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ON THE GEOMETRY AND CLASSIFICATION
OF ABSOLUTE PARALLELISMS. II

JOSEPH A. WOLF

8. The irreducible case

Let (M, ds2) be a simply connected globally symmetric pseudo-riemannian
manifold, and φ an absolute parallelism on M consistent with ds2. We assume
(M, ds2) to be irreducible. Our standing notation is

the LTS of ^-parallel vector fields on M,
the Lie algebra of all Killing vector fields on M,
conjugation of g by the symmetry sx at x e M,

g = I + m: eigenspace decomposition under σx.
The irreducibility says that m is a simple noncommutative LTS, and thus
(Lemma 6.2) says the same for p.

8.1. Lemma. Either [p, p] = p or [p, p] Π p = 0.
Proof. Let t = [p, p] Π p. Then [!>,£],£)] C p implies [x,p] C t and so

[tfψ] C i. Thus i is a LTS ideal in p. By simplicity, either t = 0 or t = p.
If t = 0, then [p, p] Π p = 0. If t == p, then p c [p, jj]. As [i, p] C i, also

[p, p] C p. Hence [p, p] = p. q.e.d.
We do the group manifolds immediately.
8.2. Proposition. Let (M, ds2) be irreducible simply connected and glob-

ally symmetric, with consistent absolute parallelism φ such that the LTS of φ-
parallel fields satisfies [p, p] ΓΊ p Φ 0. Then [p, p] — p, p is a simple real Lie
algebra, and (M, φ, ds2) ^ (P, λ, da2) where

(i) P is the simply conncted group for p,
(ii) λ is the parallelism of left translation on P, and

(iii) dσ2 is the bi-invariant metric induced by a nonzero multiple of the
Killing form of p.

The symmetry of (P, dσ2) at 1 eP is given by s(x) = x~ι. The group G of all
isometries of (P, dσ2) has isotropy subgroup K at 1 given by

K = AutR(p) U J-Autjϊft)) .

The identity component Go of G is locally isomorphic to P X P, acting by left
and right translations. G is the disjoint union of cosets a GQ and sa-GQ as a
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runs through a system of representatives of AutΛ (p)/Int (p). Finally, s(λ) is the
parallelism of right translation, and is the only other absolute parallelism on P
consistent with dσ2.

Proof. Theorem 3.8, Lemma 8.1, fact (10.6), and the fact that any in-
variant bilinear form on a real simple Lie algebra is a multiple of the Killing
form, give us (M, φ, ds2) Ξ (P, λ, dσ2) with s(X) = p, as claimed. The assertions
on G and K follow from (5.2) and the fact that every derivation of a simple
Lie algebra is inner, q.e.d.

Now we start in on the non-group case.

8.3. Lemma. Let [p, p] Π p = 0. Then g is simple, g = [p, p] + p, and
there is an automorphism

(8.4) εx: g -> g such that εx(ξ) = ξ - σx(ξ) for ξ e p .

Proof, ϊ = [m, m] is faithfully represented as the Lie algebra of all LTS
derivations of m. Now (10.3) shows g = ί s(m) standard Lie enveloping algebra;
as m is simple this forces g = I^(m) universal Lie enveloping algebra. If g were
not simple, then (10.7) m would be the LTS of a Lie algebra, and Theorem 3.8
would force [p, p] C p. Thus g is simple.

Let h: m —> p be the inverse of the LTS isomorphism fx of Lemma 6.2. Then
h extends to a Lie algebra homomorphism of lv{m) = q onto the algebra
[p5p] + P generated by p. As g is simple, h: g ^ [p, p] + p. In particular
[p, p] + p = g and we realize εx as A"1, q.e.d.

Our method consists of showing that σx and εx generate such a large group
of outer automorphisms of q that we can deduce g to be of type Z>4 and εx to
be the triality. Some technical problem (proving σx outer) forces us to reduce
to the compact case.

We construct a compact riemannian version of (M, ds2). Choose

(8.5a) θ: Cartan involution of g .

Thus θ is an involutive automorphism of g, whose fixed point set is a maximal
compactly embdded subalgebra ί C g. Let q be the — 1 eigenspace of θ on g.
Then we have

(8.5b) g = ί + q Cartan decomposition under θ .

Now choose x <= M so that σx commutes with θ. That is always possible because
the σz, zeM, form a conjugacy class of semi-simple automorphisms of g. That
done, we have

(8.5c) I = (I Π 0 + (ϊ Π q) , m = (m Π 0 + (m Π q) .

Now define



ABSOLUTE PARALLELISMS. II 21

(8.6a) g* = [ + /q compact real form of cf ,

and define subspaces of g* by

(8.6b) ϊ* = ϊ c Π β* , m* = mc Π g* .

σx extends to gc by linearity and then restricts to an automorphism (still de-
noted σx) of g*. Now

(8.6c) g* = ϊ* + m* eigenspace decomposition under σx .

To pass to the group level we define
G*: simply connected group with Lie algebra g*,
K*: analytic subgroup for I*.

Then G* is a compact semisimple group, and X* is a closed subgroup because
it is identity component of the fixed point set of σx on G*. Now we have

M* = G*/K*: compact simply connected manifold.

The Killing form K of g* is negative definite, so the restriction of — K to trt*
induces

dt2: G*-invariant riemannian metric on M*.
We summarize the main properties as follows.

8.7. Lemma. (M*, dt2) is a simply connected globally symmetric
riemannian manifold of compact type, and g* is the Lie algebra of all Killing
vector fields on (M*, dt2). For simple g, (M*, dt2) is irreducible if and only if
g c is simple. If g is simple but g c is not simple, then g = lG with I compact
simple and σx C-linear on g, and g* = ί 0 I with ΐ* = (ϊ Π I) Θ (ΐ Π I).

Proof. The riemannian metric dt2 is symmetric because it is induced by an
invariant bilinear form — K of g*. As g* is semisimple and σ^-stable it must
contain every Killing vector field of (M*, dt2).

If gc is simple, then g* is simple, so (M,dt2) is irreducible. If (M,dt2) ir-
reducible, then m* is a simple LTS if further g is simple, then m (thus also
m*) is not the LTS of a Lie algebra thus g* is simple, and that proves g6'
simple.

Suppose g to be simple but gc not simple. Then g = F where the maximal
compactly embedded subalgebra I is a compact real form. To avoid confusion
we write g = I + Jί with f = — 1. Were σx antilinear on g its fixed point set
ϊ would be a real form, so g = ϊ + ϊ and m — ϊ then ϊ would be absolutely
irreducible on m, so (M, dt2) would be irreducible, contradicting nonsimplicity
of g c. Thus σx is complex-linear on g. Now the fixed point set ϊ = (ϊ Π ί ) c ,
and the assertions on g* and ϊ* follow, q.e.d.

If (M,ds2) is compact, then (M*,Λ2) = (M,cds2) for some real c φ 0. If
(M, ds2) is riemannian, then (Corollary 4.5) it is compact.



22 JOSEPH A. WOLF

We carry φ over to an absolute parallelism on (M*, df).
8.8. Lemma. The Cartan involution θ can be chosen so that θ(p) = p.

Assume θ so chosen, and define f)* = p*7 ΓΊ g*. Then there is an absolute par-
allelism 0* on M* consistent with dt2, such that p* is the LTS of φ*-parallel
vector fields on M*. // [p, p] = p, then [p*, p*] = p*. If [p, p] Π p = 0, then

[p*,ρ*] n ρ* = o.
Proof. If [p,p] = p, then g = t ) 0 b with each summand stable under any

choice of θ, and p = b 0 0. Then g* = t>* 0 b * with p* = t)* 0 0 and all the
assertions are trivial.

Now suppose [p, p] Π p = 0. Then from (8.4) we have an involutive auto-
morphism π = e~ισxεx whose fixed point set is [p, p] and whose — 1 eigenspace
is p. Note that this shows π to be independent of x. As π is a semisimple
automorphism of g, we can choose θ to commute with π.

We now assume further that θ commutes with π. In other words, using (8.5),

(8.9a) [p, p] = ([p, p] Π I) + (ft>, p] Π q) , p = (p Π 0 + (P Π q) .

From this we see

(8.9b) [p*, p*] = [p, pγ Π G* , so 9 * = [p*, |)*] + p* .

In order to proceed we must check that

(8.10) (1 - σx)[p9p-\ = m , (1 - σx)[p*,p*] = m* .

