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ON THE GEOMETRY AND CLASSIFICATION
OF ABSOLUTE PARALLELISMS. II

JOSEPH A. WOLF

8. The irreducible case

Let (M, ds*) be a simply connected globally symmetric pseudo-riemannian
manifold, and ¢ an absolute parallelism on M consistent with ds*. We assume
(M, ds? to be irreducible. Our standing notation is

p: the LTS of ¢-parallel vector fields on M,
g: the Lie algebra of all Killing vector fields on M,

g,: conjugation of g by the symmetry s, at x e M,

g=1+4+ m: -eigenspace decomposition under o,.

The irreducibility says that m is a simple noncommutative LTS, and thus
(Lemma 6.2) says the same for p.

8.1. Lemma. Either [p,p]l = por[p,pl N p = 0.

Proof. Let i = [p,p] N p. Then [[p, p], p] C p implies [i,p] C i and so
[ipp] C t. Thus i is a LTS ideal in p. By simplicity, either i = 0 or i = p.

If t =0, then [p,p] N p = 0. If i = p, then p C [p, p]l. As [i, p] C 1, also
[p, p] C p. Hence [p, p] = p. q.e.d.

We do the group manifolds immediately.

8.2. Proposition. Let (M, ds*) be irreducible simply connected and glob-
ally symmetric, with consistent absolute parallelism ¢ such that the LTS of ¢-
parallel fields satisfies [p,p] N p = 0. Then [p,p] = p,p is a simple real Lie
algebra, and (M, ¢, ds*) = (P, 4, da®) where

(1) P is the simply conncted group for 9,

(i) 2 is the parallelism of left translation on P, and

(iii) de® is the bi-invariant metric induced by a nonzero multiple of the
Killing form of p.

The symmetry of (P,dd?) at 1 ¢ P is given by s(x) = x~'. The group G of all
isometries of (P, da®) has isotropy subgroup K at 1 given by

K = Aut, (p) U s-Autg (p) .

The identity component G, of G is locally isomorphic to P X P, acting by left
and right translations. G is the disjoint union of cosets a-G, and so-G, as «
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runs through a system of representatives of Auty (p)/Int (p). Finally, s(2) is the
parallelism of right translation, and is the only other absolute parallelism on P
consistent with do®.

Proof. Theorem 3.8, Lemma 8.1, fact (10.6), and the fact that any in-
variant bilinear form on a real simple Lie algebra is a multiple of the Killing
form, give us (M, ¢, ds®) = (P, 2, d¢®) with s(2) = p, as claimed. The assertions
on G and K follow from (5.2) and the fact that every derivation of a simple
Lie algebra is inner. q.e.d.

Now we start in on the non-group case.

8.3. Lemma. Let [p,p]l N p = 0. Then g is simple, g = [p,p] + p, and
there is an automorphism

(8.4) ex: @ — a such that e,(§) = & — a,(§) for&ep.

Proof. ¥ = [m, m] is faithfully represented as the Lie algebra of all LTS
derivations of m. Now (10.3) shows g = [;(m) standard Lie enveloping algebra;
as m is simple this forces g = [ (1) universal Lie enveloping algebra. If g were
not simple, then (10.7) m would be the LTS of a Lie algebra, and Theorem 3.8
would force [p, p] C p. Thus g is simple.

Let A: m — p be the inverse of the LTS isomorphism f, of Lemma 6.2. Then
h extends to a Lie algebra homomorphism of [,(m) = g onto the algebra
[p, p]1 + p generated by p. As g is simple, h: g = [p, p] + p. In particular
[p, b1 + p = g and we realize ¢, as A™'. q.e.d.

Our method consists of showing that g, and ¢, generate such a large group
of outer automorphisms of g that we can deduce g to be of type D, and ¢, to
be the triality. Some technical problem (proving g, outer) forces us to reduce
to the compact case.

We construct a compact riemannian version of (M, ds?). Choose

(8.52) ¢: Cartan involution of g .

Thus 4 is an involutive automorphism of g, whose fixed point set is a maximal
compactly embdded subalgebra [ C g. Let q be the —1 eigenspace of § on g.
Then we have

(8.5b) g =0+ q Cartan decomposition under & .

Now choose x ¢ M so that ¢, commutes with . That is always possible because
the a,, ze M, form a conjugacy class of semi-simple automorphisms of g. That
done, we have

(8.5¢) f=¢ND+END, m=@mND+@mNaq) .
Now define
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(8.6a) g* = [ + ig compact real form of g° ,

and define subspaces of g* by
(8.6b) B =0 N g*, m* = mC N g*.

g, extends to g° by linearity and then restricts to an automorphism (still de-
noted ¢,) of g*. Now

(8.6¢) g* = ¥* + m* eigenspace decomposition under o .

To pass to the group level we define

G*: simply connected group with Lie algebra g*,

K*: analytic subgroup for f*.
Then G* is a compact semisimple group, and K* is a closed subgroup because
it is identity component of the fixed point set of ¢, on G*. Now we have

M* = G*/K*: compact simply connected manifold.

The Killing form & of g* is negative definite, so the restriction of —x to m*
induces

dff: G*-invariant riemannian metric on M*.
We summarize the main properties as follows.

8.7. Lemma. (M*,dt®) is a simply connected globally symmetric
riemannian manifold of compact type, and g* is the Lie algebra of all Killing
vector fields on (M*, dt*). For simple g, (M*, dt*) is irreducible if and only if
gC is simple. If g is simple but g is not simple, then g = [ with [ compact
simple and ¢, C-linear on g, and g* =@ with* =(F N DB E N D).

Proof. The riemannian metric d¢* is symmetric because it is induced by an
invariant bilinear form —k of g*. As g* is semisimple and ¢ -stable it must
contain every Killing vector field of (M*, dr?).

If g¢ is simple, then g* is simple, so (M, d¢?) is irreducible. If (M, d¢®) ir-
reducible, then m* is a simple LTS; if further g is simple, then m (thus also
m*) is not the LTS of a Lie algebra; thus g* is simple, and that proves g
simple.

Suppose g to be simple but g not simple. Then g = (¢ where the maximal
compactly embedded subalgebra [ is a compact real form. To avoid confusion
we write g = [ + jl with # = —1. Were ¢, antilinear on g its fixed point set
f would be a real form, so g = f + jf and m = jt; then f would be absolutely
irreducible on m, so (M, df*) would be irreducible, contradicting nonsimplicity
of g°. Thus ¢, is complex-linear on g. Now the fixed point set f = (¥ N )¢,
and the assertions on g* and f* follow. q.e.d.

If (M, ds) is compact, then (M*,dr*) = (M, cds*) for some real ¢ +# 0. If
(M, ds*) is riemannian, then (Corollary 4.5) it is compact.
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We carry ¢ over to an absolute parallelism on (M*, df®).

8.8. Lemma. The Cartan involution 6 can be chosen so that 6(p) = p.
Assume @ so chosen, and define p* = p° N g*. Then there is an absolute par-
allelism ¢* on M* consistent with df*, such that p* is the LTS of ¢*-parallel
vector fields on M*. If [p, p] = p, then [p*, p*] = p*. If [p,p] N p = 0, then
[p*, p*]1 N p* = 0.

Proof. 1If [p,p] = p, then g = b @ b with each summand stable under any
choice of 4, and p = v @ 0. Then g* = p* @ v* with p* = p* @D 0 and all the
assertions are trivial.

Now suppose [p, p1 N p = 0. Then from (8.4) we have an involutive auto-
morphism = = ¢;'¢,¢, whose fixed point set is [p, p] and whose —1 eigenspace
is p. Note that this shows = to be independent of x. As = is a semisimple
automorphism of g, we can choose § to commute with z.

We now assume further that § commutes with z. In other words, using (8.5),

(8.92) [p,pl = p,p1 N D + (Ip,p1 N @), p=GND+GNy.
From this we see
(8.9b) [p*,p*]1 = [p,pI° N g*, so g* = [p* p*] + p*.
In order to proceed we must check that
(8.10) (1 —e)lp, pl =m, (1 — a)lp*, p*] = m* .

