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MORSE THEORY ON QUATERNIONIC GRASSMANNIANS

GEORGE D. PARKER

Hangan has shown in [4] that one obtains a simple Morse function on a real
or complex Grassmann manifold by embedding the manifold in a suitable
projective space via the Pliicker determinants (see [5, Chapter VII]) and then
restricting a natural function on the projective space to the resulting variety.
The method does not immediately work for the quaternionic case due to a lack
of determinants over skew fields and the fact that HG(p, q) is not a “quater-
nionic projective variety.” We shall show his method may be adapted and ex-
tended to include the quaternionic case.

We denote the Grassmann manifold of p-planes in K?*¢ by KG(p, q), where
K =R,C,H. KP(n) = KG(1, n) denotes a projective space. We assume a
knowledge of Morse theory as may be found in [6].

1. HG(p, g) as a real projective variety

The right H space H" may be identified with R** together with three linear
operators J, (r = 1, 2, 3) which correspond to right multiplication by i, j, k. For
example if ¢(a + bi + ¢j + dk) = (a, b, c,d) gives the identification of H!

0 -1 00
sy o . . [1 0 00
with R*, then J, is represented by the matrix 0 0 0 1

’_0 0 -1 0

Let ¢: H?*? — R*?*® be the identification. If 0+ y ¢ H?*%, then the
quaternionic line {vg|q € H} has as its ¢-image the real 4-plane {(al + bJ, +
cl, + dle®)|a, b, c,d e R}. Similarly we obtain HG(p, q) C RG(4p, 4q) C
RP(N — 1), where N = binomial coefficient C, ,,,, ,». The second containment
is given by the quadratic p-relations, which are homogeneous equations on
RY ~ A*(R*?*?), The first containment is given by the homogeneous linear
equations A'?(J,)(x) = x, x e A'?(R*?*?®), r = 1,2, 3. These latter equations
reflect the statement that a real 4p-plane is the ¢ image of a quaternionic p-plane
if and only if it is invariant under the J,. Thus we have HG(p, q) as real
projective variety.
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2. The function f and the ordering of the Schubert Symbols

Let S denote the set of Schubert symbols of 4p elements in 4(p + g)-space,
and T the set of Schubert symbols of p elements in p + g space. Thus ge T
means that ¢ = (¢}, -+ -,0,) With 1 <¢g,--- <o, <p + q. Two Schubert
symbols are said to be neighbors if they have all but one element in common,
e.g., (1,2, 3) and (1, 3, 4) are neighbors.

Let F be the function on RP(N — 1) given by F([x]) = Zc,(x,)?/2(x,)’,
where both sums run over all p € S (which will be given a total ordering below),
[x] = [x,, - - -, xy] are homogeneous coordinates, and c, is real with ¢, <c,
for p < z. Then we have

Theorem 1. f = restriction of F to HG(p, q) is a nondegenerate Morse
function, and the critical points are the planes spanned by p of the coodinate
axes. If o € T denotes the critical plane spanned by the g-th, - - -, 0,-th axes,
then the Morse index at ¢ is 4d(¢) = 43(0; — i), and the Poincaré polynomial
is P(HG(p, @) ; ) = '@,

The proof will be given in §§ 3, 4.

To complete the definition of F we will need an ordering on S which differs
from the standard lexicographic order. (T will be given the lexicographic order.)
The new ordering is useful in establishing which points are critical for f. If 4,
B are subsets of S, then 4 < B means that « < g for all ¢ € 4, S ¢ B.

Let o = (011, 0125 P135 P15 P21 P22> = * * 5 Pps) € S. Define S; by S; = {p e S|4i —
3 < py <4}, andset S; < S, if i <j. For fixed i define °S; = {p € S;| p,, = 41},
S ={oeSi|on <4 <pu}, i = {oeSi|p <4 < pu}, i ={oeSilon <
4i < p,;}, and set °S; <'S; < %S, <3S,. For r=1, 2, 3 give "S; the lexicographic
order. For °S; we repeat the process by considering p,;, 02, 23> 024

%S, is partitioned into sets S; ;,1,S; 1, - - +- Each §;; is partitioned into sets
7S;;, and each °S;; is further partitioned. The process ends at the stage °S;,...;,
since this latter set has only one element. Thus we get our desired ordering.

3. The critical points of f

Let 7 ¢ HG(p, g). We may choose a basis X, - - -, X, of = over H so that
if the X; are the rows of a matrix, then the matrix is in row echelon form ().
¢(x) is spanned by the real vectors whose matrix is (%), where [a + bi + ¢j

a b c d
—b a d —cf
—c —d a b
—d c —b a

+ dk] denotes the 4 X 4 matrix
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(9 g, a3
0.0 1 Guowr "0 Gipur-0 Guogur---
Oo.-o 0 0 -.-1 q2,”2+1...0 qz’”_”.,

(%) 0 00 o ...0 0 1 Gy pper -
[0--.01000 0 r 79
0...00100 0
0...00010|Bet||Ten| g |Then
0.-.-00001 oL ]

() 0-- . . . ...1 —~ —_

k%

0‘. 1 q2,az+1
0.. 1
0.. 1L |

Ifr = (¢, -+, 7,p) €S, let v,(x) be the z-th Pliicker determinant of (xx), that
is, the determinant of the submatrix of (xx) consisting of the z,-th, z,-th, - - -
columns. (Recall, these determinants give the embedding of RG(4p, 4q) in
RP(N — 1)—the N-tuple [-.-,v.(n), - - -] satisfies the quadratic p-relations,
and if any other choice of basis of z is made, then the resulting N-tuple from
the Pliicker determinants is a nonzero multiple of the one above.)