In view of (8.9) it suffices to check the first of these assertions. If
(1 — σx)[p, p] Φ m, then we have 0 Φ uε m such that

bM - σx)[ξ, ηl u) = 0 for all ξ, , e p .

Let ζ e JD with (1 — σx)ζ = u. Now

ds2

x(ξ, [η, CD = ^4([f, 37], 0 = 0 for all ξ,ηep

implying [p, ζ] = 0. Applying ε̂  now [m, u] — 0. As m is a simple noncom-
mutative LTS now u = 0. We conclude (1 — ax)[p,p] = m, and (8.10) is
verified.

Let 7* denote the analytic subgroup of G* for [p*, p*]. It is closed in G*,
thus compact, because it is the identity component of the fixed point set of the
automorphism π = ε ^ V ^ on G*. Denote

(8.11a) x* = 1 £ * < = M * .

Now (8.10) shows /*(**) is open in M*. As /* is compact, so is J*(x*). Thus

(8.11b) 7*(JC*) = M* .
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Recall that dt2 is induced by negative of the Killing form K of g*. Note that
\{\ — σx) is /c-orthogonal projection of g* to m*, and also from (8.9) that εx

is well defined on g*. Now let ξ,ηep*.If je /*, then ad ( )"1?, ad O')"1^ € p*,
and we compute

= - 4 ( 1 - *χ) ad (j)-'ξ, (1 - σ j ad (fl"1?)

= - a f e ad (j)"1?, ε* ad (j)"1?) = -κ(ξ, 27) ,

which is independent of the choice of / e /*. But (8.11) says that every element
of M* is of the form /(**). Thus

(8.12) if £, 9 € p*, then dί*(f, 57) is constant on M* .

Choose a basis {f1? -,ξn} of p*. The ξix* form a basis of M** because
(1 — o^p* = m*. Now (8.12) says that {f1? , ξn} is a global frame on M*
with the dt\ξu ξά) constant. Recall that the ξt are Killing vector fields of
(M*,dt2). Corollary 4.15 now says that M* has an absolute parallelism 0*
consistent with dt2 such that p* is the space of 0*-parallel vector fields, q.e.d.

If ί is a Lie algebra over a field F, then Aut^ (ί) denotes the group of all
automorphisms of I over F. If F = R or F = C, then Int (ί) denotes the normal
subgroup of AutF ([) consisting of inner automorphisms, i.e., generated by the
exp (ad v) with vel. If t is real or complex semisimple, then Int (I) is the
identity component of the Lie group AutF (t).

Now we begin to identify (M, ds2).
8.13. Lemma. Suppose [p, p] Π p = 0. // a e Autβ (g) w induced by an

isometry of (M, rf^2), in particular, if a e Int (g), ί/zerc ύf(m) 9̂  p, and εxa does
not commute with σx. If α* 6 AutΛ (g*) w induced by an isometry of (M*, dt2),
in particular, if α:* e Int (g*), ί/zen α*(m*) 9̂  p*, ίiΠίi ε^α* doe s1 not commute
with σx.

Proof. Let αβAut^ίg) induced by an isometry a of (M,ds2). Then
ψ. = a - 1(^) is an absolute parallelism on M consistent with ds2, and the LTS of
ψ-parallel vector fields is α " 1 ^ ) . If a(τn) = p, then m is the LTS of ψ-parallel
fields, and the comparison of (4.7) with (5.2) proves (M,ds2) to be flat. As
(M, ds2) is not flat, we conclude a(vn) Φp.In particular, εxa(m) Φ m, i.e., εxa
does not preserve the — 1 eigenspace of σx, so εxa does not commute with σx.

Lemma 8.8 allows us to use the same argument for α*, m* and p*. q.e.d.
If §c is not simple, Lemma 8.7 tells us g = lc where I is compact

simple and σx 6 Autc (F) . However, it is conceivable that our extension
εx€ Autβ (g) of fx: p = m be complex antilinear. Should that be the case,
note that the Cartan involution θ is complex antilinear on ίc, so εxθ e Aut c (F) .
Thus either
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(8.14a) εx e Aut c (F) and we denote εx = εx e Aut<? (F) ,

or

(8.14b) εx ί Aut c (F) and we denote εx = εxθ ε Aut c (F) .

8.15. Lemma. Let [p, p] Π p = 0. // ^ ώ j/mpfe, ίAerc Int (gc), ^ Int(gσ)
ε̂  Int (QC) are three distinct components of Aut c (QC). If QC is not simple,

so g = F WJΪΛ Γ compact simple, then Int (g), 0v lnt(g) and ε̂  Int(g) are
three distinct components of Aut c (F) .

Proof. First consider the case where §c is simple. Then g* is simple and
(M*, dί2) is irreducible. Every nonzero element of p* is a never-vanishing vector
field on M*, so the Euler-Poincare characteristic χ(M*) = 0. That implies
rank G* > rankX*, so σx is an outer automorphism on g*. Now σx ί Int (g67).

If εx is an inner automorphism of QC, then it is inner on g* giving #* =

*) such that εxa* commutes with σx. Thus Lemma 8.13 forces

It σx and εx differ by an inner automorphism of gc, then α* = ε V^ € Int (g*)
such that εxa* commutes with σx. Thus Lemma 8.13 forces
σ^ Int (gc) Π ε̂  Int (gc) to be empty.

The assertions are proved for g c simple. Now suppose QC to be not simple.
Then g = lc with I compact simple and σx e Aut c (ίc) by Lemma 8.7, and we
have εx e Aut^ (F) as in (8.14). Now g* = I 0 I with each summand stable
under σx, so the argument for simple qc shows σx to be outer on each summand
of g*. It follows that σx is outer on F = g, i.e., that σx $ Int (g).

If εx is inner on F then a' = ε^"1 6 Int (g) and ε ^ commutes with σx. From
(8.5c) we see that θ is induced by an isometry of (M, ds2). Thus εxa commutes
with σx, where either a = af or a — θa'', and where α is induced by an iso-
metry of (M, ώ 2 ) . That contradicts Lemma 8.13, forcing εx $ Int (g). A similar
modification of the argument for simple g c proves σx Int (g) Π εx Int(g) to be
empty.

The assertions are proved for gc non-simple, q.e.d.
Given integers p, q>0 and a basis {e19 , ep+q} of Rp+Q we have the sym-

metric nondegenerate bilinear form bp>q on Rp+q given by

(ί> + 9 P + Q \ V Q

i = l 7 = 1 / fc = l fe = l

Now denote

O(p, q): real orthogonal group oibVtq ,

so the usual orthogonal group in m real variables is O(ra) = O(ra, 0). Now
O(/7, #) has four components if /?# ψ 0, and two components if pq = 0. Denote
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SO(p, q): identity component of O(p, q) ,
§o(p, q): Lie algebra of O(p, q) .

Then of course

SO(m) = SO(m, 0) , §o(m) = 3o(m, 0) .

Consider the (p + q — l)-manifold

SO(p, q){ex) S SO(p, ςr)/5O(p - 1, q) , /? >

6^3 induces a pseudo-riemannian metric of signature (p — l,q) and constant
curvature 1 under which it is globally symmetric, and the case q = 0 is the
sphere S?'1 = SO(p)/SO(p - 1). We also have

SO(p, q)(ep+q) = SO(p, q)/SO(p, q - 1) , q > 1

there ^ ^ induces a globally symmetric preudo-riemannian metric of signature
(p,q — 1) and constant curvature — 1, and the case q = 1 is the real hyper-
bolic space HP = SO(p, l)/SO(p). Finally denote

O(ra, C) = O(m)c complex orthogonal group of bp>m_p

SO(m,C) = SO(m)c identity component; and

§o(ra, C) = $o(m)c Lie algebra of SO(m, C) .

Viewing Rp+q C Cp+q we have (m = p + q)

^ SO(m,C)/SO(m - 1,C) ,

globally symmetric pseudo-riemannian manifold of signature (m — l,ra — 1)
and nonconstant curvature, affine complexification of Sm~\

Finally we have our classification. Recall that we are using the notation
G: group of all isometries of (M, ds2)
g: Lie algebra of G, Killing fields of (M, its2)
xzM and K = {gεG: g(x) = x} so M = G/K;
Q = I + m: decomposition under symmetry σ^
p: the LTS of ^-parallel vector fields on M.

