdots 0 & 0 & 0 & \cdots 0 & 0 & \cdots 1 & q_{3,\sigma_3+1} \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}.$$

$$(**) \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} q_{1, \sigma_{1}+1} \end{bmatrix} \begin{bmatrix} q_{1, \sigma_{1}+2} \end{bmatrix} \cdots \begin{bmatrix} q_{1, \sigma_{2}+1} \end{bmatrix} \cdots \begin{bmatrix} q_{1, \sigma_{2}+1} \end{bmatrix} \cdots \begin{bmatrix} q_{1, \sigma_{2}+1} \end{bmatrix} \cdots \begin{bmatrix} q_{2, \sigma_{2}+1}$$

If $\tau = (\tau_1, \dots, \tau_{4p}) \in S$, let $v_r(\pi)$ be the τ -th Plücker determinant of (**), that is, the determinant of the submatrix of (**) consisting of the τ_1 -th, τ_2 -th, \cdots columns. (Recall, these determinants give the embedding of RG(4p, 4q) in RP(N-1)—the N-tuple $[\dots, v_r(\pi), \dots]$ satisfies the quadratic p-relations, and if any other choice of basis of π is made, then the resulting N-tuple from the Plücker determinants is a nonzero multiple of the one above.)

If π is spanned by p basis vectors $X_i = e_{\sigma_i}$ (and the $q_{ij} = 0$ in (*)), by abuse of notation, we shall denote π by σ . $\varphi(\sigma) \in RG(4p, 4q)$ is spanned by the $4\sigma_j - 4 + k$ axes $(j = 1, \dots, p; k = 1, \dots, 4)$. $\varphi(\sigma) = \rho = (4\sigma_1 - 3, 4\sigma_1 - 2, \dots) \in S$. $\pi = \sigma$ is critical for f since $v_{\tau}(\pi) = 0$ for $\tau \neq \rho$, and every N-tuple with all but one entry zero is critical for F.

Suppose π is not spanned by coordinate axes. Then there is a least integer i such that X_i is not a basis vector \mathbf{e}_{σ_i} , and for that choice of i there is a least integer $j > \sigma_i$ such that $q_{ij} \neq 0$. Let these i, j be fixed in the discussion below.

Define a path in HG(p,q) by $Y_k = X_k$ if $k \neq i$, and $Y_i = (1+t)X_i - t\boldsymbol{e}_{\sigma_i}$, (the \boldsymbol{e}_k are the standard basis vectors of H^{p+q}). We set $\pi(t)$ to be the plane spanned by the Y_k , and prove below that $(d/dt)(f\circ\pi(t))|_{t=0}\neq 0$, and hence π is not a critical plane since $\pi(0)=\pi$.

Denoting $v_{\tau}(\pi)$ by v_{τ} and $v_{\tau}(\pi(t))$ by w_{τ} , we compute that $df/dt = 2[(\Sigma c_{\tau} w_{\tau} w'_{\tau})(\Sigma (w_{\eta})^2) - (\Sigma c_{\eta} (w_{\eta})^2)(\Sigma w_{\tau} w'_{\tau})]/(\Sigma (w_{\tau})^2)^2$. Hence we need to know $w'_{\tau}(0)$. By choice of i we have $w_{\tau} \equiv v_{\tau} = 0$ unless $\tau \in S_{\sigma_1 \dots \sigma_{i-1} \lambda}$ for some $\lambda \geq \sigma_i$. Thus we have five cases for possible nonzero terms:

(0)
$$\tau \in {}^{0}S_{\sigma_{1}\cdots\sigma_{i}}, w_{\tau} \equiv v_{\tau}, w'_{\tau}(0) = 0;$$

- (1) $\tau \in {}^{1}S_{\sigma_{1}\cdots\sigma_{i}}, w_{\tau} = (1+t)v_{\tau}, w'_{\tau}(0) = v_{\tau};$
- (2) $\tau \in {}^{2}S_{\sigma_{1}\cdots\sigma_{t}}, w_{\tau} = (1+t)^{2}v_{\tau}, w'_{\tau}(0) = 2v_{\tau};$
- (3) $\tau \in {}^{3}S_{\sigma_{1}\cdots\sigma_{s}}, w_{\tau} = (1+t)^{3}v_{\tau}, w'_{\tau}(0) = 3v_{\tau};$
- (4) $\tau \in S_{\sigma_1 \dots \sigma_{i-1}, \lambda}, \lambda > \sigma_i, w_{\tau} = (1+t)^4 v_{\tau}, w'_{\tau}(0) = 4v_{\tau}.$

Note that (0) < (1) < (2) < (3) < (4). If we let $\Sigma_{m,n}$ denote $\Sigma(c_r - c_\eta)v_r^2v_\eta^2$, the sum running over all $\tau \in (m)$, $\eta \in (n)$, then a simple calculation yields

$$(df/dt)(0) = 2 \sum_{0 \le s < r \le 4} (r - s) \Sigma_{r,s} / (\Sigma v_{\tau}^2)^2$$
.

