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TYPE NUMBERS IN METRIC DIFFERENTIAL
GEOMETRY OF HIGHER ORDER

OLDRICH KOWALSKI

Introduction

C. B. Allendoerfer [2] proved a number of theorems concerning the type of
a Riemannian manifold Rn isometrically imbedded in a euclidean space En+P.
The main results of his work, which generalize the well-known theorems of
R. Beez and T. Y. Thomas for spaces of class one, are the following:

Theorem I. / / the first normal space of a simply connected Rn is of q(< p)
dimensions at every point, and Rn is of type > 3 at every point, then Rn can
be imbedded in an En+q, and the imbedding is unique to within a rigid motion.

Theorem II. // the type of Rn is > 4 at every point, then the Codazzi
equations are consequences of the Gauss equations.

In this paper we shall generalize these results in two directions: First, we
replace the space En+P by a Riemannian space with a constant sectional
curvature. Secondly, extending the notion of type to normal spaces of orders
£ = 1, 2, 3, - of Rn we obtain theorems on the higher order metric proper-
ties of immersed manifolds.

In Chapter I we present some ideas and instruments developed in the author's
papers [7], [8]. The concepts of a graded Riemannian vector bundle and of a
Riemannian geometry of genus r play a leading part here. We also give a short
summary of basic results concerning these abstract structures. Chapter II is
devoted to some preparatory algebraic lemmas on generalized type numbers. In
Chapter III we give proofs of the theorems announced. Combining them with
the results stated in Chapter I we also derive an immersion theorem leading
to "exotic" integrability conditions.

I. INTRODUCTION TO THE METRIC DIFFERENTIAL
GEOMETRY OF HIGHER ORDER

In this Chapter we present some definitions and results included in [7], [8].
For simplicity, all manifolds considered will be connected and of class C°% and
all maps will also be class C°°, if not otherwise stated.

Communicated by K. Yano, November 18, 1970.
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1. Let M be an ra-dimensional manifold, and N a Riemannian space with
constant sectional curvature C. We consider an immersion φ: M-+N and the
induced vector bundle φ#T(N)9 where T(N) denotes the tangent bundle of N.
For any x e M and k = 1,2, the osculating space Sk

x of order k can be
thought a subspace of φ*T(N)]x.

Suppose φ to be regular of order r in the following sense:
( i ) For k — 1, , r, dim Sk

x is constant on M.

Thus the subspaces Sk = [jSk

x (x e M) are vector subbundles of φ#T(N)9

and we can identify S1 = T(M).
(ii) We have φ*T(N) = S'.
The induced bundle E = φ^T(N) is canonically a Riemannian vector bundle

over M with a linear connection F preserving the inner product in E. There are
Riemannian vector subbundles E\ , Er in φ^T(N) such that for & = 1, ,
r, we have an orthogonal decomposition

Sk = E1® > - ®Ek ( 0 denotes the Whitney sum) .

Here E1 = S1 = T(M), and E = E10 . 0 E\
In any Ek, there is a canonical linear connection Fa\ namely, the orthogonal

projection of V into Ek. Moreover, each Fik) preserves the inner product in
Ek, k = 1, , r (see [7, p. 680]). A connection with this property is said to
be semi-Riemannian.

Finally, let us consider the Riemannian structure on M induced by the im-
mersion φ\ M—*N. Then f7(1) can be thought as the Levi-Civita connection
on M.

Convention* It is well-known that any local section in a vector bundle E
over M (of class C°°) can be prolonged to the whole base. For simplicity (to
avoid speaking about definition domains) we shall work with global sections
throughout this paper (if not otherwise stated). Xa) always denotes a section
of Ek, k=ί, ,r.

2 . Now we can state a decomposition formula.
There exist bundle morphίsms

Pk:E
ι®Ek >Ek+1 ( * = 1 , . . . , r - 1 ) ,

Lk:E
ι® Ek > Ek'λ (jfe = 2, - -, r)

such that for any vector t € E1 and any section X{k) we have the following
orthogonal decomposition of the covarίant derivative F\Xm:

(.1) FtX
(k) = Lk(t (x) Xa)) + Fίk)Xik) + Pk(t (g) Xm) .

(We put Pr = Lγ = 0 by definition). All Pk are surjective, and Pλ is symmetric
as a bilinear map. (see [7, Proposition 7]).

The duality formula [7, Formula (15)] states that
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( 2 ) <Lk(T <g> X™), Y<*-»> = -<X™, Pk_λ(T <g> y^- 1 )))

for any sections T, Z ( f c ) , y(*~1} of E\ Ek, Ek~ι respectively, k = 2, , r.
We can also consider the composed bundle morphisms

Pk = Pk_1o...oP2oP1 , Pk: ®kEι >Ek , for k = 2, - , r ,

and put P 1 = id^i by definition. A basic property of the ^-linear maps
Pk(X1 (x) (x) Xfc) is that they are symmetric with respect to all arguments.
(The last property is closely connected with the fact that Λf is a space of con-
stant curvature, whereas the formulas (1), (2) are true for an arbitrary N.)

Convention. In the following we shall write Lk(U,X<k)), Pk(U,X(k)),
Pk(X,, ••.,**) instead of Lk(U®X™), Pk(JJ®X'k)),Pk(Xλ®-. ®Xk)
respectively.

3. Let us denote by R(k) the curvature transformation of the linear con-
nection Fa), k = 1, , r. We have two systems of ίntegrabilίty conditions in

P$+1Ψk(T,Xa)) - F(

τ

k+1Ψk(U,Xik)) + Pk(U,F(

τ

k)X(k))
( 3 ) ],X^) = 0 , k= l, . , r - 1 ,

(equations of Codazzi),

RWTX^ + Pk_x{V,Lk{T,X^)) - Pk_x{T,Lk{U,

( 4 ) + L4 + 1(£/, Pk(T, *<*>)) - L f c + 1(Γ, Pk(U,

(k = 1, ,r) ,

(equations of Gauss).