8.16. Theorem. Let (M, <£s2) be an irreducible simply connected globally
symmetric pseudo-riemannian manifold with consistent absolute parallelism φ.
If [p, p] Π p Φ 0, then (M, φ, ds2) is a group manifold as in Proposition 8.2.
// [p, p] Π p = 0, then there are just three cases, all of which occur, as
follows.

Case 1. M = SO(S)/SO(Ί), the sphere S7, and ds2 is a positive or negative
multiple of the SO(S)-invariant riemannian metric of constant curvature 1.
Here G = (9(8) and K = 0(7), 2-component groups.
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Case 2. M = 5O(4,4)/SO(3,4), diffeomorphic to Sz X # 4 , and ώ 2 w α
positive or negative multiple of the SO(4, ^-invariant pseudo-riemannian metric
of signature (3,4) and constant curvature 1. Here G — 0(4,4) and K = 0(3, 4),
4-component groups.

Case 3. M = £0(8, C)/SO(7, C), αtfϊne complexification of S7 and diffeo-
morphic to S7 X Λ7, αwd ds2 w « multiple of the nonconstant curvature metric
of signature (7,7) induced by the Killing form of SO(S, C). Here

G = 0(8,C) U * O(8,Q , X = 0 ( 7 , 0 U p O(79C) ,

H>/*er£ y w complex conjugation of C8 over i?8 (,so ί/iαί conjugation by v is a
Cartan involution θ of Go).

All possibilities for φ are as follows. There is a triality automorphism ε of
order 3 on g with fixed point set ge of type G2 such that both ε and σx commute
with a Cartan involution θ. Denote

pQ = ε-\m) so that [p0, p0] = ε~\Ό ,

and observe that

ε~\ΐ) is the image of the spin representation of I .

Denote

J = {/ g G: ad (/>0 = pQ} , and pr = ad (g)pQ for r = gJζG/J.

Then JQ is the analytic subgroup of G for ε~ι(ΐ), and
( i ) / = {±/8} /0 2-component group in cases 1 and 2, J = {±I8, ±v}-J0

^-component group in case 3
(ii) the pr, r e G/J, are mutually inequivalent under the action of G;
(iii) // r € G / / then there is an absolute parallelism φr on M consistent with

ds2 whose LTS is pr

(iv) every absolute parallelism on M consistent with ds2 is in the 1-para-
meter" family {φr}reβ/j',

(v) the parameter space G/J of {φr} is diffeomorphic (via ε) to the disjoint
union of two copies of M/{±/ 8}; and

(vi) JQ is transitive on M.
Proof. If [p, p] Γ\ p Φ 0, we apply Proposition 8.2. Now suppose

[p, t>] n p = o.
First, consider the case where g is a compact simple Lie algebra. Then c^ is

simple and Lemma 8.15 says that Aut c (gc)/Int (gc) has order > 3 , so
Autfl (g)/Int (g) has order > 3 . This implies that g is of Cartan classification
type D4, i.e., g = §o(8). Again by Lemma 8.15, εx is triality, and σx is outer

4 The parameters are real in cases 1 and 2, and complex in case 3.
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on g, so the possibilities for ϊ are 3o(7) and 3o(3) Θ 3o(5). In the latter case ϊ
and εx(ΐ) would be Int (g)-conjugate, so we would have a e Int (g) with
εxa(t) = ϊ ; then εxa commutes with σx in violation of Lemma 8.13. Thus ϊ =
§o(7) and M = SO(S)/SO(Ί) — S\ as in case 1. Invariance forces ds2 to be a
multiple of the standard riemannian metric da2 of constant curvature 1. Then
(M,dσ2) and (M, ds2) have the same isometry group, so G = O(8), whence
K = O(7).

Second, consider the case where g is noncompact but gc is simple. Then g*
is simple. Lemma 8.8 and the argument for compact simple g show that g* =
3o(8), ϊ* = £o(7) and M* = S7, and that ε̂  is triality on g*. The noncompact
real forms of £o(8, C) are the §o(p, 8 - p), 1 < p < 4; the real form 3o*(8)
whose maximal compactly embedded subalgebra is the Lie algebra u(4) of the
unitary group in four complex variables, is triality-equivalent to 3o(2,6). How-
ever g is stable under the triality automorphism εx of gc = 3o(8, C). Let Y =
Go/L, irreducible symmetric space of noncompact type where L is a maximal
compact subgroup of Go now ε̂  induces an isometry eoίY. Let e = ab where
CKZGQ and b(\ L) = 1 L; then conjugation by b induces an automorphism β
of I which extends to a triality automorphism of g, so β2 is an outer automor-
phism of I. If ^ is an automorphism of 3o(7), of §o(2) Θ §o(6), or of
δo(3) Θ §o(5), then /32 is inner. We conclude that g = 3o(4,4), which in fact
does admit triality from the split Cayley algebra. Thus ϊ = 3o(3,4), M =
SO(4,4)/SO(3,4), and ds2, G and K are specified as in case 2.

Third, consider the case where gc is not simple. Lemma 8.7 says g = ίc

with Γ compact simple, ϊ = (ΐ Π t ) c , g* - I Θ t and ϊ* = (ϊ Π ί) Θ (ϊ Π ί). The
argument for compact simple g says Γ = §o(8), ϊ Π I = §o(7) and M* = S7 χ S 7 .
Thus g = so(8, C), ΐ = 3o(7, C) aud M = 5O(8, C)/5O(7, C). Now d^2, G and
K are specified as in case 3.

It remains to verify the assertions on the construction of all consistent abso-
lute parallelisms for the spaces (M, ds2) of cases 1, 2 and 3.

Let M = G/K and g = ϊ + m as in case 1, 2 or 3 of the theorem. Then g
admits a triality automorphism ε of order 3 with fixed point set gs of type G2

[12, Table 7.14]. Fix a Cartan involution θ of g which commutes with σx. As
ε3 = 1, ε is a semisimple automorphism of g, so we may replace ε by an Int (g)-
conjugate if necessary to arrange εθ = θε. That done we use θ to construct a
compact real form g* = ϊ* + m* of gc as in (8.5) and (8.6), and ε extends
by linearity to g c preserving g*. Define pQ = e'Kπi) as prescribed; then pf =
\ξ Π g* is e-^m*).

Let K denote the Killing form on g. We need to prove the following facts:

(8.17a) (1 — σjp o = m , (1 — σx)[p09 p0] = m , and

(8.17b) if ξ, η e p0 , then *(£, η) = Λ((l - σx)ξ, (1 - σx)η) .

To do this we note that ge = I Π e" 1 ®, so the orthocomplement of gfi in g
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relative to K is lL + ε'Xί1) = m + ε~\m) = m + Jpo Now ε"1 is a rotation by
2τr/3 on m* + pf. As £(1 — σ j is the orthogonal projection of m* + pf to
m*, that says κ(ξ, η) = Λ;((1 — σx)ξ, (1 — σx)η) for £, η e p0*. The same follows
by linearity for ξ,ηe pξ, and thus for ξ,ηep0. That proves (8.17b), and the
first assertion of (8.17a) follows. Let dim denote dim^ in cases 1 and 2, and
dime in case 3. Then dim g = 28, dim ϊ = 21, dim ge = 14 and dim m = 7.
Thus dim (1 - σx)[p09 pQ] = dim e'\t) - dim gε = 21 - 14 = 7 = dim m,
proving the second part of (8.17a). Now (8.17) is verified.

As prescribed, let / be the normalizer of p0 in G. As ϊ is the normalizer of
m in g, so [p0, p0] = e" 1© is the Lie algebra of /, and assertion (i) on the
structure of / follows.

Let j e J and ξ,η e pQ, and let β be the multiple of K that induces ds2. We
compute

)-1?, ad (j)"^)

- *,) ad ( )-1?, J( l - ^ ) ad ( / ) " ^

- O ad O)- 1 !, (1 - ^ ) ad (jTιΦ

which is independent of jeJ. Thus ds\ξ,η) is constant on /(*). However
(8.17a) says that the Lie algebra [p0? Po] of J orthogonally projects onto m.
Thus J(x) is open in M. Now choose a basis {ξ19 , ξn} of p0. We have just
checked that the ds2(ξi, ξj) are constant on the open set J(x) C M. Now
(1 — σ Jpo = m shows that {ξu ,fn} is a global frame on /(JC). Thus
Corollary 4.15 says that there is an absolute parallelism ψ on the connected
manifold J0(x), consistent with ds2 there, for which the ξt are parallel. Lemma
6.4 says that (M, ds2) has an absolute parallelism φ0 such that the ξ\Jo{x), ξ e pQ,
are ^-parallel on J0(x). By analyticity, or because ^-parallel fields are Killing
vector fields, now p0 is the LTS of all ^-parallel vector fields on M.