In view of (8.9) it suffices to check the first of these assertions. If
(1 — a)[p, p] = m, then we have 0 #+ u ¢ m such that

b, (1 —a)l&n],u) =0 for all &, pep .
Let L e p with (1 — 6,)¢ = u. Now
dSi(é, [775 C]) = ds?p([éy 77]’ C) =0 for all S, ne p

implying [p, {] = 0. Applying e, now [m, u] = 0. As m is a simple noncom-
mutative LTS now u = 0. We conclude (1 — a,)[p, p] = m, and (8.10) is
verified.

Let J* denote the analytic subgroup of G* for [p*, p*]. It is closed in G*,
thus compact, because it is the identity component of the fixed point set of the
automorphism n = &;%¢,¢, on G*. Denote

(8.11a) x* = 1.K*e M* .
Now (8.10) shows J*(x*) is open in M*. As J* is compact, so is J*(x*). Thus

(8.11b) J¥(x*) = M* .
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Recall that d#* is induced by negative of the Killing form « of g*. Note that
3(1 — g,) is k-orthogonal projection of g* to m*, and also from (8.9) that ¢,
is well defined on g*. Now let &, y e p*. If je J*, then ad (j)7*¢, ad (j) 'y € p*,
and we compute

4dt; (&, 7)) = 4dti(ad (HD7'¢, ad (j)~'p)
—k((1 —ox)ad (D7'¢, (1 — o) ad ()7'p)
= —kle;ad (D7, e, ad D7) = —k(é, ),

which is independent of the choice of je J*. But (8.11) says that every element
of M* is of the form j(x*). Thus

(8.12) if &, e p*, then dr¥(§, y) is constant on M* .

Choose a basis {&,, - -, &,} of p*. The &,,. form a basis of M} because
(1 — o)p* = m*. Now (8.12) says that {§,, - - -, &,} is a global frame on M*
with the dr*(§;, &;) constant. Recall that the &, are Killing vector fields of
(M*,dr?). Corollary 4.15 now says that M* has an absolute parallelism ¢*
consistent with dt* such that p* is the space of ¢*-parallel vector fields. q.e.d.

If [ is a Lie algebra over a field F, then Autz () denotes the group of all
automorphisms of [ over F. If F = R or F = C, then Int ({) denotes the normal
subgroup of Aut; ([) consisting of inner automorphisms, i.e., generated by the
exp (ad v) with vel. If [ is real or complex semisimple, then Int ({) is the
identity component of the Lie group Autg (0).

Now we begin to identify (M, ds?).

8.13. Lemma. Suppose [p,p]l N p = 0. If a e Auty (g) is induced by an
isometry of (M, ds?), in particular, if «elInt(g), then a(m) #+ p, and e, does
not commute with o,. If «* € Auty (g*) is induced by an isometry of (M*, dt?),
in particular, if a* e Int (g*), then a*(m*) # p*, and e,a* does not commute
with a.

Proof. Let ae Autg(g) induced by an isometry a of (M,ds?). Then
Y = a~(¢) is an absolute parallelism on M consistent with ds?, and the LTS of
yr-parallel vector fields is a~'(p). If a(m) = p, then m is the LTS of +-parallel
fields, and the comparison of (4.7) with (5.2) proves (M, ds?) to be flat. As
(M, ds®) is not flat, we conclude (i) # p. In particular, e,a(m) # m, i.e., e«
does not preserve the —1 eigenspace of ¢, so ¢;a does not commute with g,.

Lemma 8.8 allows us to use the same argument for o*, m* and p*. q.e.d.

If g° is not simple, Lemma 8.7 tells us g = (¢ where [ is compact
simple and o, e Aut; ((°). However, it is conceivable that our extension
ez € Autg (@) of f,: p = m be complex antilinear. Should that be the case,
note that the Cartan involution 4 is complex antilinear on (¢, so ¢,0 € Aut, ({€).
Thus either
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(8.14a) ez € Auty (I°)  and we denote ¢, = ¢, € Aut, (19) ,
or

(8.14b) e, ¢ Aut, (I°) and we denote &, = ¢,6 ¢ Aut, (I€) .

8.15. Lemma. Let [p, p]lNp=0. If g° is simple, then Int (¢°), g, -Int(g°)
and e, -Int (g°) are three distinct components of Aut, (g°). If g¢ is not simple,
so g = (¢ with | compact simple, then Int (g), o, -Int (g) and ¢,-Int (g) are
three distinct components of Aut, ({°).

Proof. First consider the case where g¢ is simple. Then g* is simple and
(M*, dr”) is irreducible. Every nonzero element of p* is a never-vanishing vector
field on M*, so the Euler-Poincaré characteristic y(M*) = 0. That implies
rank G* > rank K*, so ¢, is an outer automorphism on g*. Now ¢, ¢ Int (g°).

If ¢, is an inner automorphism of g, then it is inner on g* giving a* =
e, eInt (g*) such that e,o* commutes with ¢,. Thus Lemma 8.13 forces
ez ¢ Int (g©).

It g, and ¢, differ by an inner automorphism of g¢, then a* = 3%, ¢ Int (g*)
such that e,@* commutes with ¢,. Thus Lemma 8.13 forces
a.-Int (g°) N e, -Int (g°) to be empty.

The assertions are proved for g¢ simple. Now suppose g° to be not simple.
Then g = [¢ with [ compact simple and ¢, ¢ Aut, ({°) by Lemma 8.7, and we
have ¢, € Aut; ([°) as in (8.14). Now g* = [ @[ with each summand stable
under ¢, so the argument for simple g° shows ¢, to be outer on each summand
of g*. It follows that ¢, is outer on [¢ = g, i.e., that g, ¢ Int (g).

If ¢, is inner on (¢ then &’ = ¢! ¢ Int (g) and ¢,a’ commutes with ¢,. From
(8.5¢) we see that 6 is induced by an isometry of (M, ds*). Thus ¢, commutes
with ¢, where either « = &’ or &« = 6o/, and where « is induced by an iso-
metry of (M, ds?. That contradicts Lemma 8.13, forcing ¢/, ¢ Int (g). A similar
modification of the argument for simple g¢ proves g, -Int(g) N &, -Int(g) to be
empty.

The assertions are proved for g¢ non-simple. q.e.d.

Given integers p, g > 0 and a basis {e,, - - -, e,,,} of R?*? we have the sym-
metric nondegenerate bilinear form b, , on R?*? given by

P+q  D+q ) ) q
bp,q<2alei, > cle;| = 3 akck — ) aPtEerth |
i=1 i=1 k=1 k=1

Now-denote
O(p,q): real orthogonal group of b, , ,

so the usual orthogonal group in m real variables is O(m) = O(m, 0). Now
O(p, q) has four components if pg + 0, and two components if pg = 0. Denote
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SO(p, q): identity component of O(p, q) ,
30(p,q@): Lie algebra of O(p, q) .
Then of course

SO(m) = SO(m,0) , go(m) = 30(m, 0) .
Consider the (p + g — 1)-manifold

SO(p, 9)(e) = SO(p,q9)/SO(p — 1,q) , p>1;

b, induces a pseudo-riemannian metric of signature (p — 1, g) and constant
curvature 1 under which it is globally symmetric, and the case g = O is the
sphere SP~' = SO(p)/SO(p — 1). We also have

SO, 9)(e,.,) = SO(p,q)/SO(p,q — 1), q>1;

there b, , induces a globally symmetric preudo-riemannian metric of signature
(p, q — 1) and constant curvature — 1, and the case g = 1 is the real hyper-
bolic space H? = SO(p, 1)/SO(p). Finally denote

O(@m,C) = O(m)°  complex orthogonal group of b

p,m-p ;

SO(m,C) = SO(m)°¢ identity component; and
go(m, C) = 3o(m)° Lie algebra of SO(m,C) .
Viewing R?*? C C?*? we have (m = p + q)
SO(m, C)(ey) = SO(m,C)/SO(m — 1,C) ,

globally symmetric pseudo-riemannian manifold of signature (m — 1,m — 1)
and nonconstant curvature, affine complexification of S™~!.

Finally we have our classification. Recall that we are using the notation

G: group of all isometries of (M, ds?);

g: Lie algebra of G, Killing fields of (M, ds?);

xeMand K = {ge G: g(x) = x} so M = G/K;

g =%+ m: decomposition under symmetry o ;

p: the LTS of ¢-parallel vector fields on M.