The right-hand side of (4) is nonzero only for k = 1. If we introduce new
operators:

(5) Ra)(u, T, x^k\

6 pk(u, T, x^k\ γι») = <pk(u, Y^), pk(τ,

-ζPk(U,X^),Pk

7 Lk(u, T, x<k\ y«

g βt(i/, T, z(fc), y(λ)) = -Lk(u, T, z(fc), y(fc)) + R^(U, T,

+

we can rewrite (4) in the form
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9 Pk(U, Γ,Z<*\ Y<*>) = Qk(U, Γ,Z ( f c ) , Ym) , Λ = 1, , r - 1 ,

4. Now we shall adopt a more abstract point of view. We start with
Definition 1. A graded Riemannian bundle {Ek, Pk}

r over a manifold M is
a Riemannian vector bundle £ —> M, dim E > dim M, in which the following
structure is given:

( i ) a fixed bundle injection /: T(M) ->E,
(ii) an orthogonal splitting (graduation) E = E1® ®Er such that

E1 = jT{M),
(iii) a system of bundle epimorphisms

Pk:E
ι®Ek—->Ek+1 , k = 1, - , r - 1

such that the mappings

are all symmetric.
Thus each Pk induces a bundle epimorphίsm *P f c : SkE1->Ek, where 5fc

denotes the k-th symmetric tensor power. Further, the Riemannian inner
product on Eι induces a Riemannian structure on M via /: T(M) —>E1, and
hence we always have a canonical linear connection F ( 1 ) in E1, determined by
the Levi-Civita connection on M. We usually identify E1 with T(M).

We also define dual homomorphisms Lk: Eι®Ek -+Ek~\ k = 2, ,r,
by means of formula (2).

5. Let {Ek,Pk}
r be a graded Riemannian bundle over M. For any I < r

we can consider a graded Riemannian bundle {Ek,Pk}
1 called a graded sub-

bundle of {Ek,Pk}
r. On the other hand, {Ek,Pk}

r is called a prolongation of
each {£*,?*.}', / < r. Finally, two graded Riemannian bundles {Ek,Pk}

r,
{E/k,Pk}

r (of the same "length" r) over the same manifold M are said to be
equivalent and denoted by {Ek,Pk}

r ^ {E/ΐc,Pkγ if there is a map Φ: E-+E',
called an equivalence, with the following properties:

( i ) For any x e M, Φ maps E]x isometrically onto E\x.
(ii) For any k = 1, , r, Φ maps £ f c onto E/k.
(iii) We have ΦoPk = P'koφ tor k = 1, , r — 1.
(iv) If /: T(M)-*E, /': T(M)-> E' are the corresponding canonical in-

jections, then /' = Φ o /.
We can easily see that the only equivalence of {Ek,Pkγ onto itself is the

identity map. Hence, if an equivalence Φ:{Ek,Pkγ —>{E'k,Pkγ exists, it is
unique.

6. If a graded Riemannian bundle {Ek,Pkγ is induced by a regular im-
mersion ψ\ M—+N, then we have a system of canonical connections Fω, ,
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F ( r ) in Eι, , Er respectively. Here F ( 1 ) is a Levi-Civita connection, and F ( 2 ) ,
F ( 3 ), can be considered successively as "solutions" of the Codazzi equations
(3). This leads us to the following definition.

Definition 2. Let {Ek,Pk}
r be a graded Riemannian bundle over M. A

sequence of canonical connections in {Ek, Pk}
r is a sequence of semi-Rieman-

nian connections F ( 1 ), , F ( r ) in the vector bundles E1, -,Er respectively
such that

( i ) F ( 1 ) is the canonical Levi-Civita connection in E1 = T{M).
(ii) The Codazzi equation (3) holds for k = 1, , r — 1.
We have the following uniqueness theorem.

Theorem A. Let {Ek, Pk}
r be a graded Riemannian bundle over a manifold

M. If a sequence F ( 1 ), , F ( r ) of canonical connections exists in {Ek,Pk}
r,

then it is unique.

In fact, if a canonical sequence F ( 1 ) , , F α " υ is given in a graded sub-

bundle {Ek, Pk}
a-l), I < r, there is an operator St(Z\X19 ,Xt\ Y19 , Yi)

acting on sections of T{M) = E1 such that for any canonical F α ) in Eι we have

= Sι(Z\Xί,.. ,Xι\Y1,...,Yι).

The expression St involves only Pt_ί9 P\ Va~l) and the inner product in Eι.
Hence F α ) is uniquely determined by F ( 1 ), , Fa~1). (See [7, Proposition 12]
for details.)

There is a principal question under which conditions a canonical sequence
F ( 1 ) , , F ( r ) exists. A formal answer was given by C. B. Allendoerfer in [1],
where the invariant equation (10) was replaced by a system of corresponding
"coordinate" equations: Suppose that a sequence F ( 1 ), , F α ~ υ is already con-
structed. Then F α ) exists if and only if the augmented matrix of the system
has the same rank as the matrix of the system, i.e., if the system is formally
solvable.

Naturally we are interested in sufficient conditions which are not of such
formal character. One result in this direction was also obtained by C. B.
Allendoerfer in [2]. We shall prove a higher order generalization of his theorem
(see Theorem II in the Introduction) in our Chapter III. At this place (§ 9)
we shall present a different theorem obtained by the author in [7], but we must
state beforehand a number of definitions.

7. Let {Ek,Pk}
r —>M be a graded Riemannian bundle, and H a bundle

homomorphism of the form H: Eι (x) E1 (x) Ek <g) Ek -* M X R. Then for any
sections U, T, Xik\ Y{k) of E1, Ek respectively we have a real function
H(U, T,X(k\ Yik)). Suppose that a sequence of cannonical connections exists
up to order k. Then we can define a new function VVH of the same type as H,
called the covariant derivative of H, by the formula
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(FVH)(U, T,Xa\ Ya)) = V{H(U, T,X

(11)

- H(U, T, V^X™, Y(k)) - H(U, T, X(k\ Fψ

We say that H satisfies the Bianchi identity if

(FVH)(U, T,X'k\ Y<*>) + (FTH)(V, U,Xa\ Y(k))

The following is true: // a sequence F ( 1 ), , Fa) of canonical connections ex-
ists in the subbundle {Ek, Pk}\ then (a) the junctions Pk(U, T, Xik\ Y(fc)) satisfy
the Bianchi identity for k = 1, . ., / - 1, (b) the functions Lk(U, T, Z ( f e ) , Y(fc)),
Ra)(U, T,X<k), Y(fc)), Qk(U, T,X{k\ Ya)) satisfy the Bianchi identity for k =
1, , /. (Remark that Lλ(U, T,X, Y) = 0 by definition). The result for Pk

and Lk follows from Proposition 11, and for Rik) from [7, Proposition 6]. As
for Qk, we can see it easily from (8).

