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A FORMULA FOR THE RADIAL PART OF THE
LAPLACE-BELTRAMI OPERATOR

SIGURDUR HELGASON

Let ¥V be a manifold and H a Lie transformation group of V. Suppose
Du = 0 is a differential equation on ¥V, both the differential operator D and
the function u assumed invariant under H. Then the differential equation will
involve several inessential variables, a fact which may render general results
about differential operators rather ineffective for the differential equation at
hand. Thus although D may not be an elliptic operator it might become one
after the inessential variables are eliminated (cf. [3, p. 99)).

This viewpoint leads to the general definition (cf. [7]) of the transversal part
and radial part of a differential operator on V' given in §§ 2 and 3. The radial
part has been constructed for many special differential operators in the litera-
ture; see for example [1], [3], [4], [5], [8] for Lie groups, Lie algebras and
symmetric spaces, [9], [6] for some Lorentzian manifolds. Our main result,
formula (3.3) in Theorem 3.2, includes various known examples worked out by
computations suited for each individual case. See Harish-Chandra [4, p. 99]
for the Laplacian on a semisimple Lie algebra, Berezin [1] and Harish-Chandra
[3, § 8] for the Laplacian on a semisimple Lie group, and Harish-Chandra
[5, § 71 and Karpelevi¢ [8, § 15] for the Laplacian on a symmetric space. The
author is indebted to J. Lepowsky for useful critical remarks.

Notation. If V' is a manifold and v e V, then the tangent space to V at v
will be denoted V', ; the differential of a differentiable mapping ¢ of one mani-
fold into another is denoted dp. We shall use Schwartz’ notation &(V) (resp.
2(V)) for the space of complex-valued C~ functions (resp. C functions of
compact support) on V. Composition of differential operators D,, D, is denoted
D,oD,.

2. The transversal part of a differential operator

Let ¥V be a manifold satisfying the second axiom of countability, and H a
Lie transformation group of V. If he H, ve V, let h-v denote the image of v
under H and let H® denote the isotropy subgroup of H at v. Let §j denote the
Lie algebra of H. If X e }), let X* denote the vector field on V induced by X,
ie.,
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2.1  XHo) = gt_f(exptx.v) L feaW), wveV.
t=0

A C- function f on an open subset of V is said to be locally invariant if
X*f=0.

Lemma 2.1. Suppose W C V is a submanifold such that for each we W
the tangent spaces at w satisfy the condition:

2.2) V=W, + (H-w), (direct sum).

Let wye W. Then there exists an open relatively compact neighborhood W, of
w, in W and a relatively compact submanifold B C H,e e B such that the
natural projection n: H— H|/H*® is a diffeomorphism of B onto an open
neighborhood U, of n(e) in H|/H®"® and such that the mapping »: (b,w) — b-w
is a diffeomorphism of B X W, onto an open neighborhood V, of w,in V.
Proof. Let §° denote the Lie algebra of H**, and n C Y any subspace com-
plementary to §°. Then the mapping ¢: (X, w) — exp X-w of n X W into V is
regular at (0, w,). In fact, since (dg) ., fixes W,,, it suffices to prove

(2.3) (dSO)(o,wo)(n X O) = (H'wo)wo .

This however is clear from dimensionality considerations. Now the lemma
follows from the standard fact that if 1, is a sufficiently small neighborhood of
0 in n, then exp is a diffeomorphism of n, onto a submanifold B C H diffeo-
morphic under z to an open neighborhood of w, in H/H®°.

It was pointed out to me by R. Palais that the local integration of involutive
distributions (Chevalley [3, p. 89]) shows that a submanifold W satisfying (2.2)
always exists.

Now let us assume that ' has a Riemannian structure g invariant under the
action of H. Assuming furthermore that all the orbits of H have the same
dimension, we shall with each differential operator D on V' associate a new
differential operator D, on ¥V which acts “transversally to the orbits”.