8.16. Theorem. Let (M, ds*) be an irreducible simply connected globally
symmetric pseudo-riemannian manifold with consistent absolute parallelism ¢.
If [p, 91 N p + O, then (M, ¢, ds?) is a group manifold as in Proposition 8.2.
If [p,p] N p =0, then there are just three cases, all of which occur, as
follows.

Case 1. M = SO(8)/SO(7), the sphere S7, and ds* is a positive or negative
multiple of the SO(8)-invariant riemannian metric of constant curvature 1.
Here G = O(8) and K = O(7), 2-component groups.
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Case 2. M = SO(4,4)/SO(3,4), diffeomorphic to S* X R*, and ds* is a
positive or negative multiple of the SO(4, 4)-invariant pseudo-riemannian metric
of signature (3, 4) and constant curvature 1. Here G = 0(4,4) and K = O(3, 4),
4-component groups.

Case 3. M = SO(8,C)/S0O(7, C), affine complexification of S" and diffeo-
morphic to ST X R', and ds* is a multiple of the nonconstant curvature metric
of signature (7,7) induced by the Killing form of SO(8,C). Here

G=0@8,0)Uv-0@8,0, K=0(01,0C) Uv0(1,0),

where v is complex conjugation of C® over R® (so that conjugation by v is a
Cartan involution 6 of G,).

All possibilities for ¢ are as follows. There is a triality automorphism e of
order 3 on g with fixed point set g* of type G, such that both ¢ and ¢, commute
with a Cartan involution 6. Denote

Do = e '(m) sothat [P, ] =@,

and observe that

e"X(f) is the image of the spin representation of f .

Denote
J={jeG:ad()p, = p}, and yp, = ad (g, forr =gleG/].

Then J, is the analytic subgroup of G for ¢ X(f), and

(i) J={=xI}-J, 2-component group in cases 1 and 2, ] = {1, +v}-J,
4-component group in case 3;

(ii) theyp,, re G/J, are mutually inequivalent under the action of G;

(iii) if r e G/J then there is an absolute parallelism ¢, on M consistent with
ds* whose LTS is p,;

(iv) every absolute parallelism on M consistent with ds® is in the T-para-
meter* family {¢.},cq,r5

(v) the parameter space G |I of {¢,} is diffeomorphic (via ¢) to the disjoint
union of two copies of M /{+I}; and

(vi) J, is transitive on M. .

Proof. If [p,pl N p+ 0, we apply Proposition 8.2. Now suppose

First, consider the case where g is a compact simple Lie algebra. Then g° is
simple and Lemma 8.15 says that Aut, (g°)/Int (g°) has order >3, so
Autj, (g)/Int (g) has order >3. This implies that g is of Cartan classification
type D,, i.e., g = 30(8). Again by Lemma 8.15, ¢, is triality, and ¢, is outer

4 The parameters are real in cases 1 and 2, and complex in case 3.
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on g, so the possibilities for { are 30(7) and 80(3) @ 30(5). In the latter case f
and ¢,(f) would be Int(g)-conjugate, so we would have «elInt(g) with
eza(f) = ¥; then e;a commutes with ¢, in violation of Lemma 8.13. Thus f =
80(7) and M = SO(8)/SO(7) = 5", as in case 1. Invariance forces ds* to be a
multiple of the standard riemannian metric do® of constant curvature 1. Then
(M, d¢*) and (M, ds*) have the same isometry group, so G = O(8), whence
K = 0(7).

Second, consider the case where g is noncompact but g is simple. Then g*
is simple. Lemma 8.8 and the argument for compact simple g show that g* =
30(8), f* = 80(7) and M* = §7, and that ¢, is triality on g*. The noncompact
real forms of 30(8, C) are the 30(p, 8 — p), 1 < p < 4; the real form 80*(8)
whose maximal compactly embedded subalgebra is the Lie algebra u(4) of the
unitary group in four complex variables, is triality-equivalent to 30(2,6). How-
ever g is stable under the triality automorphism ¢, of g¢ = 30(8,C). Let Y =
G,/L, irreducible symmetric space of noncompact type where L is a maximal
compact subgroup of G,; now ¢, induces an isometry e of Y. Let e = ab where
aeG, and b(1-L) = 1-L; then conjugation by b induces an automorphism j
of [ which extends to a triality automorphism of g, so # is an outer automor-
phism of [. If § is an automorphism of 30(7), of 30(2) @ 80(6), or of
30(3) @ 30(5), then p is inner. We conclude that g = 30(4,4), which in fact
does admit triality from the split Cayley algebra. Thus f = 30(3,4), M =
S0O(4,4)/SO(3,4), and ds?, G and K are specified as in case 2.

Third, consider the case where g¢ is not simple. Lemma 8.7 says g = (¢
with [ compact simple, f = (N)°, g* ={Pland *=(F(NDD ENY). The
argument for compact simple g says [ = 30(8), f N { = 30(7) and M* = §" x §".
Thus g = 30(8,C), t = 30(7,C) aud M = SO(8, C)/SO(7, C). Now ds*, G and
K are specified as in case 3.

It remains to verify the assertions on the construction of all consistent abso-
lute parallelisms for the spaces (M, ds?) of cases 1, 2 and 3.

Let M = G/Kand g = f 4+ m asin case 1, 2 or 3 of the theorem. Then g
admits a triality automorphism ¢ of order 3 with fixed point set g* of type G,
[12, Table 7.14]. Fix a Cartan involution # of g which commutes with ¢,. As
¢ = 1, ¢ is a semisimple automorphism of g, so we may replace ¢ by an Int (g)-
conjugate if necessary to arrange ef = fe. That done we use # to construct a
compact real form g* = £* 4+ m* of g¢ as in (8.5) and (8.6), and ¢ extends
by linearity to g preserving g*. Define p, = ¢ '(m) as prescribed; then p¥ =
p¢ N g* is e~} (m*).

Let £ denote the Killing form on g. We need to prove the following facts:

(817&) (1 - U:c)po =m, (1 - az)[poa Po] =m, and
(8.17b) if &,pep,, then k(7)) = k(1 — 6)6, (1 — a2)y) .

To do this we note that g° = f N ¢7'(f), so the orthocomplement of g° in g
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relative to x is X + ¢ '(fL) = m + 7 '(m) = m + p,. Now 7! is a rotation by
2z/3 on m* + pF. As 3(1 — o,) is the orthogonal projection of m* 4 p¥ to
m*, that says £(¢, 7)) = «((1 — ¢,)&, (1 — a,)y) for &, 7 ¢ p§f. The same follows
by linearity for &, e p¢, and thus for &,7 e p,. That proves (8.17b), and the
first assertion of (8.17a) follows. Let dim denote dimy in cases 1 and 2, and
dim; in case 3. Then dimg = 28, dimf = 21, dimg° = 14 and dimm = 7.
Thus dim (1 — o,)[py, 9] = dime™'(¥) — dimg® = 21 — 14 =7 = dimm,
proving the second part of (8.17a). Now (8.17) is verified.

As prescribed, let J be the normalizer of p, in G. As { is the normalizer of
m in g, so [p,, ] = e7'(¥) is the Lie algebra of J, and assertion (i) on the
structure of J follows.

LetjeJ and &, 7 ¢, and let g be the multiple of « that induces ds’. We
compute

4ds’ oy (&, ) = 4dsi(ad (D76, ad (D7)
=4pG(1 — o) ad ()7, 3(1 — a2) ad ()™')
= (1 —ax)ad (D', (1 — o,) ad (D7'p)
= plad ()7'§,ad (D7) = B, n) ,

which is independent of je J. Thus ds*&,7) is constant on J(x). However
(8.17a) says that the Lie algebra [p,, p,] of J orthogonally projects onto m.
Thus J(x) is open in M. Now choose a basis {&,, - - -, &,} of p,. We have just
checked that the ds*(¢;, &;) are constant on the open set J(x) C M. Now
(1 — g,)p, = m shows that {&,---,&,} is a global frame on J(x). Thus
Corollary 4.15 says that there is an absolute parallelism +» on the connected
manifold J,(x), consistent with ds? there, for which the &; are parallel. Lemma
6.4 says that (M, ds*) has an absolute parallelism ¢, such that the &|;, ., & € by,
are ¢,-parallel on J,(x). By analyticity, or because ¢,-parallel fields are Killing
vector fields, now p, is the LTS of all ¢,-parallel vector fields on M.