8. We have already seen that we can join a system of bundle epimorphisms,
*P f c : SkE1-+Ek, Jfc = 1, . . ,r, to any graded Riemannian bundle {Ek,Pk}

r.
Now a bundle {Ek, Pk}

r is said to be maximal if all *P f c are bundle isomorphisms.
Then we have dim Ek = dim S*/?1 = C^+A._i (k — 1, , r), where m = dim M,
and Ck = s! /[k \(s — k)!] is a combinatorial number.

An immersion φ: M —> N, which is regular of order r, is said to be maximal,
if the induced graded Riemannian bundle φ^T(N) —> M is maximal. The maxi-
mality property means here that all osculating spaces of the immersed manifold
M are of maximal dimensions as possible. It requires that dim M = J]£=1 Ck

m+k_Ύ.
One can see that the maximal immersions are the "generic" ones in a certain
sense. (Let us remark that our definition of maximality is closely connected
with the assumption that N is a space of constant curvature.)

Each maximal graded Riemannian bundle {Ek, Pk}
r is equivalent to a graded

Riemannian bundle {SkT(M),Pk}
r ("normal form"), where the operators PJ,

"^Po

r^ are defined canonically as follows: if X(k) e S*T(Λf)lX9 Xm =
Σi UXii O OXik), 1 < / < s, and Z e Γ(Af) |β, then we put

P°k(Z,X^) = Σ WZOJfϋO OXίk) , 1 < i < s .
i

(Here O indicates a symmetric tensor product of a number of vectors.) Thus a
normal form of order r over M is defined if there is given a Riemannian inner
product Hk on each vector bundle SkT(M), k = 1, , r. Then we write E =
{SkT(M), Hk}

r instead of E = {SkT(M), Pk}
r.

9. Now we can present the promised theorem (cf. [7, Theorem 3]) and its
consequences.

Theorem B. Let {Ek, Pk}
r be a maximal graded Riemannian bundle over

M, and Fa\ , Fa) be a given sequence of canonical connections in {Ek, Pk}
1,
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/ < r. Then this sequence can be prolonged to a canonical sequence F ( 1 ), ,
Fω, F α + 1 ) in {Ek, Pk}

ι+1 if and only if the function P^U, T, Xω, Ya)) satisfies
the Bίanchί identity. Furthermore, if such prolongation exists, it is unique.

Corollary 1. Under the assumptions of Theorem B, if the Gaussian
equation Pt(U, T,Xa), Y(l)) = Qt(U, T,Xω, Ya)) holds, then we have the
unique prolongation of F ( 1 ), , F α ) to a canonical sequence F ( 1 ), , Fω, Fa+1)

in{E*,Pkγ+\
Proof. The function Qt(U, T,Xω, Ya)) satisfies the Bianchi identity, and

hence so does Pt(U, T, Xa\ Ya)).
Corollary 2. Let {Ek,Pk}

r be a maximal graded Riemannian bundle over
a two-dimensional manifold M. Then a sequence F ( 1 ) , ,F{r) of canonical
connections exists in {Ek, Pk}

r.
Proof. Each function P^U, T,Xω, Ya)) trivially satisfies the Bianchi

identity.
10. In this section we define an abstract model of an immersed manifold.

(Cf. [8, Definition 3].)
Definition 3. A Riemannian geometry GrC of genus r with the exterior

curvature C on a manifold M is a graded Riemannian bundle E = {Ek,Pk}
r

over M such that
( i ) a sequence F ( 1 \ , F ( r ) of canonical connections exists in E,
(ii) the Gaussian equations (9) hold for k = 1, , r — 1 involving the

parameter C.
A Riemannian geometry G r ί 7 is said to be integrable if the r-th Gaussian

equation Qr(U, T,X{r), YM) = 0 also holds.
Theorem C. If φ: M —>N is a regular immersion of order r, and C is the

constant sectional curvature of N, then the induced vector bundle φ^T(N) is an
integrable Riemannian geometry GrC = {Ek, Pk}

r, and each of its graded sub-
bundles {Ek, Pk}

1, I < r, is a Riemannian geometry Gt c .
Theorem D. Let GrC = {Ek, Pk}

r be an integrable Riemannian geometry
over a simply connected manifold M, and N be a complete Riemannian space
with the constant sectional curvature C such that dimΛf = d i m G r C and the
isometry group of N acts transitively on the orthonormal frames. Then there
is, exactly up to an isometry of N, a unique immersion φ: M -*N such that
φ*T(N) ^ G r , c . (Cf. [7, Theorem 2].)

From Corollary 1 of Theorem B we obtain the following result which is
meaningful (for dimM > 2) only if understood as an inductive process.

Theorem E. Let E = {Ek, Pk}
r be a maximal graded Riemannian bundle.

Then the sufficient condition for E to be a Riemannian geometry (resp. an in-
tegrable Riemannian geometry) G r>(7 is that the Gaussian equations of orders
1, , r — 1 (resp. of orders ί, , r) hold in E, involving the parameter C.

11. An important problem is the study of possible prolongations of a
Riemannian geometry GrC. The most profound results in that line were obtain-
ed by V. V. Ryzkov in [9]. We shall present the contents of his immersion
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Theorems 2 and 4, reformulated here as a prolongation theorem:

Theorem F. Any maximal analytic Riemannian geometry GrC over a real
analytic manifold M can be prolonged, in a neighborhood of any point x e M,
to an integrable maximal analytic Riemannian geometry G2r^c. In a given
neighborhood Ux the set of all such prolongation geometries G2r^c depends on
Σirs=iCm+ls-2 arbitrary functions of m(= dimM) variables.

From this theorem one can derive

Theorem G. Any maximal Riemannian geometry GTtC possesses (globally)
a prolongation to a maximal Riemannian geometry Gr+ltC (see [8, Theorem 7]).