Fix s, € V and let S denote the orbit H-s,. For each s e S consider the geo-
desics in V starting at s, perpendicular to S. If we take sufficiently short pieces
of these geodesics, their union is a submanifold Si- of V. Shrinking S;- if neces-
sary we may assume that it satisfies transversality condition (2.2) for W. Take
w, as s,, and let W,, B and ¥V, be as in the lemma. For fe &(V) (or even for
functions defined on V) we define a new function f,, on V, by

fss(b-w) = f(w), beB, welW,.
We then define D, by

2.9 DN(s) = Df)(s) ,  seV .
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Since B-w is a neighborhood of w in the orbit H-w, and since D decreases
supports, the choice of B above is immaterial, and (2.4) is indeed a valid defini
tion; the operator D, decreases supports and is therefore a differential
operator, which we call the transversal part of D.

Theorem 2.2. Let V be a Riemannian manifold, H a Lie transformation
group of isometries of V, all orbits assumed to have the same dimension. Let
S be any H-orbit and let f denote restriction of a function f to S. Then the
Laplace-Beltrami operators L = L, and Lg on V and S, respectively, satisfy

(2.5) (L)~ = Lsf + (L)~ fesV).

Proof. Let (y,, ---,y,) be any coordinate system on B such that y,(e) =
oo =y,(e) =0, and let w — (z,,,(w), - - -, z,(w)) be a coordinate system on
W, such that the geodesics forming S correspond to the straight lines through
0. Then we define a coordinate system (x,, - - -, x,) on V, by

(xl(b’w)a Sty xr(b'w)9 xr+1(b'w): DR xn(b‘w))
= (yl(b)s i 'sy'r(b)9 Z'r+1(w)a i ',Zn(W)) .

The Laplace-Beltrami operator is given by
L= Zlgpq(apq - ZL: F;ant) s

where 3, = 9/0x,, 0,, = 3°/0x,0%,, g"? is the inverse of the matrix g,, =
2(@,,9,), and It is the Christoffel symbol

I,=1% 2 87(0,8ps + 008¢s — 0s8pg) -
Suppose - € &(V,) satisfies the condition
(2.6) Yy, -y X)) = 0, -, 0,%, 5, -0, X))
or equivalently

v(b-w) =4(w), beB, weW,.
Then
2.7 U= (L) = (Lpp)(sy) -
On the other hand, suppose ¢ ¢ 6(V,) satisfies
(2.8) (X, -+ X)) = Xy, -+, %, 0, -+, 0)

or equivalently
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ob-w) =¢(b-s), beB, weW,.
For each set of real numbers 4, ,,, - - -, d,, not all 0, the curve
t— (x,(80), + -5 X,(80), Apiaty -+ -5 at)
is a geodesic in V. The differential equation for geodesics
X4+ D I5%%, =0
e
(dot denoting differentiation with respect to ¢) therefore shows that
I'igs) =0, 1<i<n, r+1<a,p<n.
Since the geodesic is perpendicular to S at s,,
2.9 g.(s) =8%(sp) =0, for 1 <i<r, r+1<a<n.
It follows that
(Lo)(sy) = 1s§sr 84059 _1521019 I'0:0)(s0) -
But by (2.9), I'%;(s,) is the same for S and for V, so
(2.10) L)) = Lsp)sy) -
But
L(py) = Ly + 2g (grad ¢, grad v) + Lo,
where for any f e &(V,),
grad f = pZ‘:l 874(0,)0, -
Hence (2.9) implies
(2.11) L(p¥)(sp) = () (LAr)(sy) + () (Lp)(so) -
But ¢, is a constant function, so by (2.4) and (2.7)
Pe(L)(s0) = LU(p¥)5,)(50) = (Lr(@y))(so) -
Similarly, since v is a constant function, (2.10) implies
V(s)(L)(s)) = Ls(@)(so) -

This gives formula (2.5) for the function f = ¢y, and since the linear com-
binations of such products form a dense subspace of 2(V,) the theorem follows
by approximation.
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Remark. The theorem remains true with the same proof if V is a mani-
fold with a pseudo-Riemannian structure g provided g is nonsingular on S.