If r = gJ e G/J, we define pr = ad (g)pQ as specified. Then φr = g(φ0) is an
absolute parallelism on M consistent with ds2, and its LTS is ad (g)pQ = pr.
This gives us our 7-ρarameter family [φr] of absolute parallelisms consistent
with ds2.

We check that the original absolute parallelism φ on M is contained in the
family {φr}. Let Aut (g) denote AutΛ (g) in cases 1 and 2, and Aut c (g) in case
3. Then Aut (g)/Int (g) is the group of order 6 given by e3 = s2 = 1, say"1 =
e~ι. Here 51 represents the component of σx, and e the component of ε. Thus
εx (or εx in case 3) is in a component represented by e, es,ses~ι or se. Now
there are isometries g,b e G of (M, ds2) such that ε̂  = ad (fc) ε ad (^) - 1 and
either b — 1 or ft = sx symmetry. Let r = gJ e G/J. Then p = ε '^m) =
ad (gVε-' ad (fi-'Xm) = ad (gV^m) = ad (g)p0 = pr. Thus ^ = φr.

Assertion (ii) on the structure of / and {φr} is immediate from the definition
of /. We have just proved assertions (iii) and (iv). Now (i), (v) and (vi) remain.
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Let N = Go//O, and let β be the multiple of the Killing form of g which
induces ds2 on M. Then β induces a metric du2 on N, and ε induces an isometry
of (TV, du2) onto (M, ds2). If g € G, we notice that ad(g)2 is an inner automorphism
of g. If h is an isometry of (N, du2), it follows that ad(h)2 is an inner automor-
phism of g. Thus pQ Φ ad (g)£~\p0) whenever g e Go, for (ad (g)ε"1)2 is outer on
g. If / meets sxG0, say #5^ e / where g e Go, then

p0 = ad fetaCpo) = ad (gW^Cm) = ad (g)εσx(m)

= ad (g)e(m) = ad (g)ε2(p0) = ad ( ^ ε ' ^ o ) ,

which was just seen impossible. Thus

(8.18a) / does not meet the component sxGQ of G .

The Int (g)-normalizer of m is the connected group ad(X0 U (—/8)K0), so
the normalizer of p0 = e'^m) in Int (g) is ad (/0 U (—/8)/0). Thus

({ + /«i /0 (2 components) in cases 1 and 3,

(8.18b) ; n G , = r " o V v '

(/0 (connected) in case 2.

Note v € J in case 3. Denote

]f — {±/8} /0 in cases 1 and 2, and J' = {±/8 , ±^} /0 in case 3.

/ ' meets one of the two components of G in case 1, and meets two of the four
components of G in cases 2 and 3. Thus G/J'G0 has order 2. But (8.18a)
says that G/JG0 has order > 2 . As V c / , now /Go = .ΓG0. However, (8.18b)
says / Π Go = J' ΓΊ Go. We conclude J = J\ thus proving assertion (i) on the
structure of /.

In view of (i), G/J is the disjoint union of two copies of G0/(J Π Go) =
G0/{±/8} /0. Since the isometry (N, du2) —»(M, Λ2) induced by ε, where TV =
Go//O, induces a difϊeomorphism of G0/{±/8} /0 onto M/{±/8}. Assertion (v)
follows.

Recall that the Lie algebra ε - 1(ϊ) of / is the image of the spin representation
of ϊ. Thus
(8.19a) /0 = Spin (7), Spin (3, 4), Spin (7, C) in cases 1, 2, 3.

Recall also that ϊ ΓΊ £-1(i) = gε algebra of type G2. Let G2 denote the compact
connected group of that type, Gξ the complex connected group of that type,
and G\ the analytic subgroup of G% which is the noncompact real form. Now

(8.19b) (/ (Ί K\ = G2, G*, G? in cases 1, 2, 3 .

Now count dimensions, or recall from (8.17a), to see that
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J0(x) is open in M.

In case 1, where /0 is compact, this give us J0(x) = M.
In cases 2 and 3, we choose a basis {e19 , e8) of the ambient space R8 or

C8 of M such that the ek are mutually orthogonal, each \\ek\\2 = \b(ek, ek)\ = 1,
and

case 2: U = eλR + e2R + ezR + e4R is positive definite, and

V = e5R + e6R + e7R + e8R is negative definite

case 3: U = e ^ + + e 8# is positive definite, and so

V = iJJ = ieλR + + ie8R is negative definite.

Then

e^M = {u + v: ue U,vε V and ||w||2 - \\v\\2 = 1} .

Given real r > s > 0 with r2 — s2 = 1 we define

Sr,s = {u + v: uzU,vεV,\\u\\2 = r2 a n d \\v\\2 = s2} .

Now M is the disjoint union of the 5 r s .
As /0 is noncompact semisimple, its Lie algebra has an element w ψ 0 which

is diagonable with all eigenvalues real. The eigenvalues come in pairs {h, —h}
by (8.19a). Renormalizing w, now we may assume {e19 , e8} chosen so that

case 2 : w(eι + eb) = ex + e5 and w(eλ — e5) = — ( ^ — β5)

case 3 : w(eγ + ie2) = eι + ie2 and w{eλ — ie2) = —(e1 — ie2) .

Now by direct calculation

exp (tw) eλ 6 Scosh ( ί ) t s i n h ( ί ) , ί > 0 .

Thus /0(^i) meets each of the sets 5 r > 5 .
Let # = {̂  e / 0 : ^(l/) = C/}. Then also g(V) = VϊorgeH, and H is the

maximal compact subgroup

Spin (3)-Spin (4) in case 2, Spin (7) in case 3.

In case 2 the Spin (3)-factor on H is transitive on the sphere || u\\2 = r2 in U,
and the Spin (4)-factor is transitive on the sphere ||i;| |2 = s2 in V. Thus H is
transitive on each S r s . As / 0(^) meets each 5 r>β, now /0(^i) = M.

In case 3, H is transitive on the sphere ||w||2 = r2 in U, and the subgroup
Hx preserving ex is G2 by (8.19b). Thus Hι is transitive on the spheres H^H2 =
si in i(e2R + ^ + + e8R). If z e 5 r ? s , then some element of // carries z to
z7 = ^ i + i(aeι + be2) where b > 0 and α2 + ί?2 = .s 2. However, z! e M says
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(r + id)2 + (ib)2 = 1 so ra = 0; as r > 0 now a = 0; thus z' = r^ +
Choose t > 0 such that r = cosh (ί), so s = sinh (t) now

z! = cosh ( 0 ^ + / sinh (t)e2 = exp

Thus J0(eλ) = M, and (vi) is proved, completing the proof of Theorem 8.16.

9. Global classification of reductive parallelisms

Theorems 7.6 and 8.16 completely describe the possibilities for the
(Mu φi, ds\) in Theorem 6.7. Splitting the flat factor as in the proof of Propo-
sition 7.5, we thus reformulate Theorem 6.7 as follows.

9.1. Theorem. Let (M, φ, ds2) be a connected manifold with absolute par-
allelism and consistent pseudo-riemannίan metric such that φ is of reductive
type relative to ds2. Then there exist

(1) unique integers t > u > 0,
(2) simply connected globally symmetric pseudo-riemannian manifolds

(Mi, ds?), —1 < i < t, unique up to global isometry and permutations of
{1, 2, , u] and {u + l,u + 2, •-., ή, and

(3) absolute parallelisms φt on Mt consistent with ds\ and unique up to
global isometry, such that the (Mt, φu dsf) and

(M, φ, dσ2) = (M_1? φ_ί9 ds\) X . . . x (Mt, φt, dsft

have the following properties:
( i ) For —l<i<u, Mt is the simply connected group for a real Lie

algebra pt, φt is its absolute parallelism of left translation, and ds\ is the bi-
ίnvariant metric induced by a nondegenerate invariant bilinear form bt on pt.
Here (p_1, b_λ) is obtained as in (7.2) and (7.4a), and p_λ has center %_x = %±λ

relative to b_λ so (M_15 ds2_^) is flat. p0 is commutative, so (Mo, dsξ) is flat and
φ0 is its euclidean parallelism. If 1 < i < u, then pt is simple and bt is a non-
zero real multiple of its real Killing form, so (Mt, ds?) is irreducible.