If r = gJ e G/J, we define p, = ad (g)p, as specified. Then ¢, = g(g,) is an
absolute parallelism on M consistent with ds?, and its LTS is ad (g)p, = »,.
This gives us our 7-parameter family {¢,} of absolute parallelisms consistent
with ds?.

We check that the original absolute parallelism ¢ on M is contained in the
family {g#,}. Let Aut (g) denote Auty (g) in cases 1 and 2, and Aut, (g) in case
3. Then Aut (g)/Int (g) is the group of order 6 given by €° = s> = 1, ses™! =
e~'. Here s represents the component of ¢, and e the component of ¢. Thus
e, (or €, in case 3) is in a component represented by e, es, ses™' or se. Now
there are isometries g, b ¢ G of (M, ds?) such that ¢, = ad (b)-¢-ad (g)~! and
either b =1 or b = s, symmetry. Let r = g/ e G/J. Then p = ¢;%(m) =
ad (g)-¢~'-ad (b7)(m) = ad (g)e~'(m) = ad (g)p, = p,. Thus ¢ = ¢,.

Assertion (ii) on the structure of J and {¢,} is immediate from the definition
of J. We have just proved assertions (iii) and (iv). Now (i), (v) and (vi) remain.
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Let N = G,/J,, and let 8 be the muitiple of the Killing form of g which
induces ds* on M. Then B induces a metric du? on N, and ¢ induces an isometry
of (N, du?) onto (M, ds*). If g € G, we notice that ad (g)? is an inner automorphism
of g. If 4 is an isometry of (N, du?), it follows that ad(k)? is an inner automor-
phism of g. Thus p, = ad (g)e~'(p,) whenever g € G,, for (ad (g)e~!)? is outer on
g. If J meets s,G,, say gs, e J where g ¢ G,, then

po = ad (8)a,(p,) = ad (g)o,c~'(m) = ad (g)eo(m)
= ad (g)e(m) = ad (g)e’(p,) = ad (g)e~'(py) ,

which was just seen impossible. Thus

(8.18a) J does not meet the component 5,G, of G .

The Int (g)-normalizer of m is the connected group ad (K, U (—1IpK,), so
the normalizer of p, = ¢7'(m) in Int (g) is ad (J, U (—1Ig)J,). Thus

{x1I}-J, (2 components) in cases 1 and 3,
(8.18b) JNG,= .
J, (connected) in case 2.

Note v ¢ J in case 3. Denote
J' = {x1I}-J, in cases 1 and 2, and J' = {xI;, +v}-J, in case 3.

J’ meets one of the two components of G in case 1, and meets two of the four
components of G in cases 2 and 3. Thus G/J'G, has order 2. But (8.18a)
says that G/JG, has order >2. As J' C J, now JG, = J'G,. However, (8.18b)
says J N G, = J' N G,. We conclude J = J’, thus proving assertion (i) on the
structure of J.

In view of (i), G/J is the disjoint union of two copies of G,/(J N G,) =
G,/{=1}-J,. Since the isometry (N, du*) — (M, ds*) induced by e, where N =
G,/J,, induces a diffeomorphism of G,/{+1s}-J, onto M /{+I;}. Assertion (V)
follows.

Recall that the Lie algebra ¢~'(f) of J is the image of the spin representation
of . Thus

(8.19a) J, = Spin (7), Spin (3, 4), Spin (7, C) in cases 1, 2, 3.

Recall also that f N ¢7*(f) = g* algebra of type G,. Let G, denote the compact
connected group of that type, G¢ the complex connected group of that type,
and G? the analytic subgroup of GY which is the noncompact real form. Now

(8.19b) N K), =G, G, GY incases 1,2,3 .

Now count dimensions, or recall from (8.17a), to see that
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Jy(x) is open in M.

In case 1, where J, is compact, this give us Jy(x) = M.

In cases 2 and 3, we choose a basis {e;, - - -, e;} of the ambient space R® or
C® of M such that the e, are mutually orthogonal, each | e, |’ = |b(ex, ex)| = 1,
and

case 2: U =¢eR + R + e,R + ¢RR is positive definite, and
V = e,R + ¢R + ¢,R + R is negative definite;

case 3: U = eR + --- + ¢,R is positive definite, and so
V =iU =ie,R + --- + ie,R is negative definite.

Then
ecM={u+v:uelU,veV and |u|f—|v|f=1}.
Given real r > s > 0 with 2 — s> = 1 we define
S,s={u+v:uelUveV,|uff=r and |v|=s%.

Now M is the disjoint union of the S, ,.
As J; is noncompact semisimple, its Lie algebra has an element w = 0 which
is diagonable with all eigenvalues real. The eigenvalues come in pairs {h, —h}

by (8.19a). Renormalizing w, now we may assume {e,, - - -, €5} chosen so that
case2: w(e, +e)=¢e +e and wle —e)= —(e —€) ;
case 3: w(e, + ie)) = e + ie, and wl(e, — ie) = —(e, — ie,) .

Now by direct calculation
€Xp (tW) ‘€ € Scosh (t),sinh (¢) » t 2 0.

Thus Jy(e,) meets each of the sets S, ;.
Let H= {geJ,: g(U) = U}. Then also g(VV) = V for ge H, and H is the
maximal compact subgroup

Spin (3)-Spin (4) in case 2, Spin (7) in case 3.

In case 2 the Spin (3)-factor on H is transitive on the sphere ||u|? = r* in U,
and the Spin (4)-factor is transitive on the sphere ||v|? = s® in V. Thus H is
transitive on each S, ;. As Jy(e,) meets each S, ,, now J(e,) = M.

In case 3, H is transitive on the sphere ||u|® = r* in U, and the subgroup
H, preserving e, is G, by (8.19b). Thus H, is transitive on the spheres ||v,|f =
siin i(e,R 4+ eR + --- + gR). If z ¢ S, ,, then some element of H carries z to
z' = re, + i(ae, + be,) where b > 0 and a* + b* = s°. However, z’ ¢ M says
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(r + ia)* + (ib)* = 1sora=0; as r > 0 now a = 0; thus z’ = re, + ise,.
Choose ¢t > 0 such that r = cosh (¢), so s = sinh (¢); now

Z’ = cosh (He, + isinh (e, = exp (tw) - ¢, .
Thus J(e,) = M, and (vi) is proved, completing the proof of Theorem 8.16.

9. Global classification of reductive parallelisms

Theorems 7.6 and 8.16 completely describe the possibilities for the
(M, ¢;, ds?) in Theorem 6.7. Splitting the flat factor as in the proof of Propo-
sition 7.5, we thus reformulate Theorem 6.7 as follows.

9.1. Theorem. Let (M, ¢, ds?) be a connected manifold with absolute par-
allelism and consistent pseudo-riemannian metric such that ¢ is of reductive
type relative to ds*. Then there exist

(1) unique integers t > u > 0,

(2) simply connected globally symmetric pseudo-riemannian manifolds
M;, ds?), —1 < i <t, unique up to global isometry aud permutations of
1,2,---,utand {u + 1,u + 2, ---,t, and

(3) absolute parallelisms ¢, on M, consistent with ds; and unique up to
global isometry, such that the (M, ¢;, ds?) and

(Ma &9 dol) = (M_l) ¢_1’ ds‘il) X c X (Mn ¢t’ ds%)

have the following properties

(i) For —1<i < u, M, is the simply connected group for a real Lie
algebra p;, ¢, is its absolute parallelism of left translation, and ds: is the bi-
invariant metric induced by a nondegenerate invariant bilinear form b; on p;.
Here (p_,, b_,) is obtained as in (7.2) and (7.4a), and p_, has center 3_, = 3L,
relative to b_,; so (M_,,ds%,) is flat. y, is commutative, so (M,, ds?) is flat and
@, is its euclidean parallelism. If 1 < i < u, then p; is simple and b, is a non-
zero real multiple of its real Killing form, so (M, ds?) is irreducible.