It is not known to the author whether any analytic Riemannian geometry
G r C is locally prolongable to an integrable Riemannian geometry. There is
another open problem: does any Riemannian geometry GrC have a nontrivial
prolongation Gr+hCΊ

12. Let again E = {Ek, Pk}
r be a graded Riemannian bundle. Then the

tensor

hk(x19 • , xk i γ19 . , γk) = <p*(x19..., xk), PKY19 - . . , yfc)>

is called the k-th fundamental form (or the k-th metric tensor) of E, k = 1,
• , r. Further, the tensor

where k — 1, , r and the summation extends over all permutations 3 of
the set {1, , 2k}, is called the k-th Bompiani form of E. Each Bk is a sym-
metric differential form of degree 2k on M.

We can also define the fundamental forms and Bompiani forms of an im-
mersion φ: M —* N as the corresponding forms of the induced bundle <p^T(N).
In that case we have a classical interpretation for the Bompiani forms (see [9]
for details and references). It is a classical result that a submanifold Vm in a
euclidean space Ed (regular of order r) is uniquely determined to within a rigid
motion by its Bompiani forms B19 , Br so as by its fundamental forms hl9

The main result of [8] is the following existence theorem: any system of
symmetric differential forms Bx(Xl9 X2), , Br(X19 , X2r) on M satisfying
certain positive definiteness conditions determines a maximal Riemannian
geometry G r C on M. This means simply that, in the maximal case, our con-
cept of a Riemannian geometry of genus r coincides with the classical one. (Gf.
E. Bompiani, Gέomέtrie riemanniennes if espece superieure, Colloq. Geomet-
rie Differentielle, Louvain, 1951, 125-156.) In order to make the last state-
ment precise, we must provide us with several formulas.
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Let G r_1 ? ί 7 = {Ek, PjcY'1 be a Riemannian geometry of genus r — 1, and
Br(Xλ, , X2r) a symmetric differential form on M. Define a tensor *hr(Xλ,
• , Xr I Yλ, , Yr) by the following formula:

*hr{xl9 •• , j r r |Y 1 , . . . , y r )

(12) = 5 r ( z 1 ? . , x r , y 1 ? . , γr) - 1 1

L (Q)
(2r) ! «=o «u

where the symbol α J ] indicates the summation over all finite sequences

(i19 , O, (I19 , / r _ β ) , OΊ, , /«), (Λ? , Jr-J selected from the index
set {1, , r) such that {i19 . .,ia,I19 - - , Ir_a} = {/1? •••,/«,/!,•••, /r_β} =
{1, , r}, and the expression 5[ •] denotes a tensor defined as follows:

(13) = Σfβr-i(^,y^,pr-l(y^+1, - .v . ,^ . ,**. .*/. . >*i,j,
β=l

pr~i(xIβ+1, , Xir_a, Yji, , y</α, Yj 1 ? , y,7 i 8_ 1)).

(Cf. [8, (16), (13)].) Then the tensor *Λr(Z1, , Z r | Y1? , Yr) is symmetric
with respect to Xl9. Xr and Y1? , Yr. Also, we have *hr(Y19 , Yr\X19

• , Z r ) = *hr(X19 - - ',Xr\Y19 - - , Yr), and consequently, *Λr determines a
symmetric bilinear form on the vector bundle SrT(M). Finally, we have (cf.
[8, Proposition 6])

2 /J r (A@ ( 1 ) , , -Λ@(r) I Λ @ ( r + 1 ) i , A @ ( 2 r ) )
(2r)!

Now the form Br(Xl9 , X2 r) is said to be relatively positive with respect
to G r _ i c if the bilinear form *Hr on SrT(M) determined by *λ r is positively
definite at each x e M. If J?x, , J5r_! are the Bompiani forms of G r _ 1 ( 7 , then
^ r is also said to be relatively positive with respect to the forms B19 , Br_19

involving the parameter C. Let us remark that for r = 1, (12) implies *ΛX = Bx.
13. We start with a prolongation theorem.
Theorem H. Let Gr_ιc—*Mbea maximal Riemannian geometry of genus

r — 1, and Br(X19 , X2r) be a symmetric differential 2r-form on M, which
is relatively positive with respect to Gr_hC. Then there is, exactly up to an
equivalence, a unique maximal Riemannian geometry Gr c such that

( i ) Gr c is a prolongation of G r _ 1 ? c ,

(ii) Br is the r-th Bompiani form of GrC.
Moreover, the tensor *hr defined by (12) is the r-th fundamental form of G r C ,
i.e., *Λr = hτ. (Cf. [8, Theorem 4].)

Remark. The most difficult part of the proof is to show that the (r — l)-th
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Gaussian equation holds in the corresponding graded Riemannian bundle

*hr(xl9. , xr i Y19 . , γ r ) - *hr(x19..., xr_19 Yr i Y19 . - y r_ 1 ? * r )
= C . ^ Y , , * r , i * - 1 ^ , , jr f.!>, / " - ^ i , , Yr-ΰ) -

One can see that formula (14) itself does not depend on the assumption that
Br is relatively positive.

By induction, we can formulate the final result:
Theorem I. Let BX(X19 X2), , Br(Xl9 , X2r) be symmetric differential

forms of degrees 2, 4, , 2r respectively on a manifold M, and C be a real
number. If, for k = 1, ,r, Bk is relatively positive with respect to B19 ,
Bk_λ involving C, then there is, exactly up to an equivalence, a unique
maximal Riemannian geometry G r ( 7 on M such that B19 , Br are the Bompiani
forms of GrC.

Remark. We can represent the equivalence class of maximal Riemannian
geometries determined above by a "normal form" GrC = {SkT(M),Hk}

r, Hk

= *Hk for k — 1, , r. Such representation was used throughout [8].
Theorem I has the following consequence:
Theorem J. The only integrabilίty condition for a system of relatively posi-

tive symmetric differential forms Bl9 , Br of degrees 2, , 2r respectively
to determine an integrable Riemannian geometry Gr c is that the r-th Gaussian
equation Qr(U, T, XM, Y<'>) = 0 hold.