(ii) For u + 1 < / < t,Mt is one of the symmetric coset spaces Go/Ko

given by

SO(S)/SO(Ί) ordinary 1-sphere,

SO(4,4)/SO(3,4) indefinite 1-sphere, or

SO(S, C)/SO(Ί, C) complexified Ί-sphere

ds\ is induced by a nonzero real multiple of the real Killing form of GQ, and
φt comes from a triality automorphism of Q as in Theorem 8.16.

(iii) Every xεM has a neighborhood U and an isometry h: (JJ,ds2)-*
Φ, dσ2), U open in M, such that h sends φ\jj to φ\$.

(iv) // φ is complete, i.e., // (M,ds2) is complete, then there is a pseudo-
riemannian covering π: (M, dσ2) —> (M, ds2) which sends φ to φ.
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We draw two corollaries of Theorems 3.8, 7.6 and 8.16 which complement
the statement of Theorem 9.1.

9.2. Corollary. Let (M,φ,dσ2) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism of reductive type.

(i) Then the group of all isometries g of (M,dσ2) such that g(φ) = φ is

transitive on M.

(ii) // (M, da1) has no euclidean (flat) factor, and ψ is another absolute

parallelism consistent with dσ2, then (M,dσ2) has an isometry g such that

(gψ) = φ.
Proof. (M, φ,dσ2) is the product of the (M^φt, dή), —l<i<t, as in

Theorem 9.1. If — 1 < i < u there, then the left translations of the group
manifold Λf< are transitive and preserve φt. If u + 1 < i < t, then the required
transitivity is the transitivity of the group / in Theorem 8.16. Thus (i) holds
for each (Mi9φi9dή)9 and thus for (M,φ,dσ2). Similarly, (ii) follows from
Proposition 8.2 and Theorem 8.16.

9.3. Corollary. Let ds2 be of signature (n — q,q) or (q,n — q),0 < q < 2,
in Theorem 9.1.

( i ) M_j is reduced to a point, i.e., the parallelism on the flat factor of
(M, do2) is euclidean.

(ii) At most q of the simple group manifolds Mt(l < i < u) are non-
compact. Each noncompact one is the universal covering group of SL(2,R).

(iii) Each of the quadrics Mt (u + 1 < i < t) is an ordinary Ί-sphere.
(iv) // ψ is any absolute parallelism on M consistent with dσ2, then (M, dσ2)

has an isometry g such that g(ψ) = φ.
Proof. If M_j is not reduced to a point, then p_x is nonabelian by the nor-

malization g_! = g±! (rel. b_λ) of Theorem 9.1 (i). Then the 3-form τ in the
construction (7.2) of p_x must be nonzero. But τ is a 3-form on an r-dimensional
vector space where ds2_x has signature (r, r). The latter implies r < 2 so τ — 0.
Assertion (i) follows.

Let the simple group manifold M έ (1 < / < u) be noncompact, and fc = lt

+ (\i the decomposition of its Lie algebra under a Cartan involution. If lt =
diml^ and qi = dimq^, then ds\ has signature (lt, qt) or (qi9li). Thus either
li < 2 or qt < 2. If lt < 2, then lt has no simple ideal, so lt is 1-dimensional
by simplicity of pt; then .R-irreducibility of lt on qt implies qi < 2. If qi < 2,
the symmetric space of noncompact type associated to pt must have constant
curvature and therefore must be the real hyperbolic plane, so pt is the Lie
algebra of SL(2, R). Each such M^ contributes (1, 2) or (2,1) to the signature
of ds2, so at most q occur. Assertion (ii) is proved.

The quadrice Mt (u + 1 < / < t) have ds\ of signature

SO(S)/SO(J):
SO(4,4)/SO(3/4):

5O(8,C)/5O(7, C):

(7,

(3,

0)

4)

or

or

(0,

(4,

(7,

7)

3)

7)



ABSOLUTE PARALLELISMS. II 33

The last two quadrics are excluded because q < 3. That leaves the 7-sρhere,
proving assertion (iii).

Let ψ be another absolute parallelism on M consistent with dσ2. Then ψ is
of reductive type by Lemma 6.2, and assertion (i) for (M, ψ, dσ2) shows ψ is
euclidean on the flat factor of (M,dσ2). Thus Lemma 6.2 shows (M,ψ,dσ2)
to be the product of the (M ί 5 ψi9 ds]) for certain ψ^ with ψ0 = φQ. Now asser-
tion (iv) follows from Corollary 9.2. q.e.d.

Our goal now is a complete description of the possibilities for the coverings
of Theorem 9.1 (4).

9.4. Lemma. Let π: (M',dσ2) —> (M,ds2) be a pseudo-riemannian cover-
ing, and φ an absolute parallelism on M consistent with ds2. Let p be the LTS
of φ-parallel vector fields on M, and p' the space of all fields ξ' on Mr with
π^ξ' defined and in p.

(i) There is a unique absolute parallelism φf on Mf such that π(φ') — φ. It
is consistent with dσ2, and p' is its LTS of parallel vector fields.

(ii) // ξ' e pf and γ is a deck transformation of the covering, then γ%ξ' — ξ'.
Proof. Assertion (i) is immediate with φf defined by the condition that pf

be its LTS. Then π*: pf ^ p, so as πoγ = π implies π*γ*ξf = π*ξf we get

*
9.5. Proposition. Let (M', φf, dσ2) be a connected pseudo-riemannian mani-

fold with consistent absolute parallelism, and Z be the Lie group of all
isometries g of (Mf, dσ2) such that if ξ' is φf-parallel then g^ξ; — ξ''.

( i ) // 1 φ g € Z, then g has no fixed point on Mr.
(ii) A subgroup of Z is discrete if, and only if, it acts freely and properly

discontinuously on M'.
(iii) The normal pseudo-riemannian coverings π: (Mf, dσ2) —> (M, ds2) such

that π{φ') is a well-defined absolute parallelism on M are just the coverings
Mf ->D\Mf where D is a discrete subgroup of Z.

Proof. Let g € Z have a fixed point x 6 M'. The tangent space M'x consists
of all ξ'x with ζ' a ^'-parallel vector field. As each g^ξ' = ξ' now g*: Mf

x —> Mx

identity map. Since g is an isometry and Mf is connected, this shows g — 1,
and hence (i) is proved.

Choose a basis {ξ[, , ξ'n} of the space p' of parallel fields. Let {θ1} be the
dual 1-forms. If g β Z each g*θι = θ\ so g is an isometry of the riemannian
metric dp2 = Σiθψ. The topology on Z is the compact-open topology from its
action on Mf. Thus a subgroup D c Z i s discrete if and only if it acts properly
discontinuously on M' it acts freely by (i). Hence (ii) is proved.

If π(φ') = φ absolute parallelism on M, then φ is consistent with ds2 and we
are in the situation of Lemma 9.4. The covering being normal, M = D\M'
where D is a group of homeomorphisms acting freely and properly discontinu-
ously on M1. The elements of D are isometries of (M\ dσ2) because π is pseudo-
riemannian. Now D c Z b y Lemma 9.4, and D is discrete there by (ii).
Conversely let D c Z discrete subgroup. Then D acts freely and properly
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discontinuously on Mf by (ii), so π: Mf —> D\Mf = M is a normal covering.
Since D acts by isometries, π is pseudo-riemannian and π(φ') is a well-defined
parallelism by definition of Z. Hence (iii) is proved, q.e.d.

We collect the specific information needed to apply Proposition 9.5 in the
complete reductive case.

9.6. Lemma. Let (M, φ,dσ2) be a simply connected manifold with complete
absolute parallelism of reductive type and consistent pseudo-riemannian metric.
Let Z(M,φ,dσ2) denote the Lie group of all isometries of (M,dσ2) which
preserve every φ-parallel vector field. Decompose (M, φ,dσ2) as the product
of the (Mi9 φi9 dsf), as in Theorem 9.1.

( i ) Z(M, φ, dσ2) is the product of the Z(Mt, φi9 dsf).
(ii) // Mt is a group manifold (i.e., — 1 < / < u), then Z(Mi9 φi7 ds\) is its

group of left translations.
(iii) // Mt is a quadric (i.e., u + 1 < i < t), then Z(Mi9 φi9 dsf) = {±/8}.
Proof. Let g e Z(M, φ, dσ2). Then g acts trivially on p = p_λ 0 p0 0 pλ Θ

• 0 pt9 so it preserves each ideal pt. Thus g = g_λ X g0 X X gt where
gt <= Z(Mi, φi9 dή)9 and (i) is proved.