(ii) For u+1<i<tM,;is one of the symmetric coset spaces G,/K,
given by

SO(8)/SO(T) ordinary T-sphere,
SO(4,4)/SO(3,4) indefinite 7-sphere, or
SO(8,C)/SO(7,C) complexified 7T-sphere;

ds is induced by a nonzero real multiple of the real Killing form of G,, and
¢; comes from a triality automorphism of g as in Theorem 8.16.

(iii) Every xe M has a neighborhood U and an isometry h: (U, ds?) —
(U, dd?), U open in M, such that h sends ¢y to §|3.

@iv) If ¢ is complete, i.e., if (M, ds®) is complete, then there is a pseudo-
riemannian covering r: (M, do®) — (M, ds®) which sends é 10 §.
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We draw two corollaries of Theorems 3.8, 7.6 and 8.16 which complement
the statement of Theorem 9.1.

9.2. Corollary. Let M, #,ds*) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism of reductive type.

(i) Then the group of all isometries g of (M,dd?) such that g(§) = § is
transitive on M.

(i) If (M,ds?®) has no euclidean (flat) factor, and - is another absolute
parallelism consistent with da®, then (M,do®) has an isometry g such that
eh=4¢

Proof. (M, ¢,ds?) is the product of the (M, ¢;, ds3), —1 < i <t, as in
Theorem 9.1. If —1 < i < u there, then the left translations of the group
manifold M; are transitive and preserve ¢;. If u + 1 < i < ¢, then the required
transitivity is the transitivity of the group J in Theorem 8.16. Thus (i) holds
for each (M;, ¢;,ds?), and thus for M, 3, ds?). Similarly, (ii) follows from
Proposition 8.2 and Theorem 8.16.

9.3. Corollary. Let ds® be of signature (n — g, q) or (g, n — q),0 < g < 2,
in Theorem 9.1.

(i) M_, is reduced to a point, i.e., the parallelism on the flat factor of
(M, do®) is euclidean.

(ii) At most q of the simple group manifolds M,(1 < i < u) are non-
compact. Each noncompact one is the universal covering group of SL(2, R).

(iii) Each of the quadrics M; (u + 1 < i < t) is an ordinary 7-sphere.

(iv) If ¥ is any absolute parallelism on M consistent with da*, then (M, do?)
has an isometry g such that g(}) = .

Proof. 1If M_, is not reduced to a point, then p_, is nonabelian by the nor-
malization 3_, = 3L, (rel. b_,) of Theorem 9.1 (i). Then the 3-form z in the
construction (7.2) of p_, must be nonzero. But 7 is a 3-form on an r-dimensional
vector space where ds*, has signature (7, r). The latter implies r < 2 so z = 0.
Assertion (i) follows.

Let the simple group manifold M; (1 < i < u) be noncompact, and p; = [;
+ q; the decomposition of its Lie algebra under a Cartan involution. If I, =
dim [; and g; = dim q;, then ds? has signature (I;, g;) or (g;,I;). Thus either
l; <2orq; <2.1tl; <2, then [; has no simple ideal, so [; is 1-dimensional
by simplicity of p;; then R-irreducibility of [; on q; implies g; < 2. If g; < 2,
the symmetric space of noncompact type associated to p, must have constant
curvature and therefore must be the real hyperbolic plane, so p; is the Lie
algebra of SL(2, R). Each such M; contributes (1, 2) or (2, 1) to the signature
of ds?, so at most g occur. Assertion (ii) is proved.

The quadrice M; (u + 1 < i < ¢) have ds? of signature

SO(8)/SO(7): (7,0) or (0,7);
SO4,4)/S03/4): 3,4 or 4,3);
SO(8,C)/S0(1,C): 7,7 .
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The last two quadrics are excluded because g < 3. That leaves the 7-sphere,
proving assertion (iii).

Let v be another absolute parallelism on M consistent with dg?. Then - is
of reductive type by Lemma 6.2, and assertion (i) for (M, do?) shows V' is
euclidean on the flat factor of (M, ds?). Thus Lemma 6.2 shows (M, da®)
to be the product of the (M, v, ds?) for certain 4, with », = ¢,. Now asser-
tion (iv) follows from Corollary 9.2. q.e.d.

Our goal now is a complete description of the possibilities for the coverings
of Theorem 9.1 (4).

9.4. Lemma. Let 7: (M’,ds?) — (M, ds*) be a pseudo-riemannian cover-
ing, and ¢ an absolute parallelism on M consistent with ds*. Let p be the LTS
of ¢-parallel vector fields on M, and y' the space of all fields & on M’ with
n.& defined and in p.

(i) There is a unique absolute parallelism ¢’ on M’ such that n(¢') = ¢. It
is consistent with dg*, and ¥’ is its LTS of parallel vector fields.

(i) If & ey’ and y is a deck transformation of the covering, then y, & = &'.

Proof. Assertion (i) is immediate with ¢’ defined by the condition that p’
be its LTS. Then =z, : ' = p, so as woy = = implies =,r,& = n,& we get
18 = ¢.

9.5. Proposition. Let (M’, ¢, do*) be a connected pseudo-riemannian mani-
fold with consistent absolute parallelism, and Z be the Lie group of all
isometries g of (M’, dd®) such that if & is ¢'-parallel then g, &' = ¢&'.

(i) If 1 £ ge Z, then g has no fixed point on M’.

(ii) A subgroup of Z is discrete if, and only if, it acts freely and properly
discontinuously on M’.

(ili) The normal pseudo-riemannian coverings w: (M’, do®) — (M, ds*) such
that n(¢’) is a well-defined absolute parallelism on M are just the coverings
M’ — D\M'’ where D is a discrete subgroup of Z.

Proof. Let g e Z have a fixed point x ¢ M’. The tangent space M/, consists
of all &, with & a ¢’-parallel vector field. As each g,.& = & now g,: M/, — M/,
identity map. Since g is an isometry and M’ is connected, this shows g = 1,
and hence (i) is proved.

Choose a basis {£&], - - -, &,} of the space p’ of parallel fields. Let {#?} be the
dual 1-forms. If g € Z each g*#* = 6%, so g is an isometry of the riemannian
metric dp* = 3(6%)*. The topology on Z is the compact-open topology from its
action on M’. Thus a subgroup D C Z is discrete if and only if it acts properly
discontinuously on M’; it acts freely by (i). Hence (ii) is proved.

If z(¢') = ¢ absolute parallelism on M, then ¢ is consistent with ds* and we
are in the situation of Lemma 9.4. The covering being normal, M = D\M’
where D is a group of homeomorphisms acting freely and properly discontinu-
ously on M’. The elements of D are isometries of (M’, d¢?) because = is pseudo-
riemannian. Now D C Z by Lemma 9.4, and D is discrete there by (ii).
Conversely let D C Z discrete subgroup. Then D acts freely and properly
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discontinuously on M’ by (ii), so #: M’ - D\M’ = M is a normal covering.
Since D acts by isometries, r is pseudo-riemannian and z(¢’) is a well-defined
parallelism by definition of Z. Hence (iii) is proved. q.e.d.

We collect the specific information needed to apply Proposition 9.5 in the
complete reductive case.

9.6. Lemma. Let (M, $,da?) be a simply connected manifold with complete
absolute parallelism of reductive type and consistent pseudo-riemannian metric.
Let Z(M , &, da®) denote the Lie group of all isometries of (M, do*) which
preserve every ¢-parallel vector field. Decompose M, 3, dds? as the product
of the (M;, ¢;, ds3), as in Theorem 9.1.

(i) Z(M, $,dds> is the product of the Z(M,, ¢;, ds?).

(ii) If M, is a group manifold (i.e., —1 < i < u), then Z(M,;, ¢;, ds3) is its
group of left translations.

(iii) If M, is a quadric (i.e., u + 1 < i < 1), then Z(M,, ¢;, ds3) = {£1}.

Proof. Let ge Z(M, $,ds?. Then g acts trivially on § = p_, @ p, D p,
-+« @y, so it preserves each ideal p,. Thus g = g_, X g X --- X g Where
8:€ Z(M,, ¢;,ds3), and (i) is proved.