A corresponding global immersion theorem was stated in [8].
Remark. On the other hand, the Ry^kov's Theorem F says that the first

r Bompiani forms B19 , Br of an integrable maximal analytic Riemannian
geometry G2r>(7 are completely independent, i.e., no integrability conditions are
required at all for this partial system of forms.

II. ALGEBRAIC PROPERTIES OF TYPE NUMBERS

Let E, F, H be vector spaces over real numbers of dimensions e, f, h respec-
tively, and L\ E®F —>#bea linear map. L is said to be of type t if

( i ) there is a subspace EQ C E of dimension t such that the restriction of
L to EQ (x) F is an injection,

(ii) t is the maximum number of that property.
EQ is called a distinguished subspace of E. Obviously we have t < e, t < [h/f]
( = the integral part of h/f). The following assertion is easy.

Lemma 1. A linear map L: E®F-*H is of type t if and only if the
following are true:

( i ) there is a subspace EOCE of dimension t such that for any linearly
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independent vectors x19 , xk € Eo, k < t, and any nonzero vectors ξ*, ,
ξk € F the vectors L(xx (x) ξ1), , L(xk (x) ξk) are linearly independent,

(ii) t is the maximum number of that property.
Convention. If L: E®F-^H is a linear map, we shall put L(x,ξ) =

L(x ®ξ)foτxeE,ξε F.
Lemma 2. Let L:E®F->H be a linear map of type t>3, and Q:E X E

^F an arbitrary map. If L(x, Q(y, z)) + L(y, Q(z, x)) + L(z, Q(x, y)) = 0 for
any x,y,ze E, then Q(x, y) = 0 identically.

Proof. Let £ o c £ b e a distinguished subspace of E9 and first let x,y,z be
linearly independent vectors of Eo. Then Lemma 1 implies easily that Q(x, y)
= Q(y, z) = Q(z, x) = 0. Thus Q is zero on Eo x £ 0 . Now let x,yeE0 be
linearly independent, and ze E arbitrary. Then Q(x, y) = 0 and L(x, β(y, z))
+ LCy, β(z,jc)) = 0. According to Lemma 1, Q(y,z) = β(z,Jc) = 0, and
consequently Q is zero on the set (Eo x £") U (E X Eo). Finally, let JC, j € E
be arbitrary, and zeEQ be nonzero. Then we obtain L(z,Q(x,y)) = 0 and
hence Q(x, y) = 0. q.e.d.

Let A1, - , Ad be linear maps of E into / / . 77ze system of homomorphίsms
{A1, , >4ώ} is said to Z>e o/ ίj/?^ ί if the induced homomorphism A: E® Rd

—> H determined by ^4(JC, f *) = ^*JC, ( c € E, {f1, , ξa) = the canonical basis
of Rd), is of type t (cf. [6, Note 17]).

In the following we also consider the vector space /\2

ff (the exterior product)
and the corresponding operations with elements of H.

Lemma 3. Let {A1, , Ad} and {Ά\ , Άd} be two systems of homo-
morphisms of E into H, and assume {A1, , Ad) to be of type t > 3. If
Σi=iAa(χ) A Aa(y) = Σi=iΛa(x) A Aa(y) for all x,yjE, then there is an
orthogonal matrix s = (saβ) of degree d such that Aa = Σd

β=1saβA
β, a =

l, ,d.
Proof. We get this statement and its proof by a slight modification of

Theorem 1, [6, Note 17] and its proof. See also [3], [4].
Lemma 4. Let {A1, , Ad} be a system of linear maps of E into H of type

t > 4, and {J1? , Δd) be a system of anti-symmetric bilinear maps of E x E
into H. If

( 1) Σ {Δa(x, y) Λ Aaz + Δa{y, z) Λ Aax + Ja(z, x) A Aay} = 0

for any x,y,ze E, then there is a unique linear matrix form (waβ) of degree d
on E such that waβ = — waβ for a, β = 1, , d, and

( 2 ) Aa(x, y) = Σ ™aβ{y)Aβx - Σ ™*M)Aβy , (α - 1, , d)
jS = l β = l

for any x,y eE.
Proof. First let x, y, z be linearly independent vectors of a distinguished
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subspace EQdE (dim£ 0 > 4). Then by the Cartan's lemma all J α ' s are linear
combinations of the linearly independent vectors Aλz, , Adz, Aιx, , Adx,
Aιy, ,Ady, and the corresponding matrix of coefficients is symmetric. More-
over, if v 6 Eo is another vector linearly independent of x, y, z, then each
Δa(x, y), for instance, is also a linear combination of Aιv, , Adv, Aιx, ,
Adx, Aλy, , Ady. Hence we get

( 3 ) Jβ(jc, y) = Σ (Uaβix, y)Aβx + vaβ(x, y)A?y) , a = 1, -. , d ,
i ί = l

where wai8(x, y), vais(jc, y) are well-defined real numbers. We obtain similar ex-
pressions for da(y, z) and Δa(z, x). From the symmetry of the coefficient matrix
it follows uaβ(x,y) = vβa(y,z), a, β = 1, >,d, and the anti-symmetry con-
dition Ja(x, y) = — Ja(y, x) implies

( 4 ) vaβ(y9x) = -uaβ(x,y) .

Thus we get uaβ(x, y) = —uβa(z, y).lΐv^E0 is linearly independent of x, y, z,
then obviously uaβ(x, y) = —uβa(v,y) — uaβ(z,y), and we conclude that for a
fixed y € Eo, y Φ 0, the coefficients uaβ(x, y) are independent of x e Eo

(x/\y φ 0), and wα̂  = — uβa. In other words, there is a matrix function (uaβ)
of degree d defined on the set EQ — {0} such that uaβ = — uβa and that for any
two vectors x,y € Eo, x A y φ 0, we have

( 5 ) Δa(x9 y)= Σ Waβ(y)Λβx - uaβ(x)A?y} , a = 1, . . ,d .