Let Mi be a group manifold, and Lt the group of its left translations. Then
Li C Z(Mi9 φi, dή). lίge Z(Mi9 φi9 dsf), we have h e Lt such that hg(\) = 1.
Since hg is an isometry and acts trivially on pi9 hg = 1, and thus g = / r 1 e Lt,
proving (ii).

Let Mi be a quadric. Then the group Gt of all isometries of (Mi9ds§ has
Lie algebra g, = [pi9 pt] + pt. Let g ε Z(Mi9 φi9 dsf) and γ = ad (g) e Aut^ (g j .
Then T* is trivial on pi9 and hence also trivial on [fo,:pj, so γ = 1. Now g
centralizes the identity component of Gt. A glance at Theorem 8.16 shows
that this forces g = ± / 8 , proving (iii). q.e.d.

Now we combine Theorem 9.1, Proposition 9.5 and Lemma 9.6, obtaining
the classification of complete parallelisms of reductive type.

9.7. Theorem. The complete connected pseudo-riemannian manifolds with
consistent absolute parallelism of reductive type are precisely the (M, φ, ds2)
constructed as follows.

Step 1. (M_1? φ_19 ds^). Choose an integer r > 0, a real vector space ϊv of
dimension r, and an alternating trilinear form τ € Λ3(fr)*) which is nondegenerate
on ΪΌ in the sense that if 0 Φ w e ϊυ, then τ(w, to, to) ψ 0. Let p_λ = g(τ, to)
as in construction (7.2). Let b_ί be the nondegenerate invariant bilinear form
(7.4a) on p_x. M_x is the simply connected Lie group for p_ί,φ_1 is its
parallelism of left translation, and ds2_! is the bi-invariant metric induced by
b_λ. Note that ds2_x has signature (p_λ, q_^) = (r, r). Let Z_x denote the group
of left translations on M_λ.

Step 2. (Mo, φ0, dsζ). Choose integers pQ,qQ>O.M0 is the real vector group
of dimension p0 + qQ, φ0 is its (euclideaή) parallelism of (left) translation, and
dsl is a translation-invariant metric of signature (pQ, q0). Let Zo denote the group
of all translations.
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Step 3. The (Mu φi9 ds?) for 1 < i < u. Choose an integer u > 0. // 1 <
/ < u, let pi be a simple real Lie algebra, Mt the simply connected group for
pi, φi its parallelism of left translation, and ds\ the bi-invariant metric induced
by a nonzero real multiple of the Killing form of pt. Let {p^q^ denote the
signature of ds\, and Zt the group of left translations of Mt.

Step 4. The (Mt, φi9 ds*) for u + 1 < i < t. Choose an integer t > u. If
u + 1 < i < t, let Mt = G\IK\ be one of

SO(S)/SO(Ί) , SO(4, 4)/SO(3, 4) , SO(S, C)/SO(Ί, C) .

ds\ is the invariant metric induced by a nonzero real multiple of the real Killing
form of the Lie algebra ĝ  of G\. Let a be the conjugation of g* by the sym-
metry at l-K\,θ a Cartan involution of qt which commutes with a, and ε a
triality automorphism of order 3 on qt which commutes with θ and has a fixed
point set of type G2. Then φt is the absolute parallelism on Mt whose LTS is
pi = {ε" 1^): v € & and σ(v) = — v}. Let (Pi, q^ denote the signature of ds\,
and Zi the center {±/8} of the isometry group of {Mt, dsf).

Step 5. (M, φ, da2). Define M = M_γ X Mo X x Mt, φ = φ_x X φQ

X χφtand da2 = ds\ X ds2

0 X X ds\. Let p = Σ Pi and q = Σ <li \
then da2 has signature (p, q). Denote Z = Z_λ X Zo X X Zt.

Step 6. (M, φ, ds2) = D\(M, φ, da2). Let D C Z be a discrete subgroup,
M — D\M quotient manifold, φ parallelism on M induced by φ, and ds2 the
consistent pseudo-riemannian metric of signature (p, q) on M induced by da2.

We close by examining the conditions on (M, φ, ds2) under which (M, ds2)
may be globally symmetric, compact, riemannian, etc. Note that homogeneity
is automatic: if (M, φ, ds2) is complete and connected, then every ^-parallel
vector field integrates to a 1-parameter group of isometries, and those isometries
generate a transitive group.

9.8. Corollary. The connected globally symmetric pseudo-riemannian mani-
folds with consistent absolute parallelism of reductive type are precisely the
(M,φ,ds2) constructed in Theorem 9.7 with the additional condition: for —1
< i < u the projection of D to Zt consists of translations by elements of the
center of the group Mt.

Remark. Here note that M_λ has center exp (to*), that Mo is commutative,
and that M^ has discrete center for 1 < / < u.

Proof. Let (M,φ,ds2) = D\(M, φ, da2) in the notation of Theorem 9.7.
Then (M,ds2) is symmetric if, and only if, every symmetry sx of (M,da2)
induces a transformation of M. Thus the symmetry condition for (M, ds2) is
that every sx permute the D-orbits, i.e., that every sx normalize D in the iso-
metry group of (M, da2). Let Dt be the projection of D C Z = Z_x x x Zt

to Zt. Then (M, ds2) is symmetric if, and only if, each Dt is normalized by
every symmetry of (M i 5 dsξ).

If u + 1 < / < t, then Zt — {±/8}, center of the isometry group of (Mt, ds?),
so Di is centralized by every symmetry.
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Let — 1 < i < u. If x, g g Mi9 then the symmetry of (Mi9 ds?) at x conjugates
left translation by g to right translation by x~ιgx. Thus Dt is normalized by the
symmetries if, and only if, it consists of translation by central elements.

9.9. Corollary. The compact connected pseudo-riemannίan manifolds with
consistent absolute parallelism of reductive type are precisely the (M, φ, ds2) of
Theorem 9.7 such the both Z/D and Z\M are compact. Z\M is compact if,
and only if, each quadric Mt (u + 1 < i < t) is an ordinary 1-sphere
SO(8)/SO(Ί). Z has a discrete subgroup D such that Z/D is compact if, and
only if, the 3-form τ of the construction of the Lie algebra p_λ = Q(T, ΪΌ) of
M_! can be chosen with rational coefficients.

Proof. We have a fibration M = D\M -> Z\M with fibre Z/D. The total
space M is compact if, and only if, both fibre Z/D and base Z\M are compact.

Z\M is the product of the Zi\Mi, hence is compact if and only if each
Zi\Mi is compact. If — 1 < / < u, then Zi\Mt is reduced to a point, hence
is compact. If u + 1 < / < t, then Zt is finite, so Zί\Mί is compact if and
only if Mt is compact; the latter occurs only for Mt = SO(8)/SO(Ί).

j)_! = g(r, ΪΌ) is a nilpotent Lie algebra, and has a basis with rational struc-
ture constants if and only if τ can be chosen with rational coefficients. The Lie
algebra pQ of Mo is commutative. Now a theorem of MaΓcev [10] says that τ
can be chosen rational if, and only if, M_λ X Mo has a discrete subgroup with
compact quotient.

Suppose that τ can be chosen rational. Then M_λ X Mo has a discrete sub-
group with compact quotient, and gives a left translation group E discrete in
Z_λX ZQ with compact quotient. If 1 < / < u with Mt noncompact, a theorem
of Borel [2] provides a discrete subgroup of Mi with compact quotient, and
its left translation group is a discrete subgroup Dt c Zt with Zi\Di compact.
In the other cases Z< is compact, and we take Dt — {1}. Then D = E x Dλ

X x Dt is a discrete subgroup of Z with Z/D compact.

Conversely let D C Z be a discrete subgroup with Z/D compact. Permute
the Mu 1 < i < u, so that Mi is noncompact for 1 < / < v and compact for
v + 1 < i < u. As ZΌ+ι X X Zt is compact, we replace D with its pro-
jection to Z' = Z_! x Zo x X Zv. Now Z' is a simply connected Lie
group whose solvable radical is the nilpotent group Z_ι X ZQ and whose
semisimple part Zλχ X Zυ has no compact factor. Thus a theorem of L.
Auslander [1] says that (Z_λ X Z0)/{D Π (Z_λ X Zo)} is compact, so τ may
be chosen with rational coefficients.