Let M; be a group manifold, and L, the group of its left translations. Then
L, C ZM,, ¢;,ds?). If g e Z(M;, ¢;, ds?), we have h e L; such that hg(1) = 1.
Since hg is an isometry and acts trivially on p;, hg = 1, and thusg =h"'e L,,
proving (ii).

Let M; be a quadric. Then the group G; of all isometries of (M;,ds?) has
Lie algebra g; = [p;, p;] + ;. Let g e Z(M,, ¢;, ds?) and y = ad (g) € Autg(g,).
Then ¢ is trivial on p;, and hence also trivial on [{;, p;], so 7 = 1. Now g
centralizes the identity component of G;. A glance at Theorem 8.16 shows
that this forces g = =+, proving (iii). q.e.d.

Now we combine Theorem 9.1, Proposition 9.5 and Lemma 9.6, obtaining
the classification of complete parallelisms of reductive type.

9.7. Theorem. The complete connected pseudo-riemannian manifolds with
consistent absolute parallelism of reductive type are precisely the (M, ¢, ds*)
constructed as follows.

Step 1. (M_,,$_,,ds%,). Choose an integer r > 0, a real vector space v of
dimension r, and an alternating trilinear form t € A(tv*) which is nondegenerate
on v in the sense that if 0 #+ w e v, then t(w,v,tv) = 0. Let p_, = g(z, v)
as in construction (7.2). Let b_, be the nondegenerate invariant bilinear form
(7.4a) on p_,. M_, is the simply connected Lie group for p_,,$_, is its
parallelism of left translation, and ds, is the bi-invariant metric induced by
b_,. Note that ds*, has signature (p_,,q_,) = (r,r). Let Z_, denote the group
of left translations on M _,.

Step 2. (M,, ¢y, ds3). Choose integers p,, q, > 0. M, is the real vector group
of dimension p, + q, ¢, is its (euclidean) parallelism of (left) translation, and
ds} is a translation-invariant metric of signature (p,, q,). Let Z, denote the group
of all translations.
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Step 3. The (M;, ¢, ds?) for 1 < i < u. Choose an integer u > 0. If 1 <
i < u, let p; be a simple real Lie algebra, M, the simply connected group for
P> @; its parallelism of left translation, and ds: the bi-invariant metric induced
by a nonzero real multiple of the Killing form of p;. Let (p;,q;) denote the
signature of ds:, and Z; the group of left translations of M.

Step 4. The (M, ¢;,ds?) for u + 1 < i < t. Choose an integer t > u. If
u+1<i<t,let M; = G?/K be one of

SO®)/SO(7) , SO(4,4)/50(3,4), SO(8,C)/SO(,C) .

ds? is the invariant metric induced by a nonzero real multiple of the real Killing
form of the Lie algebra g; of G}. Let ¢ be the conjugation of g, by the sym-
metry at 1-K$, 8 a Cartan involution of g; which commutes with ¢, and ¢ a
triality automorphism of order 3 on g; which commutes with 6 and has a fixed
point set of type G,. Then ¢, is the absolute parallelism on M; whose LTS is
p, = {e7'(W): v e g; and o(v) = —v}. Let (p;, q;) denote the signature of ds3,
and Z; the center { + I} of the lsometry group of (M, ds)

Step 5. (M, $,dd?). Define M =M_, X My X -+ X My, § = ¢_, X ¢
X - X ¢, and dg* = ds*, X ds} X ><ds2 Letp_Zpiandq—Zqz,
then do® has signature (p, q). Denote Z Z XZyX +++ XZ,.

Step 6. (M, $,ds?) = D\(M, §,dd?. Let D C Z be a discrete subgroup,
M = D\M quotient manifold, ¢ parallelism on M induced by §, and ds* the
consistent pseudo-riemannian metric of signature (p, q) on M induced by dg*.

We close by examining the conditions on (M, ¢, ds?) under which (M, ds®)
may be globally symmetric, compact, riemannian, etc. Note that homogeneity
is automatic: if (M, ¢, ds®) is complete and connected, then every ¢-parallel
vector field integrates to a 1-parameter group of isometries, and those isometries
generate a transitive group.

9.8. Corollary. The connected globally symmetric pseudo-riemannian mani-
folds with consistent absolute parallelism of reductive type are precisely the
(M, ¢, ds*) constructed in Theorem 9.7 with the additional condition: for —1
< i < u the projection of D to Z; consists of translations by elements of the
center of the group M.

Remark. Here note that M _, has center exp (fv*), that M, is commutative,
and that M, has discrete center for 1 < i < u.

Proof. Let (M, ¢,ds*) = D\(M R gZ, dg? in the notation of Theorem 9.7.
Then (M, ds?) is symmetric if, and only if, every symmetry s, of (M, do®)
induces a transformation of M. Thus the symmetry condition for (M, ds?) is
that every s, permute the D-orbits, i.e., that every s, normalize D in the iso-
metry group of (M, d¢®). Let D, be the projectionof DCZ =2_, X --- X Z,
to Z;,. Then (M, ds*) is symmetric if, and only if, each D, is normalized by
every symmetry of (M,, ds3).

Ifu+ 1< i<t thenZ, = {+ 1}, center of the isometry group of (M,, ds?),
so D; is centralized by every symmetry.
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Let —1 < i < u. If x, g e M;, then the symmetry of (M,, ds?) at x conjugates
left translation by g to right translation by x~'gx. Thus D; is normalized by the
symmetries if, and only if, it consists of translation by central elements.

9.9. Corollary. The compact connected pseudo-riemannian manifolds with
consistent absolute parallelism of reductive type are precisely the (M, $, ds*) of
Theorem 9.7 such the both Z|D and Z\M are compact. Z\M is compact if,
and only if, each quadric M, (u + 1 <i <1t is an ordinary 7-sphere
SO(8)/SO(7). Z has a discrete subgroup D such that Z|D is compact if, and
only if, the 3-form t of the construction of the Lie algebra y_, = g(z,v) of
M _, can be chosen with rational coefficients.

Proof. We have a fibration M = D\M — Z\M with fibre Z/D. The total
space M is compact if, and only if, both fibre Z/D and base Z\ M are compact.

Z\M is the product of the Z;\M;, hence is compact if and only if each
Z;\M, is compact. If —1 < i < u, then Z;\M, is reduced to a point, hence
is compact. If u + 1 < i < ¢, then Z; is finite, so Z,\M, is compact if and
only if M, is compact; the latter occurs only for M; = SO(8)/SO(7).

p_, = g(z, v) is a nilpotent Lie algebra, and has a basis with rational struc-
ture constants if and only if r can be chosen with rational coefficients. The Lie
algebra p, of M, is commutative. Now a theorem of Mal’cev [10] says that ¢
can be chosen rational if, and only if, M_; X M, has a discrete subgroup with
compact quotient.

Suppose that = can be chosen rational. Then M_, X M, has a discrete sub-
group with compact quotient, and gives a left translation group E discrete in
Z_, X Z, with compact quotient. If 1 < i < u with M; noncompact, a theorem
of Borel [2] provides a discrete subgroup of M; with compact quotient, and
its left translation group is a discrete subgroup D; C Z; with Z;/D,; compact.
In the other cases Z; is compact, and we take D; = {1}. Then D = E X D,
X «+- X D, is a discrete subgroup of Z with Z/D compact.

Conversely let D C Z be a discrete subgroup with Z/D compact. Permute
the M,;,1 < i < u, so that M, is noncompact for 1 < i < v and compact for
v+1<i<u AsZ,,, X --- X Z;is compact, we replace D with its pro-
jection to Z/ =Z_, X Zy X --- X Z,. Now Z’ is a simply connected Lie
group whose solvable radical is the nilpotent group Z_, X Z, and whose
semisimple part Z, X --- X Z, has no compact factor. Thus a theorem of L.
Auslander [1] says that (Z_, X Z,)/{D N (Z_, X Z,)} is compact, so r may
be chosen with rational coefficients.

9.10. Corollary. Let (M, $, da*) be a complete simply connected pseudo-
riemannian manifold with consistent absolute parallelism. Then the following
conditions are equivalent.

(1) ¢ is of reductive type relative to dg*, and (M, $,dg*) has a compact
globally symmetric quotient (M, ¢, ds*).