(Cf. (3) and (4).)
Now let x,y ε Ea be linearly independent, and z € £ arbitrary. Substituting

(5) into (1) we obtain

Σ \U.(y,z) - Σ Uβ.(y)A>z\ A A°
α = l IL β=l J

Use of the Cartan's lemma and an auxiliary vector v e Eo independent of x, y
thus gives

ΔJly, z) - Σ uβa(x)A?z = Σ Waβiz, y)A?y ,
β=l β=l

Δa(z, x) + Σ uβa{x)A^z = - Σ waβ(z, x)A^x .
β=l β=l

From the symmetry of the coefficient matrix it follows that waβ(z, y) =
—Wβa(z>x)> a,β= 1, - ,d. Thus waβ(z,y) = —wβa(z,v) = waβ(z,x), i.e.,
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the functions waβ(z, x) defined on E X (Eo — {0}) are independent of x, and
moreover, wβa = — waβ.

We can summarize: There is a unique matrix function (waβ) of degree d
defined on E such that waβ = — wβa, a, β = 1, , d, and that for any x e Eo,
x φ 0, z e E, we have

d

fl=l

It is obvious that the functions waβ are linear, and that waβ = wα/9 on Eo — {0}.
Finally, let x, y e E be arbitrary, and zeE0bo nonzero. Replacing the terms

da(y, z), Ja(z, x) in (1) by the corresponding expressions of the form (6), after
a simple rearrangement we get 2ί=i Ba(x, y) /\Aaz = 0, where

£β(jt, y) = Δa(x, y) - Σ wPa(x)Aβy + Σ *>βSy)A*x , a = 1, , d .

By the Cartan's lemma we see that Ba(x, y) are linear combinations of Aιz,
• , Adz for any z € Eo, z ̂  0, and hence Ba(x, y) = 0, α = 1, , d, which
proves (2).

III. GEOMETRIC CONSEQUENCES

Let {Ek,Pk}
r be a graded Riemannian vector bundle, and consider the

bundle morphism Lr:E
ι(g) Er->Er-χ (cf. Chapter I, (2)). The type of {Ek, Pr}

r

is a function t: M —> {0,1, , m) defined as follows: for any x e M, t(x)
is the type of the linear map Lry. E\X®E\X -* E]-1. {Ek,Pk}

r is said to be
of t y p e t. T h e i n e q u a l i t y t > k (k = 0 , 1 , 2 , •••) m e a n s t h a t t(x) > k f o r
any x e M.

Theorem 1. Any Riemannian geometry G r C of type t > 3 is integrable.
Proof. Put Gr c = {Ek, Pk}

r. According to [8, Proposition 2], we have the
identity

i Qr(U, T, Pr^V, X{r-υ), Y{r)) + Qr(V, U, P r - 1(Γ, X<'-»)9 Y{r))

+ Qr(T, VtPr.MX*-"), Y^) = 0 .

Consider the bundle morphism Qr\ Eι ® E1 (x) Er —> £"r determined by the rule
<βr(t/, Γ,Z ( r )), Y(r)} = Qr(U, T,X{r\ Y(r)). Because of the anti-symmetry:
Qr(U, T, Yir\X{r)) = -Qr(U, T,X(r\ Y(r)), we can transform (1) into

<βr(t/, τ9 γ
{r))9prΛv,x«-l)y> + <ρ,(F, u, Y^Pr.^x^-^y

and using the duality formula (2) of Chapter I, we get
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<L r (F, Qr(U, T, Y<")) + Lr(T, Qr(V, U, Y<'>))

+ Lr(u, βr(r, v, γ™))> x{r~l)y = o

for any X(r~1}. Thus the sum on the left-hand side of the inner product is zero.
Nor for any fixed section Y(r) we can use algebraic Lemma 2, so that
Qr(U, T, Y ( Ό = 0, Qr(U, T,X™, Y{r)) = 0. (Cf. [2, Theorem III].)

Theorem 2. Let GTiG = {Ek,Pk}
r be a Riemannian geometry having a

prolongation G r + 1 ) C = {E\Pk}
r+1 of type t > 2.

( i ) // G'r+hC = {E'k, Pf

k}
r+ι is another prolongation of Gr,c, then dim E/r+1

(ii) GTyC cannot be ίntegrable.
Proof, (i) Consider the r-th Gaussian equation:

Pr(U, Γ, X«\ Y">) = Qr(U, T, X™, Y^) in Gr+uc ,

/, Γ, Z^>, Y(^) - βr(t/, r, x ( '\ γ(ίΌ in G;+1I(7 .

The exterior product Er Λ Er -+ M can be made a Riemannian vector bundle
if we introduce an inner product © on it as follows: first we define © on 2-
vectors, namely,

- <£/">, γ">;

for any vectors ί/(r), T ( r ) , Xir\ Y(r) of the same fibre E\x, and then we can ex-
tend © by the linearity (cf. [6, p. 43]). Choose x e M and a basis {f1, •••,?*}
in E]*1 (d = d i m £ r + 1 ) . Further put ^ 4 ^ — — L r + 1 (Z, ξ*) for any Z e E{x and
/ = 1, , d. Then we can write

( 3)
P (T1 T Y ( r ) V(r)^ (5)1 V ^ί^T Λ 74̂ /"/ Y^r) Λ V('

(cf. [5, Chapter I]). Similarly, we introduce maps A'JX = L'r+1(X,ηj), ) = 1>
• , d\ on E)x, where {η1, , ηd'} is an orthonormal basis of E\r

x

+1. Then

Fr(υ, T, z ( r ), y(r)) = ©( Σ ^ ' ^ Λ A'w, x{r)
 Λ y

Finally, from the Gaussian equations we get in E\x Λ E\x the following identity:

Σ AW A AιT = Σ A'W A A'*Ύ .
ί=l j=l

Let U, T be linearly independent vectors of a distinguished subspace Eo C E)x
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= T(M)]X with respect to the homomorphism Lτ+hx\ E)X®E\+1-*E\X

(dim£ 0 > 2). Then AιU, , AdU, AιT, , AdT are linearly independent
vectors, and the element Σί=i A*U Λ AιΎ of E\x A E\x is of rank d (see [10]).
Thus Σf^A'W A A'jT is also of rank d, and we cannot have df < d. Hence
df > d as stated. (Cf. [2, Theorem V].)