9.10. Corollary. Let (M, φ, dσ2) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism. Then the following
conditions are equivalent.

( i ) φ is of reductive type relative to dσ2, and (M, φ, dσ2) has a compact
globally symmetric quotient (M, φ, ds2).

(ii) φ is of reductive type relative to dσ2 and, in the notation of Theorem 9.7,
(a) M_λ is reduced to a point,
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(b) // 1 < i < u, the group Mi is compact,
(c) if u + 1 < i < t, the quadric Mt is a 1-sphere.

(iii) There is a riemannian metric dp2 on M consistent with φ. Then, if
(M, φ, ds2) is a quotient of (M, φ, da2), dp2 induces a riemannian metric dr2 on
M consistent with φ.

Proof. Assume (i) and let (M, φ, ds2) = D\(M, φ, da2). Let Di be the pro-
jection of D to Z^. If — 1 <i<u, then Dt is central in Zt by Corollary 9.8,
and Zi/Di is compact by Corollary 9.9. That proves (a) and (b) of (ii); (c)
follows directly from Corollary 9.9. Thus (i) implies (ii). For the converse let
D be a lattice in Mo.

Assume (ii). Let dr\ be any translation-invariant riemannian metric on Mo.
For 1 < / < u let dr\ be the metric induced by the negative of the Killing form
of pi. For u + 1 < / < t let dr\ be the usual riemannian metric of constant
curvature. Now dp2 = dr\ x x dr] has the required properties. Thus (ii)
implies (iii). Corollary 9.3 provides the converse.

10. Appendix: Lie triple systems

We collect the basic facts on Lie triple systems.

A. Foundations: N. Jacobson's work ([7], or [8])

A Lie triple system (LTS) is a vector space m with a trilinear "multiplica-
tion" map

m X m X m —> m denoted (x, y, z) -̂> [x y z]

such that

(10.1a) [xxz] = 0 = [xyz] + [zxy] + [yzx],

(10,1b) [ab[x y z]] = [[a b x]yz] + [[b a y]xz] + [xy[a b z]] .

If ί is a Lie algebra and m C [ is a subspace such that [[m, m], m] C m,
then m is a LTS under the composition [x y z] = [[x, y], z] for then (10.1a)
is anticommutative and the Jacobi identity, and (10.1b) follows by iteration
of the Jacobi identity.

Let m be a LTS. By derivation of m we mean a linear map δ: m -> m such
that

(10.2a) δ([x y z]) = [δ(x) y z] + [x δ(y) z] + [xy δ(z)] .

We denote

(10.2b) b(m): the Lie algebra of derivations of m.
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If {at}, {bt} C m, we have the derivations £ δatM where δa^(x) = [abx] for
a, b, x ζ. m. Derivations of that sort are inner derivations. Denote

(10.2c) bo(τn): ideal in b(m) consisting of inner derivations.

Now consider the vector space

(10.3a) ϊ)(m) = b(m) + m vector space direct sum

with the algebra structure

(10.3b) [D + x,E + y] = ([D9E] + δXtV) + (D(y) - E(x)) .

Then ϊj(m) is a Lie algebra, called the holomorph of m because every deriva-
tion of m is the restriction of an inner derivation of ζ(m). Also, bo(m) = [m, m]
inside ^(m), so the Lie subalgebra of fj(m) generated by m is the standard Lie
enveloping algebra of m:

(10.3c) tβ(m) = bo(m) + m vector space direct sum.

Let m and n be LTS. If /: m —> n is a linear map such that

then / is a homomorphism. If / is one-one and onto, i.e., if f~ι: n —* m exists,
then f'1 is a homomorphism and / is an isomorphism. If [ is a Lie algebra and
/: m —• I is an injective LTS homomorphism such that /(m) generates ί, then
we say that Γ or (I,/) is a L/e enveloping algebra of m. Those always exist,
for one has Iβ(m).

The usual tensor algebra method provides a Lie enveloping algebra i^(m)
with the property: if ([,/) is any Lie enveloping algebra of m, then f extends
to a Lie algebra homomorphism of lu(m) onto ί. Thus iu(rn) is called the
universal Lie enveloping algebra of m. The case I = ίs(m) shows

= [m, m] + m vector space direct sum.

Also, if n = dim m then dim ί^(m) < n(n + l)/2.
Let m be a LTS. By subsystem of m we mean a subspace ϊ C m such that

[ϊ ϊ ϊ] C ϊ. By ideal in m we mean a subspace t c m such that [i m m] C t
(and thus also [m m t] c i). The ideals of m are just the kernels f'KO) of LTS
homomorphisms /: m —• n, n variable; if t is an ideal then m/i inherits a LTS
structure from m, the projection p: m —> m/i is a homomorphism, and t =
p-\O) kernel.
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B. Structure: W. G. Lister's work [9]

Let m C [ be a LTS in Lie enveloping algebra. Then [m, m] and [m, m] + m
are subalgebras of ί, so I = [m, m] + m. If [m, m] Π m = 0, then one verifies
that I has an automorphism σ whose + 1 eigenspace is [m, m] and whose — 1
eigenspace is m. This applies in particular to Is(m) and to l ^ m ) , and it is the
basic connection between LTS theory and symmetric space theory.

The derived series of a LTS m is the chain

(10.4a) m = m(0) D m(1) D D m(fc) =>

of ideals of m defined by

(10.4b) m ( f c + 1 ) = [m m(fc) m(fc)] .

m is solvable if its derived series terminates in 0, i.e., if some m(fe) = 0. If m
is solvable, then every Lie enveloping algebra of m is a solvable Lie algebra.

The radical of m is the span of the solvable ideals of m it is the maximal
solvable ideal in m, and we denote

(10.5a) x(m): radical of m.

If x(m) = 0, then m is semisimple. In general there is a Levi decomposition

(10.5b) m = 3 + t(m) , 3 semisimple, §> Π r(m) = 0 .

The projection m —> m/x(m) maps §> = m/r(m) .
If m has no proper ideals, then m is simple. If [m m m] = 0, then m is

commutative. If m is simple, then either it is semisimple and noncommutative,
or it is 1-dimensional and commutative.

If tΠi and m2 are LTS, then their direct sum is the LTS m = mx Θ m2 given
by

IX + x2 yλ + y2 zx + z2] = [xj^] + [χ2y2z2]; xi9yt9Zi^xtii .

Note that xaλ and m2 are complementary ideals in m. Conversely, if m is a LTS
with complementary ideals m1 and m2, then m = πti 0 m2.

If m is semisimple, then m = mι Θ Θ mt where the m^ are its distinct
simple ideals; thus m(1) = m, every derivation of m is inner, and every linear
representation of m is completely reducible. Conversely, if {m^ ,mt} are
noncommutative simple LTS, then mι ® Θ mt is semisimple.

The structure of semisimple LTS was just reduced to that of simple LTS.
For the latter, let m C r^(m) be a noncommutative simple LTS in its universal
Lie enveloping algebra. Then there are just two cases, as follows.

(10.6) If m is the LTS of a (necessarily simple) Lie algebra ϊ, then
ϊ © ϊ in such a manner that
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m = {(*, —x): x € ϊ} and [m, m] = {(x,x): xεt} .

Thus m is the — 1 eigenspace of the involutive automorphism (x, y)

^ (y,x) of lu(m).

(10.7) If m is not the LTS of a Lie algebra, then Iσ(m) is simple, and m is
the — 1 eigenspace of an involutive automorphism of

Now the classification of simple LTS over an algebraically closed field is
more or less identical to the classification of compact irreducible riemannian
symmetric spaces.

Let m be a LTS. Then the center of m is

(10.8) 3(m) = {x e m: [x m m] = 0} .

The representation theory of m coincides with that of lΌ(τa). Thus the follow-
ing conditions are equivalent.

(10.9a) m has a faithful completely reducible linear representation.

(10.9b) ίff(τn) has a faithful completely reducible linear representation, i.e.,
is "reductive".

(10.9c) Iff(m) = δ θ 3 where g is its center, 3 is semisimple, and 3 =
derived algebra.

(10.9d) m = 3(m) θ m (1), and the derived LTS m(1) = [m m m] is semisimple.

Under the equivalent conditions (10.9) we say that m is reductive. From the
corresponding Lie algebra situation, we say that a subsystem n C m is reduc-
tive in m if the adjoint representation of ί^(m) restricts to a completely reducible
representation of n. Thus

(10,10a) m is reductive ^ m is reductive in m,

(10.10b) if m is reductive, and n is reductive in m, then {x e m: [x nn] = 0}
is reductive in m.