3. The radial part of a differential operator

Again let V be a manifold satisfying the second axiom of countability, and
H a Lie transformation group of V. Suppose W C V is a submanifold satisfy-
ing transversality condition (2.2) in Lemma 2.1.

Lemma 3.1. Let D be a differential operator on V. Then there exists a
unique differential operator A(D) on W such that

(3.1) (DH~ = AD)f

for each locally invariant function f on an open subset of V, the bar denoting
restriction to W.

Proof. Let wye W and select W, B and ¥, as in Lemma 2.1. If p ¢ §(W,),
we define f on V, by

flb-w) =ow), beB, weW,.

The mapping ¢ — (Df)~ gives an operator D, , 3 of £(W,) into itself. It is
now an easy matter to verify that the linear transformation 4(D) given by

(AD)V) W) = (D oy, wo, 59)(Wy)

is a well-defined differential operator on &(W), with the properties stated in
the lemma.

The operator 4A(D) is called the radial part of D. We shall now give a formula
for the radial part of the Laplace-Beltrami operator on ¥ under a strengthen-
ing of transversality assumption (2.2); in fact we assume that each H-orbit
intersects W just once and orthogonally.

Theorem 3.2. Suppose V is a Riemannian manifold, H a closed unimodular
subgroup of the Lie group of all isometries of V (with the compact open
topology). Let W C V be a submanifold satisfying the condition: For each
weW,

(3.2) HwNW={WwhV,=HwW,DW,,

where ® denotes orthogonal direct sum. Let L, and Ly, denote the Laplace-
Beltrami operators on V and W, respectively. Then

(3.3) A(Ly) = 674Ly 0 8% — 674, (5%) ,

where the function ¢ is the volume element ratio in (3.8) below.

Proof. Let V* denote the subset H-W of V. Since the mapping (h, w) —
h-wof H X W into V has (by (3.2)) a surjective differential at each point, V'*
is an open subset of V. Since H is closed, the isotropy subgroup H* at each
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point w e W is compact and the orbit H-w is closed; if we fix a left invariant
Haar measure on H and a Haar measure on H* (with total measure 1), we
obtain in a standard way an H-invariant measure di on each orbit H.w =
H/H”. Denoting by dv and dw the Riemannian measures on V' and W, respec-
tively, we shall prove that there exists a function § € £(W) such that

(3.4) f Fo)dv = f 3(w) ([ F(h-w)diz)dw, Fea(V¥) .

Let w,e W. Because of the second part of (3.2) there exist a coordinate
neighborhood W, of w, in W, a vector subspace m C §j of dimension dim V' —
dim W and a neighborhood m, of 0 in m such that the map

P (X,w) >expX-w

is a diffeomorphism of n1, X W, onto an open neighborhood V, of w, in V.
Let (x,, - - -, x,) be a Cartesian coordinate system on m, and (x,,,, - - -, X,) an
arbitrary coordinate system on W,. In the formulas below let 1 < i,j<r,r +
1 < @, B < n. Let the coordinate system (x,, - - -, x,,) on V, be determined by

x; (exp X-w) = x;(X) , x, (exp X-w) = x,(w) .

Let g denote the Riemannian structure of V, and put g,, = £(9,,3,) as usual,
so that

dv = gidx,- - -dx, , dw = 7¥dx,,,- - -dx, ,
where
(3.5 g = |det ((@pohicp,asn)| » T = [det (g,)] -
Because of the orthogonality in (3.2) we have
3.6) gi.w) =0, weW,.

But if 4 = exp X (X e m,) then our choice of coordinates implies for the dif-

( X )w ( )h‘w ( x) j=1 ((;x)
a « axa a i

where a;;e¢ R. Hence g,,(h-w)=g,(w) and using (6), g;(h-w)=0;
consequently

3.7 gh-w) = det (g;)(h-w)7(w) .