(ii) ¢ is of reductive type relative to do* and, in the notation of Theorem 9.7,

(@) M_, is reduced to a point,
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(b) if 1 <i< u, the group M; is compact,
() ifu+1<i<t, the quadric M; is a T-sphere.

(iii) There is a riemannian metric dp® on M consistent with @. Then, if
M, ¢, ds*) is a quotient of M, @, da®), do* induces a riemannian metric dr* on
M consistent with ¢.

Proof. Assume (i) and let (M, ¢, ds®) = D\(M , #, da*). Let D, be the pro-
jection of D to Z;. If —1 < i < u, then D, is central in Z; by Corollary 9.8,
and Z;/D; is compact by Corollary 9.9. That proves (a) and (b) of (ii); (c)
follows directly from Corollary 9.9. Thus (i) implies (ii). For the converse let
D be a lattice in M,.

Assume (ii). Let dr} be any translation-invariant riemannian metric on M,.
For 1 < i < u let dri be the metric induced by the negative of the Killing form
of p;. Foru + 1 < i <t let dr? be the usual riemannian metric of constant
curvature. Now dp? = dr} X --- X dr} has the required properties. Thus (ii)
implies (iii). Corollary 9.3 provides the converse.

10. Appendix: Lie triple systems

We collect the basic facts on Lie triple systems.

A. Foundations: N. Jacobson’s work ([7], or [8])

A Lie triple system (LTS) is a vector space m with a trilinear “multiplica-
tion” map

mXxXmxXm—m denoted (x,y,2)— [xyz]
such that
(10.1a) xxzl=0=1[xyz]l + [zxy]l + [yzx],
(10,1b)  [ablx y z]] = [[a b x]yz] + [[baylxz] + [xyla b z]] .

If [ is a Lie algebra and m C [ is a subspace such that [[v1, m], m] C m,
then m is a LTS under the composition [x y z] = [[x, y],z]; for then (10.1a)
is anticommutative and the Jacobi identity, and (10.1b) follows by iteration
of the Jacobi identity.

Let m be a LTS. By derivation of m we mean a linear map §: m — m such
that

(10.2a) dxyzD) =0 yzl + [xa(y) z] + [xyda(2)] .
We denote

(10.2b) d(m): the Lie algebra of derivations of m.
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If {a;}, {b;} C m, we have the derivations }; d,, ,, where §, ,(x) = [a b x] for
a, b, x e m. Derivations of that sort are inner derivations. Denote

(10.2¢) d,(m): ideal in b(m) consisting of inner derivations.
Now consider the vector space

(10.3a) h(m) = d(m) + m vector space direct sum
with the algebra structure

(10.3b)  [D + x,E + y] = (D, E] + 4.,) + (DY) — E(x)) .

Then j(m) is a Lie algebra, called the holomorph of m because every deriva-
tion of m is the restriction of an inner derivation of §(m). Also, d,(m) = [m, m]
inside §(m), so the Lie subalgebra of §(m) generated by m is the standard Lie
enveloping algebra of m:

(10.3¢c) [(m) = d(m) + m vector space direct sum.
Let m and n be LTS. If f: m — n is a linear map such that
flxy z] = [f(») f(x) f(2)] ,

then f is a homomorphism. If f is one-one and onto, i.e., if f~': n — m exists,
then f~' is a homomorphism and f is an isomorphism. If | is a Lie algebra and
f: m — [ is an injective LTS homomorphism such that f(m) generates [, then
we say that [ or ({,f) is a Lie enveloping algebra of m. Those always exist,
for one has [(m).

The usual tensor algebra method provides a Lie enveloping algebra [,(m)
with the property: if ({, f) is any Lie enveloping algebra of m, then f extends
to a Lie algebra homomorphism of [;(m) onto [. Thus [;(m) is called the
universal Lie enveloping algebra of m. The case [ = [,(m) shows

[y(m) = [m,m] + m vector space direct sum.

Also, if n = dim m then dim [,(m) < n(n + 1)/2.

Let m be a LTS. By subsystem of m we mean a subspace f C m such that
[t ff] C f. By ideal in m we mean a subspace i1 C m such that [t m m] C 1
(and thus also [m m i] C 1). The ideals of m are just the kernels f~1(0) of LTS
homomorphisms f: m — n, n variable; if i is an ideal then m /i inherits a LTS
structure from mt, the projection p: m — m/i is a homomorphism, and i =
p~'(0) kernel.
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B. Structure: W.G. Lister’s work [9]

Let m C [ be a LTS in Lie enveloping algebra. Then [m, m] and [m, m] + m
are subalgebras of [, so [ = [m, m] 4+ m. If [m, m] N m = 0O, then one verifies
that [ has an automorphism ¢ whose + 1 eigenspace is [m, m] and whose —1
eigenspace is m. This applies in particular to [((m) and to [;(m), and it is the
basic connection between LTS theory and symmetric space theory.

The derived series of a LTS m is the chain

(10.4a) m=m@oOom®P>OS...om®>...

of ideals of m defined by

(10.4b) mé+D = [m m® m®] |

m is solvable if its derived series terminates in O, i.e., if some m*® = 0. If m
is solvable, then every Lie enveloping algebra of m is a solvable Lie algebra.

The radical of m is the span of the solvable ideals of m; it is the maximal
solvable ideal in m, and we denote

(10.5a) t(m): radical of m.
If t(m) = 0, then m is semisimple. In general there is a Levi decomposition
(10.5b) m=23+ t(m), 35semisimple, 3 N t(m)=0.

The projection m — m/t(m) maps 3 = m/x(m) .

If m has no proper ideals, then m is simple. If [m m m] = 0, then m is
commutative. If m is simple, then either it is semisimple and noncommutative,
or it is 1-dimensional and commutative.

If m, and m, are LTS, then their direct sum is the LTS m = m, ® m, given
by

[, +x »w+y z2+2]=kyzl + yzl; x,y,z,em; .

Note that m, and m, are complementary ideals in m. Conversely, if m is a LTS
with complementary ideals m, and m,, then m = m, @ m,.

If m is semisimple, then m = m, @ - - - @ n1, where the m, are its distinct
simple ideals; thus m® = m, every derivation of m is inner, and every linear
representation of m is completely reducible. Conversely, if {m,, ..., n1,} are
noncommutative simple LTS, then m, @ - - - @ m, is semisimple.

The structure of semisimple LTS was just reduced to that of simple LTS.
For the latter, let m C [;(m) be a noncommutative simple LTS in its universal
Lie enveloping algebra. Then there are just two cases, as follows.

(10.6) If m is the LTS of a (necessarily simple) Lie algebra ¥, then [,(m) =
f @ f in such a manner that
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m={(x,—x):xef} and [m,m]={(xx):xef}.

Thus m is the —1 eigenspace of the involutive automorphism (x, y)
— (¥, x) of [y(m).

(10.7) If m is not the LTS of a Lie algebra, then [;(m) is simple, and m is
the —1 eigenspace of an involutive automorphism of [;;(m).

Now the classification of simple LTS over an algebraically closed field is
more or less identical to the classification of compact irreducible riemannian

symmetric spaces.
Let m be a LTS. Then the center of m is

(10.8) gm) ={xrem: [xmm] =0} .

The representation theory of m coincides with that of {;(m). Thus the follow-
ing conditions are equivalent.

(10.9a) m has a faithful completely reducible linear representation.

(10.9b) [;(m) has a faithful completely reducible linear representation, i.e.,
[;(m) is “reductive”.

(10.9¢) [Iy(m) = 3@ 8 where 3 is its center, 3 is semisimple, and 3 =
[(y(m), [y(m)] derived algebra.

(10.9d) m =3(m)® m®, and the derived LTS m® = [m m m] is semisimple.

Under the equivalent conditions (10.9) we say that m is reductive. From the
corresponding Lie algebra situation, we say that a subsystem n C m is reduc-
tive in m if the adjoint representation of [;;(m) restricts to a completely reducible

representation of n. Thus
(10,10a) m is reductive & m is reductive in m,

(10.10b) if m is reductive, and n is reductive in m, then {x ¢ m: [x nun] = 0}
is reductive in m.