C. Invariant bilinear forms

Now we introduce a notion of invariant bilinear form for LTS. That is the
key to application of the theory of reductive LTS to the theory of pseudo-
riemannian symmetric spaces.

Let ί be a Lie algebra. Recall that invariant bilinear form on ί means a
symmetric bilinear form b on I such that b([x, y],z) = b(x,[y, z]). It then
follows that
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b(z, [[y, x], w]) = b([[x, y],z\,w) = b(x, [[w, z], y]) .

The main example is the trace form

bπ(x, y) = trace π(x)π(y)

of a linear representation π of L The algebra I is reductive if, and only if, it
has a nondegenerate trace form. However (3.7) shows that a non-reductive
algebra might carry a nondegenerate invariant bilinear form.

Let m be a LTS. By invariant bilinear form on m we mean a symmetric
bilinear form b such that

(10.11) b(z, [y x w]) - b([x y z], w) = b(x, [w z y]) .

The preceding discussion shows that the restriction of an invariant bilinear form
on a Lie enveloping algebra of m is an invariant bilinear form on m.

10.12. Lemma. Let m be a LTS, and b an invariant bilinear form on m.

( i ) The center g = {x e m: [x m m] = 0} and the derived system m(1) =

[m m m] satisfy ft(δ> ro(1)) = 0
(ii) If i is an ideal in m, then {x e m: b(x, t) = 0} is an ideal in m.
(iii) // ί is a Lie enveloping algebra of m in which [m, m] Π m = 0, then

I carries an invariant bilinear form V (in the sense of Lie algebras) such that

b = b\.

Proof. For (i) note ί?(g, m(1)) = Kδ> to ™- πt]) = Ktβ w wL m) = b(0, m)

= {0}

For (ii) let ] = {x € m: b(x, ί) = 0}. It is a linear subspace of m. If z 6 i,

/ € i and j c j e m , then

6 6(i, i) = {0} ,

so [j xy] e j .
For (iii) we define 6 ' o n m χ m t o agree with b we define f/([m, m], m) = 0

and we define bf on [m, m] X [m, m] by

b'dx, y], [z, w]) = b([x y z], w) for x, y, z, w € m .

That gives us a symmetric bilinear form bf on I such that b = bf\m. Now we
check that br is invariant, i .e. , that b'([p, q], r) = b'(p, [q, r]) for all p,q,re I.
It suffices to assume that each of p, q, r is in [m, m] U m and go by cases.

If p,q,re m, then [p, q], [q, r] € [m, m] so b\[p, q], r) = 0 = b'(p, [q, r]).
If p, q e m and r = [z, >v] with z, w e m, then Z/([p, <?], r) = ^r([p? q], [z, w])

= δ([p <? d , w) = fe(P? [w z <?]) = fc(p, [̂ ? U, w]]) = fc'(iP, [q, r]), which takes

care of the case p, q € m and r e [m, m], and the cases p, r e m and q e [m, m],
and q, r β m and p € [m, m], follow immediately.

It p em and g, r <= [m, m], then [p, q] e m so fc^tp, <?], r) = 0, and [q, r] e
[m, m] so b\p, [q, r]) = 0. The cases # β m and p, r € [m, m], and r € m and
p, ςr € [m, m], follow similarly.
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Finally, let p = [s, t], q == [*, y] and r = [z, w] with s, f, *, y, z, w <= m. Note
l>, qϊ + \y, U>, xΏ + [x, [y, ril = 0 and [q, r] + [[r, * ] , y] + [[y, r], *] = 0.
Using the invariance already checked, now

b'(\p,q],r) =

= 6 / ( p , b , r ] ) . q.e.d.

Suppose that m is a LTS and b is a nondegenerate invariant bilinear form.

Then x e g & b([x m m], m) = 0 & b(x, [m m m]) = 0. Thus

(10.13a) 5X = m(1) relative to the form b, so

(10.13b) dimm = dimg + dimm(1) .

The analogous fact (that ^ = [Γ, []) holds for nondegenerate invariant bilinear
forms on Lie algebras.

We extend a theorem of Dieudonne from Lie algebras to LTS.
10.14. Proposition. Let m be a LTS, and b a nondegenerate invariant

bilinear form on m. If m has no nonzero ideal i such that [ ί m ί ] = 0, then
nx = mi θ θ πiί where the mό are simple ideals, b(mj, mk) = 0 for j Φ k,
and each Z?|myXmy is a nondegenerate invariant bilinear form.

Proof. Let m1 be a minimal ideal in m. From Lemma 10.12, mf- =
{x e m: b(x, ττii) = 0} is an ideal, so also t = m1 ΓΊ mj- is an ideal. If /, / e t
and x,y em, then

b([ί x /], y) = b(i, [y j x\) e 6(i, t) - {0}

so [t m t] = 0 by nondegeneracy of b. Thus ί = 0 by hypothesis. Now m =
tΠi θ mf. The proposition holds for mf by induction on dim m. q.e.d.

Conversely, (10.6) and (10.7) show that every semisimple LTS carries a
nondegenerate invariant bilinear form, in characteristic zero.

Now with (3.6) and (3.7) in mind, we introduce
10.15. Definition. Let m be a LTS, and b a nondegenerate invariant

bilinear form on m. Suppose
(i) b is nondegenerate on the center of m, and
(ii) if t is an ideal in m such that [i m t] = 0, then i is central in m, i.e.,

[t m m] = 0.
Then we say that the pair (m, b) is of reductive type.

10.16. Theorem. Let m be a LTS, and b a nondegenerate invariant bilinear
form on m such that (m, b) is of reductive type. Then m is reductive.
Moreover
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(10.17a) m = m0 Θ mι © . . © mt ,

where

(10.17b) τn0 is the center of m and the other mt are simple ideals,

(10.17c) Km*, πtj) = 0 for iφ j , and

(10.17d) each b \mt x mf is nondegenerate.

Conversely, if m is a reductive LTS over a field of characteristic zero, then it
carries a nondegenerate invariant bilinear form b such that (m, b) is of
reductive type.

Proof. Let (m, b) be of reductive type, m0 be the center of m, and m' =
{JC e m: b{x, m0) = 0}. As b is nondegenerate on m0, now m = m0 Θ m' and
b = b0 © b'. Let i C m' be an ideal such that [t m'1] = 0. As [i m01] C
[m0 m m] = 0, now [ i m ί ] = 0. Thus t c m0, so i = 0. Now Proposition
10.14 says m' = τnx 0 m* with ft7 = 6X © . . . 0 bt. That proves (10.17).

Conversely let m be reductive. Then m = g 0 ^ where g is its center and §
is semisimple. Let b" be any nondegenerate bilinear form on g, and choose a
nondegenerate invariant bilinear form fc' on §; then b = fe" © 6' is a non-
degenerate invariant bilinear form on g © 3 = m and is nondegenerate on g.
If i C m is an ideal with [ i m i ] = 0, then [t 11] = 0, so t is solvable, whence

t e a .
10.18. Corollary. Let m be a reductive LTS, and b a nondegenerate in-

variant bilinear form on m. Then (m, b) is of reductive type, the center m0 of
m is b-orthogonal to the derived system m ( 1 ), and the distinct simple ideals of
m(1) are mutually b-orthogonal.

Proof. As m is reductive, m = m0 © m ( 1 ), and (10.13a) says ft(m0, m
(1)) =

0. Now apply Proposition 10.14 to the semisimple system m ( 1 ).
10.19. Corollary. Let I be a Lie algebra over a field of characteristic zero.

Then I is reductive if, and only if,
(i) every abelian ideal of I is central, and
(ii) I has a nondegenerate invariant bilinear form which is nondegenerate

on the center of I.
// I is reductive and b is a nondegenerate invariant bilinear form, then the

center z of ϊ is b-orthogonal to the derived algebra V, and the distinct simple
ideals of V are mutually b-orthogonal.

Conditions (i) and (ii) both fail for the algebra (3.7).
Condition (i) does not imply (ii), as seen from the Lie algebra ί of

Spin, R)Hn where Hn is the (2n + l)-dimensional Heisenberg group, Sp(n, R)
acts irreducibly on a (2n-dimensional) complement to the center Z of Hn, and
Sp{n, R) acts trivially on Z. Here g is the only abelian ideal in ί.
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