If z is spanned by p basis vectors X; = e,, (and the g;; = 0 in (x)), by abuse
of notation, we shall denote # by ¢. ¢(¢) € RG(4p, 4q) is spanned by the 4o,
—4+kaxes(G=1,---,p;k=1,---,4). ¢l0) = p = (40, — 3,40, — 2,
--+)eS. © = ¢ is critical for f since v.(x) = O for = # p, and every N-tuple
with all but one entry zero is critical for F.

Suppose = is not spanned by coordinate axes. Then there is a least integer
i such that X is not a basis vector e,,, and for that choice of i there is a least
integer j > o, such that g;; # 0. Let these i, j be fixed in the discussion below.

Define a pathin HG(p,q) by Y, = X, if k i, and Y, = (1 + )X, — te,,,
(the e, are the standard basis vcetors of H?*9). We set zn(f) to be the plane
spanned by the Y, and prove below that (d/df)(f o z(¢)) |;—, # O, and hence =
is not a critical plane since #(0) = =.

Denoting v.(z) by v, and v.(x(¥)) by w, we compute that df/dt =
2[Eeww)(Ew,)) — (Zc,w)DH(Eww)]/(Z(w,))?. Hence we need to know
w(0). By choice of i we have w, = v, = O unless ¢ € S,,,...,,_,, for some 2 > a,.
Thus we have five cases for possible nonzero terms:

0 re OSalmap w. =7, W:(O) =0;
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(1) ze'S,.pw. =0+ v, wi(0) =v,;

2 te’S,...,w. =1+ )v,wl(0) = 2v,;

3 ze’S,....,w. =1+ ), wl(0) = 3v,;

4D €S, pd>onw, =1+ Do, wl(0) = 4v,.
Note that (0) < (1) < (2) < (3) < (4). If we let 2, denote X(c, — c,)vivi,
the sum running over all z e (m), 7 e (n), then a simple calculation yields

(df/dn(0) = ZOSsgq(r — 82, /v .

Each term in the numerator is nonnegative, so f/(0) > 0. Now p ¢ (0) and
v,(m) = 1. For k =1, ...,4, let p, € (1) be the neighbor of p having 4j — k
+ 1 instead of 4¢;. Then v,, = +g¥;, where q,; = q}; + @%i + ¢%;j + @}k.
Since g;; # 0, we have that one of the g%, + 0, the term (c,, — ¢,)v%,0% > 0
in X, ,, and f/(0) > 0.

Hence = is not critical, and the only critical points are those planes spanned
by p of the coordinate axes.

4. The Hessian of f

Let ¢ € T correspond to a critical point p = ¢(¢). A neighborhood of ¢ is
given by all matrices of the form (#). There are pqg arbitrary quaternionic
entries in (#), and hence 4pq real coordinates. Under ¢, (#) goes over to a
similar display ($#) which we shall omit.

g, 0, -+ O,
[1 0 0
01 0
lO 0 1

Consider the function v, on (##): it is a homogeneous polynomial in the
real coordinates. v, = 1, while v, is linear if and only if = is a neighbor of p.
Let {j, ---,j,} be the set of indices complementary to the elements of ¢
arranged in increasing order, and p, , . be the neighbor of p where p,, » is
replaced by 4j, + n — 4, (m,n < 4). If £ denotes the product on the Klein
4-group on the symbols 1, - .-, 4, with 1 as identity, then it is easy to com-
pute that (v,, ., ) = (gii")*.

Now f = g/h where g and h are polynomials with no linear terms. If x and
y represent two coordinates of the form ¢%, and g7,, then one has f,,(0) =
[:,(0)A(0) — g(0)A,,(0)]/(h(0))*. Furthermore, g(0) = c,, #(0) = 1, and the
second order terms of g and /4 are squares of coordinates by the previous
paragraph. Hence f,,(0) = O for x + y, and {,,(0) = 22(c,, ., . — C») Wwhere
the sum runs over all mfn = s. Note that the order of o, . and p does not
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depend on m, n so that f,,(0) # 0 and ¢ is a nondegenerate critical point.

The index of f at ¢ is the number of g3, such that g, ;. < p for all min
= s. This is the same as four times the number of pairs (g, b) such that j, < g,
which is the same as four times the number of neighbors of ¢ which are less
than ¢. Hence the index 4, = 4d(o). Since the indices are all even, the Morse
inequalities are equalities and HG(p, q) has torsion-free homology. Its Poincaré
polynomial for any field of coefficients is thus given by P(HG(p, q) ; t) = 3t'¢(?.
Hence Theorem 1 is proved.

5. The case of critical manifolds

By changing F so that certain of the ¢, =1 and the rest = 0, we can arrange
it so that there are two submanifolds of critical points—one consists of all p-
planes containing the basis vector e;, the other all p-planes orthgonal to e;.
These critical submanifolds are nondegenerate in the sense of Bott [1]. This
same alteration can also be carried out with Hangan’s function in the real and
complex cases.

The Morse-Bott inequalities [2, p. 323] and [3, p. 44] are equalities in the
cases CG and HG by induction since the indices are even. In the case of RG
one applies a technique due to Frankel [3], namely, to combine the Morse-
Bott inequalities with opposing inequalities derived by Floyd in the study of
fixed points of involutions, to prove equality as long as the coefficient field is
Z,. Thus, following Bott, one has

Theorem 2. KG(p, q) has the same homotopy type as KG(p — 1, q) with
a dp-dimensional vector bundle over KG(p,q — 1) attached, (d = dimy K).
P(KG(p,q); t) = P(KG(p — 1,9); t) + t*?P(KG(p,q — 1); 1), for Z, coeffi-
cients if K = R, and for any field of coefficients if K = C, H.
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