C. [Invariant bilinear forms

Now we introduce a notion of invariant bilinear form for LTS. That is the
key to application of the theory of reductive LTS to the theory of pseudo-

riemannian symmetric spaces.
Let [ be a Lie algebra. Recall that invariant bilinear form on [ means a

symmetric bilinear form b on [ such that b([x,yl, z) = b(x, [y, z]). It then
follows that
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b(Z, [[yy x]a W]) = b([[x’ Y], Z]9 W) = b(xs [[W, z]a J’]) .
The main example is the trace form
b.(x,y) = trace =(x)x(y)

of a linear representation z of . The algebra [ is reductive if, and only if, it
has a nondegenerate trace form. However (3.7) shows that a non-reductive
algebra might carry a nondegenerate invariant bilinear form.

Let m be a LTS. By invariant bilinear form on m we mean a symmetric
bilinear form b such that

(10.11) b(z,[yxwlD = b([xyzl,w) = b(x,[wzy]) .

The preceding discussion shows that the restriction of an invariant bilinear form
on a Lie enveloping algebra of m is an invariant bilinear form on m.

10.12. Lemma. Let m be a LTS, and b an invariant bilinear form on m.

(i) The center 3 = {x e m: [x m m] = O} and the derived system m® =
[m m m] satisfy b(z, m®) = 0.

(ii) If i is an ideal in m, then {x e m: b(x, 1) = 0} is an ideal in m.

(iii) If U is a Lie enveloping algebra of m in which [m, m] N m = 0O, then
[ carries an invariant bilinear form b’ (in the sense of Lie algebras) such that
b="b.

Proo}r.l For (i) note b(g, m®) = b3, [m m m]) = b([3 m m], m) = b0, m)
= {0}

For (ii) let § = {x e m: b(x,i) = 0}. It is a linear subspace of m. If ie 1,
jeiand x,ye m, then

b(li xy],0) = b(j, liy x] e b(j, ) = {0},

so[fxylej.
For (iii) we define b’ on m X m to agree with b ; we define b’([m, m], m) =0;
and we define b’ on [m, m] X [m, m] by

v([x,y], [z, w]) = b([x y z], w) for x,y,z,wem.

That gives us a symmetric bilinear form b’ on [ such that b = b’|,,. Now we
check that b’ is invariant, i.e., that b’([p, ql,r) = b'(p,[q,r]) forallp,q,r e .
It suffices to assume that each of p,q,r is in [m, m] U m and go by cases.

If p,q,r € m, then [p, g, [g, r] € [m, m] so b'([p, ql,r) = 0 = b'(p, [q,r]).

If p,q e m and r = [z, w] with z, w ¢ m, then b'([p, g1, r) = b'([p, q], [z, w])
= b([p g z], w) = b(p, [w zq]) = b(p, g, [z, wl]) = b'(p, [g,r]), which takes
care of the case p, g e m and r e [m, m], and the cases p, r ¢ m and g € [m, m],
and g,r e m and p e [, m], follow immediately.

If pem and g, r € [m, m], then [p, gl € m so b'([p,ql,r) = 0, and [gq,r] e
[m, m] so b’(p,[q,r]) = 0. The cases ge m and p,r e [m, m], and r ¢ m and
D, q € [m, m], follow similarly.
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Finally, let p = [s,¢], ¢ = [x, y] and r = [z, w] with s, ¢, x, y, 2, w € m. Note
[p,ql + [y, [p, x1] + [x,[y, pll = 0 and [q, r] + [[r, x],¥] + [y, 7], x] = O.
Using the invariance already checked, now

b'([p, ql,r) = b'(llp, x1,y1,r) — b'(llp, ¥1, x1, 1)
= b'([p, x], [y, r) — b'(p, y1, [x, 1D
= b'(p, [x, [y, r1) — b'(p, [y, [x, r]])
=b'(p,lg,r]) . q.e.d.

Suppose that m is a LTS and b is a nondegenerate invariant bilinear form.
Then x ¢ 3 & b([x m m], m) = 0 & b(x, [m m m]) = 0. Thus

(10.13a) 3t = m® relative to the form b, so
(10.13b) dimm = dim 3 4+ dim m® .

The analogous fact (that 31 = [[, []) holds for nondegenerate invariant bilinear
forms on Lie algebras.

We extend a theorem of Dieudonné from Lie algebras to LTS.

10.14. Proposition. Let m be a LTS, and b a nondegenerate invariant
bilinear form on m. If m has no nonzero ideal i such that [t mi] = 0, then
m=m @ --- @ m, where the m, are simple ideals, b(m;, m;) = O for j # k,
and each blm .m, is a nondegenerate invariant bilinear form.

Proof. Let m, be a minimal ideal in m. From Lemma 10.12, mi =
{x € m: b(x, m,) = O} is an ideal, so also i = m, N mi is an ideal. If i,je i
and x,y e m, then

b([i xjl,y) = b, [yjx]) e b(i,1) = {0} ;

so [t m 1] = O by nondegeneracy of . Thus i = 0 by hypothesis. Now m =
m,; @ myi-. The proposition holds for mj- by induction on dim m. q.e.d.

Conversely, (10.6) and (10.7) show that every semisimple LTS carries a
nondegenerate invariant bilinear form, in characteristic zero.

Now with (3.6) and (3.7) in mind, we introduce

10.15. Definition. Let m be a LTS, and b a nondegenerate invariant
bilinear form on m. Suppose

(i) b is nondegenerate on the center of ut, and

(i) if t is an ideal in m such that [t m i] = O, then i is central in m, i.e.,

[imm]=0.

Then we say that the pair (m1, b) is of reductive type.

10.16. Theorem. Let m be a LTS, and b a nondegenerate invariant bilinear
form on m such that (m,b) is of reductive type. Then m is reductive.

Moreover
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(10.17a) m=m®@m®-.-.Pm,,

where

(10.17b) my, is the center of m and the other m, are simple ideals,
(iO.l7c) bm;, my) =0 for i+j, and

(10.174d) each b|m,.m, is nondegenerate.

Conversely, if m is a reductive LTS over a field of characteristic zero, then it
carries a nondegenerate invariant bilinear form b such that (m,b) is of
reductive type.

Proof. Let (m, b) be of reductive type, ui, be the center of m, and m’ =
{x e m: b(x, m,) = 0}. As b is nondegenerate on n1,, now m = m, ® m’ and
b=>b@PDb. Let i C m' be an ideal such that [i m’i] = 0. As [i m,i] C
[memm] =0, now [imi] =0. Thus i C m,, so t = 0. Now Proposition
10.14 says m/ = m, @ - - - m, with b’ = b, @D - .. @ b,. That proves (10.17).

Conversely let m be reductive. Then m = 3 @ 8 where 3 is its center and 3
is semisimple. Let b”” be any nondegenerate bilinear form on 3, and choose a
nondegenerate invariant bilinear form b’ on 8; then b = b” @ b’ is a non-
degenerate invariant bilinear form on 3 @® 8 = m and is nondegenerate on 3.
If 1 C m is an ideal with [i m i] = O, then [t i1 i] = O, so 1 is solvable, whence
1 C 3.

10.18. Corollary. Let m be a reductive LTS, and b a nondegenerate in-
variant bilinear form on m. Then (m, b) is of reductive type, the center m, of
m is b-orthogonal to the derived system m‘V, and the distinct simple ideals of
m® are mutually b-orthogonal.

Proof. As m is reductive, m = m, ® m®, and (10.13a) says b(m,, m) =
0. Now apply Proposition 10.14 to the semisimple system m .

10.19. Corollary. Let [ be a Lie algebra over a field of characteristic zero.
Then | is reductive if, and only if,

(i) every abelian ideal of | is central, and

(ii) [ has a nondegenerate invariant bilinear form which is nondegenerate
on the center of [.

If U is reductive and b is a nondegenerate invariant bilinear form, then the
center z of [ is b-orthogonal to the derived algebra I’, and the distinct simple
ideals of I' are mutually b-orthogonal.

Conditions (i) and (ii) both fail for the algebra (3.7).

Condition (i) does not imply (i), as seen from the Lie algebra [ of
Sp(n, R)-H, where H, is the (2n + 1)-dimensional Heisenberg group, Sp(n, R)
acts irreducibly on a (2r-dimensional) complement to the center Z of H,, and
Sp(n, R) acts trivially on Z. Here 3 is the only abelian ideal in .
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