(ii) For the vectors ϋ, T given above we have ΣUi Λ*E/ Λ Λ*Γ ̂  0. Hence
by (3), Pr(U, T, X(r), y ( r ) ) is a nonzero function, and so is Qr(U, T, X(r), Y(r))

Theorem 3. Let Gr c be a Riemannian geometry, and Gr+hC, G'r+hC its
prolongations of types t, tr respectively.

( i ) // t > 3, f > 3, then G'r+ito = Gr+ltC,
(ii) If t>3 and d i ί n £ / r + 1 = d i m £ r + 1 , then G'r+hG ^ G r + 1 c.
Proof, (i) According to Theorem 2, (i), we have d i m £ / r + 1 = d i m £ r + 1

and our assertion is reduced to (ii).
(ii) Denote d = d i m £ r + 1 = d i m £ / r + 1 . For any point x € M there is a

neighborhood °ll 3 x such that the vector bundles Er+1, E/r+1 are completely
parallelizable over °U. Moreover, we can construct sections ξ\ rf of Er+\ E'r+1

respectively, / = 1, , d, such that <£*, ξj} = δij9 <r]\ ηj} = δtj on <%. Put
AιX = Lr+ι(X, ξ1), A*JX = Lr+1(X, τ]j) for any vector field l o n f and for
i, j = 1, >,d. Similarly as in the proof of Theorem 2 we get the identity
Σti AιU A AιT = Σ*=1A*W A A**T for any two vector fields U, T on <%.
According to Lemma 3 there is a diίϊerentiable matrix function s: °U —> 0(d)
such that A* = ΣUsuA*s P u t t i n S f" = ΣUstrf> A'1 = Lr+ι(*,ξn), for
i = 1, , d on «r, we have <f;*, ?'•?> = 3^, and ̂ 7 < = A1 (/ - 1, , d).
Define an isometric bundle map ψ^\ G^+1(7^—> G r + 1 ( 7 , φ as follows: on the
common part G r C , ^ put φ^ = identity, and ̂ Φ(f0 = Σf-i^f'jf7*)?* f° r a nY
f; 6 E ; J + 1 , y 6 ̂ . Then for any U € T(M)ly, Z ( r ) 6 £{Jwe have φv(P'r(U, X{r)) =
φΛΣU <ΛHU, X^yn = ΣU <AW, X™>ς* = Pr(U, X^), (see (3)). Hence
φm is a local equivalence.

Choose a covering {%u i e /} of M by open sets such that for any / e / we
have a local equivalence φt of G'r+hC onto G r + i c over ^ . In any intersection
όUi f) tyj φ 0 we have ^^ = φj9 and hence we get a global equivalence
^ G > + M 7 - > G r + M 7 . q.e.d.

Theorems 1, 3 together imply the following "Rigidity Theorem" which
generalizes Allendoerfer's Theorem I (see Introduction).

Theorem 4. Let GrC be a Riemannian geometry of genus r. If a prolon-
gation Gr+lfC of type t > 3 exists, then it is integrable and unique exactly up
to an equivalence.

The following theorem generalizes a classical result of T. Y. Thomas [11].
Theorem 5. Let Gr>c = {Ek,Pk}

r be a Riemannian geometry, and Gr+ljC

= {Ek,Pk}
r+1 its prolongation such that d i m £ r + 1 = 1.

( i ) G r +i,c w °f tyPe t <2 if and only if G r j C is integrable.
(ii) // Gr+uc is of type t>2ata point x e M, then t(x) = dimM — z(x),

where
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z(x) = dim {U e Γ(*f) | Λ : Qr(U, Γ, Z('>, Y<'>) - 0 ,

T e Γ(M)IίP,A™,Y<'> eJEf*}.

Hence the type of Gr+hC is uniquely determined by its subgeometry GrC.
Proof. Let f be a unit vector of E^1, and define a homomorphism

A: Γ(M)|a. -> E\x by ^ X = L r + 1 (Z, ξ). Then the r-th Gaussian equation can
be written in the form

Qr(U, T,X<r)) = (AT,X(r)}AU - <AU,Xlr)>AT .

(Cf. the proof of Theorem 1.) From now on we can proceed exactly as in [5,
p. 42-43].

Now we derive a prolongation theorem for canonical connections.
Theorem 6. Let E = [Ek, Pk}

r be a graded Riemannian bundle, and sup-
pose that

a) E is of type t > 4,
b) a sequence Fω, , (7 ( r- υ of canonical connections exists in {Ek, Pk}

r~ι.
Then the sequence F ( 1 ) , •• , ( 7 ( r " 1 ) can be prolonged to a canonical sequence
F ( 1 ) , Γ ( r ) in E if and only if the function P ^ ϋ , T,X«-ι\ Y{r~l)) satisfies
the Bianchi identity.

Proof. It is sufficient to prove the part "if". Let x 6 M be given. Then in
a neighborhood °U of x we can choose sections ξ19 , ξd of Er (d = d im£ r )
such that ζβi, ξj) = δij on °U. We have bundle morphisms Aa: E^—^E^'1,
a=l, - ,d, defined by AaX = -Lr(X, ξa).

Denote by © the Riemannian product on the vector bundle Er~ι /\Er~ι

defined similarly as in the proof of Theorem 2. Then we can see easily that,
on °U, the Bianchi identity for Pr^(U9 T,X{r~ι\ Y^~l)) can be written in the
fom:

( 4 )

z ( r _ υ Λ y ( r _ υ \ = 0 ^

where we put

Δa(U, T) = (FσAa)(T) - (FTAJ(U) ,

(VυAχT) = VSr~l)Aa{T) - AMλ)T) , α = 1, ,d .

According to Lemma 4, there is a unique linear differential matrix form (ωβ

a)
on (JM9 with values in the Lie algebra o(d) of the orthogonal matrix group 0(d),
such that

( 5 ) Δa(U, T) = Σ coί(U)AβT - Σ <(J)AβU
β=l β=L
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for any sections U,T: °U ->Eι. (In the notation of Lemma 4 we have

Denote by ^(Er) the principal bundle of all orthogonal frames of the
Riemannian vector bundle E\^ and consider its cross-section θ = {ξu , ξd}.
Then there is a unique linear connection F ( r ) in ^(Er) such that for its con-
nection form ω(r) we have θ*ωir) = (ωQ. (See [6] and [10]. In the classical
notation, Dξa = Σβωίξβ9 D = the absolute differential.)