Each term in the numerator is nonnegative, so $f'(0) \ge 0$. Now $\rho \in (0)$ and $v_{\rho}(\pi) = 1$. For $k = 1, \dots, 4$, let $\rho_k \in (1)$ be the neighbor of ρ having 4j - k + 1 instead of $4\sigma_i$. Then $v_{\rho_k} = \pm q_{ij}^k$, where $q_{ij} = q_{ij}^1 + q_{ij}^2 \mathbf{i} + q_{ij}^3 \mathbf{j} + q_{ij}^4 \mathbf{k}$. Since $q_{ij} \ne 0$, we have that one of the $q_{ij}^k \ne 0$, the term $(c_{\rho_k} - c_{\rho})v_{\rho_k}^2 v_{\rho}^2 > 0$ in $\Sigma_{1,0}$, and f'(0) > 0.

Hence π is not critical, and the only critical points are those planes spanned by p of the coordinate axes.

4. The Hessian of f

Let $\sigma \in T$ correspond to a critical point $\rho = \varphi(\sigma)$. A neighborhood of σ is given by all matrices of the form (#). There are pq arbitrary quaternionic entries in (#), and hence 4pq real coordinates. Under φ , (#) goes over to a similar display (##) which we shall omit.

$$\begin{pmatrix} \sigma_1 & \sigma_2 & \cdots & \sigma_\rho \\ 1 & 0 & & 0 \\ 0 & 1 & & 0 \\ * & * & * & \cdots & * & * \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & & 1 \end{pmatrix}.$$

Consider the function v_{τ} on (##): it is a homogeneous polynomial in the real coordinates. $v_{\rho} = 1$, while v_{τ} is linear if and only if τ is a neighbor of ρ . Let $\{j_1, \dots, j_q\}$ be the set of indices complementary to the elements of σ arranged in increasing order, and $\rho_{a,m,b,n}$ be the neighbor of ρ where $\rho_{\sigma a,m}$ is replaced by $4j_b + n - 4$, $(m, n \le 4)$. If ‡ denotes the product on the Klein 4-group on the symbols $1, \dots, 4$, with 1 as identity, then it is easy to compute that $(v_{\rho_{a,m,b,n}})^2 = (q_{ab}^{mtn})^2$.

Now f = g/h where g and h are polynomials with no linear terms. If x and y represent two coordinates of the form q_{ab}^s and q_{cd}^r , then one has $f_{xy}(0) = [g_{xy}(0)h(0) - g(0)h_{xy}(0)]/(h(0))^2$. Furthermore, $g(0) = c_\rho$, h(0) = 1, and the second order terms of g and h are squares of coordinates by the previous paragraph. Hence $f_{xy}(0) = 0$ for $x \neq y$, and $f_{xx}(0) = 2\Sigma(c_{\rho_{a,m,b,n}} - c_\rho)$ where the sum runs over all $m \ddagger n = s$. Note that the order of $\rho_{a,m,b,n}$ and ρ does not

depend on m, n so that $f_{xx}(0) \neq 0$ and σ is a nondegenerate critical point.

The index of f at σ is the number of q_{ab}^s such that $\rho_{a,m,b,n} < \rho$ for all $m \ddagger n = s$. This is the same as four times the number of pairs (a,b) such that $j_b < \sigma_a$, which is the same as four times the number of neighbors of σ which are less than σ . Hence the index $\lambda_{\sigma} = 4d(\sigma)$. Since the indices are all even, the Morse inequalities are equalities and HG(p,q) has torsion-free homology. Its Poincaré polynomial for any field of coefficients is thus given by $P(HG(p,q);t) = \Sigma t^{4d(\sigma)}$. Hence Theorem 1 is proved.

5. The case of critical manifolds

By changing F so that certain of the $c_r = 1$ and the rest = 0, we can arrange it so that there are two submanifolds of critical points—one consists of all p-planes containing the basis vector \mathbf{e}_1 , the other all p-planes orthogonal to \mathbf{e}_1 . These critical submanifolds are nondegenerate in the sense of Bott [1]. This same alteration can also be carried out with Hangan's function in the real and complex cases.

The Morse-Bott inequalities [2, p. 323] and [3, p. 44] are equalities in the cases CG and HG by induction since the indices are even. In the case of RG one applies a technique due to Frankel [3], namely, to combine the Morse-Bott inequalities with opposing inequalities derived by Floyd in the study of fixed points of involutions, to prove equality as long as the coefficient field is \mathbb{Z}_2 . Thus, following Bott, one has

Theorem 2. KG(p,q) has the same homotopy type as KG(p-1,q) with a dp-dimensional vector bundle over KG(p,q-1) attached, $(d=\dim_R K)$. $P(KG(p,q);t)=P(KG(p-1,q);t)+t^{dp}P(KG(p,q-1);t)$, for \mathbb{Z}_2 coefficients if K=R, and for any field of coefficients if K=C, H.

Bibliography

- [1] R. Bott, Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248-261.
- [2] —, The stable homotopy of the classical groups, Ann. of Math. 70 (1959)
- [3] T. Frankel, Critical submanifolds of the classical groups and Stiefel manifolds, Differential and Combinatorial Topology, A Sympos. in Honor of M. Morse, Princeton University Presss, Princeton, 1965.
- [4] T. Hangan, A Morse function on Grassmann manifolds, J. Differential Geometry 2 (1968) 363-367.
- [5] W. Hodge & D. Pedoe, Methods of algebraic geometry, Vol. I, Cambridge University Press, Cambridge, 1953.
- [6] J. Milnor, Morse Theory, Annals of Math. Studies, No. 51, Princeton University Press, Princeton, 1963.

University of California, San Diego Southern Illinois University