The associated linear connection F ( r ) in the vector bundle E\9 is semi-
Riemannian, and we have

fyr)fβ = Σ o>ί(U)ξβ for any U € E\m and a = 1, , d .

Then formula (5) becomes

FT^Lr(U, ξa) - Ff-»Lr(T, ξa) + Lr(iU, Γ], fβ)

= Lr(U, Fτ^ξJ - Lr(T, F^O - 0 , α = 1, , d ,

and hence for any section of Er

lv, X{r) = Σdβ=ifβ£β> w e S e t

Fy-^LriT, X^) - F^~λ)Lr{U, X{r)) - Lr([U, T], X{r))

+ Lr(U, Fτ

(r)X(r)) - Lr(Γ, F^X(r)) = 0 .

The last identity is just the dual form of the corresponding Codazzi equation
(see the proof of [7, Proposition 11]). Thus F ( r ) is a canonical connection in
E\v prolonging the sequence F ( 1\ •• ,Γ(r~1). Since a canonical connection
exists in any small coordinate neighborhood of M, from the uniqueness property
we see that Fir) can be extended to the whole Er.

Corollary. Under the assumptions of Theorem 6, if the (r — \)-th Gaus-
sian equation

holds in E, then the sequence F α \ , F ( r " υ can be prolonged uniquely to a
canonical sequence Fω, , F ( r ) . (Cf. Theorem II in the Introduction.)

Remark. Despite of the formal similarity of Theorem B and Theorem 6 it
seems to the author that there is no real connection between those two results.
Let us remark that any maximal Riemannian graded bundle is of type t = 0.

Theorem 1 and the above corollary together imply
Theorem 7. Let {Ek, Pk}

r be a graded Riemannian bundle of type t>4. If
(a) the subbundle {Ek,Pk}

r~ι is a Riemannian geometry Gr_ltC9

(b) the(r - l)-th Gaussian equation Pr_jiU9 T, X{r~ι\ Y^-υj = Qr_1(uy

T,X{r~ι\ Y^-») holds involving C, then {Ek,Pk}
r is an integrable Riemannian

geometry Gr c.



420 OLDRICH KOWALSKI

Let {SkT(M), Hjc}7"1 be a maximal graded Riemannian bundle in the normal
form, and consider a bundle map H* : SrT(M) (x) SrT(M) -» M x R such that,
on each fibre the induced bilinear form is symmetric and positively semi-definite
of rank q = const, on M. Then the nullspaces Zx, x € M, of our bilinear forms
determine a vector subbundle Z of SrT(M), and we can form a Riemannian
vector bundle Er = SrT{M)jZ of dimension q over Aί, so that we have a
canonical bundle map p: SrT(M) -* Er over M.

Now we can define canonically a graded Riemannian bundle {Ek,Pk}
r

prolonging [SkT(M), Hk}
r~ι: the Riemannian inner product on Er is determined

by H*, and the bundle map Pr_x: Γ(M) ® Sr~ιT(M) -+ Er is defined as follows:
for any base element Xtl O O-X^ of Sr~lT(M)lx, xeM, and for any
X e T(M)lx we put

PrΛXtX^O O **,_,) = p(XOXilO OXirJ .

Now let {SkT(M), Hk}
r~ι be a Riemannian geometry Gr_hC, and JBU , Br_ί

its Bompiani forms. Similarly as in Chapter I, § 12, one can define the mean-
ing for a symmetric 2r-form Br{Xλ, , X2r) to be positively semi-definite of
rank q with respect to B19 , Br_1 involving C. If that is the case, we get a
unique prolongation of G r_1 ? c to a graded Riemannian bundle E — {Ek, Pk}

r,
Er = SrT(M)/Z, such that'

( i ) Br is the r-th Bompiani form of E,
(ii) the (r — l)-th Gaussian equation holds in E.

This fact follows easily from the considerations of [8] (see Theorem 2 and the
proof of Theorem 1).

It is also clear what we mean by saying that Br is of relative type t with
respect to Bu , Br_λ, involving C.

In the following immersion theorem we shall limit ourselves to the euclidean
case C = 0.

Theorem 8. Let BX(X17 X2), , Br(Xx, , X2r) be symmetric differential
forms of degrees 2, , 2r respectively on a simply connected manifold M.
Suppose that Bk(Xx, , X2k) is relatively positive with respect to Bu , Bk_1

for k = 1, , r — 1, and that Br{Xx, , X2r) is positively semi-definite of
rank q and of relative type t > 4 with respect to B19 , Br_1. Then there is,
exactly up to a rigid motion, a unique immersion ψ: M —• En (n = J]l=]Pm+k-i
+ q) such that Bl9 , Br are the Bompiani forms of φ. Moreover, the form
Br is determined uniquely by B19 -Br_ι.

Remark. With respect to a general local coordinate system {u1, , um} on
M, the proper "integrability conditions" of the theorem are given by the
equations meaning that the relative rank of Br is < q this requires that all the
minors of degree q + 1 of a Gramm determinant are zero. Besides this, we
have two well-determined systems of inequalities: one expressing the positive
definiteness (or positive semi-definiteness of rank > q) of Bk with respect to



METRIC DIFFERENTIAL GEOMETRY 421

B19 , Bk_ί (k — 1, , r), and the other expressing the assumption t > 4

for a fixed q. One can see that all the equations and inequalities considered

are relations between the local components of the forms B19 Br and their

derivatives up to order 2r — 2.

Theorem 8 has the following concequence for r = 2.

Theorem 9. Let M be a simply connected Riemannian manifold of dimen-

sion m> 4. If there is a symmetric 4-form B2(U, T, X, Y) on M, which is posi-

tively semi-definite of rank q and of the relative type t > 4 with respect to the

Riemannian metric on M, then the following are true:

( i ) B2(U, T, X, Y) is determined uniquely by the Riemannian metric of M,

(ii) M is of class q,

(iii) any two isometric immersions φ, φf: M—>Em+q differ by a rigid motion,

(iv) B2(U, T, X, Y) is the common second Bompianί form of all isometric

immersions φ: M —> Em+q.

(See [2, Theorem VI.)
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