However
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[{det (g; P}(h-w)|dx,- - -dx,(h-w)

is just the Riemannian volume element do, on the orbit H.w. Thus, if
F e 2(V,) we obtain from the Fubini theorem and (3.7) that

J F(v)dv = J #h(w) ( IL F(p)dow(p)> dx,,,- - -dx,(w) .

But do,, is invariant under H, so it must be a scalar multiple of d#,
(3.8) da,, = d(w)dh .

This proves (3.4) for all F e 2(V,); then it holds also if F has support inside
h.V, for some h e H. But as w, runs through W, the sets 4.V, form a covering
of V*. Passing to a locally finite refinement and a corresponding partition of
unity, (3.4) follows for all F e 2(V*).

Let F(w) denote the inner integral in (3.4), so that

(3.9) Fw) = f F(h-w)dh .

It is a routine matter to verify that the mapping F — F is surjective, i.e.,
(3.10) (V*) = 29(W) .

For the determination of 4(L,) we first observe that

3.11) A(Ly) = Ly + lower order terms.

This is clear from the coordinate expression for L, together with (3.6) if we
also note that the vector fields 9/0x; are tangential to the H-orbits. Next we
recall that L, is symmetric with respect to dv, i.e.,

3.12) f Lof )W) fy(0)dv = f F Lyt ()dv

for all f,, f, ¢ 2(V*). But then this relation holds for all f, e £(V*). In particular

we can use it on f, invariant under H. Applying (3.4) to the left hand side of
(3.12) we obtain

(3.13) f a(w)fz(w>( f (Lyf) (h~w>dh)dw.
w H-w
But for each v e V the isotropy subgroup H® is compact, so by invariance of L,

(Lm( 10 an) = [@th-v)dh .
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Now putting here v = w we get the inner integral in (3.13) equal to
(A(L,) f,)(w); thus the left hand side of (3.12) is

f U(Ly) )W) Fiw)s(w)dw
w

the bar denoting restriction to W. But using the H-invariance of L;f,, formula
(3.4) and the definition of radial part, the right hand side of (3.12) reduces to

[ Foa@nipomsonaw .

But in view of (3.10) the functions f , (and of course the f;) fill up 2(W), so
the equality of the two last expressions implies that 4(L,) is symmetric with
respect to 6(w)dw. Now since L, is symmetric with respect to dw, a simple
computation shows that the composition 3Ly, 0§t is symmetric with respect
to d(w)dw and it clearly agrees with Ly, up to lower order terms. Thus by
(3.11) the symmetric operators 4(L,) and § L, o §* agree up to an operator
of order < 1. But this operator, being symmetric, must be a function, and
now (3.3) follows by applying the operators to the function 1.

It is of interest to generalize Theorem 3.2 to pseudo-Riemannian manifolds
V. If V has a pseudo-Riemannian structure g, which for each we W is non-
degenerate on the closed orbit H-w, and if each H* (w e W) is compact, then
Theorem 3.2 remains valid. In fact, the isotropy group H" is then compact for
each v e V*, so no change is necessary in the proof.

When a semisimple Lie group H acts on its Lie algebra by the adjoint
representation, the regular elements of a Cartan subalgebra constitute a trans-
versal submanifold W where the isotropy subgroup H¥ is the same for all
w e W. This then provides an example for the following variation of Theorem
3.2.

Theorem 3.3. Let the assumptions be as in Theorem 3.2 except that V has
only a pseudo-Riemannian structure g. Then formula (3.3) remains valid if we
further assume that

(i) for each we W the orbit H-w is closed and g is non-degenerate on it,

(ii) HY is the same for all we W, and its Lie algebra is its own normalizer
in the Lie algebra of H.

Proof. Put H = H* (we W) and h =hH", and fix an H-invariant measure
dh on the coset space H/H’. Such a measure exists since each orbit H-w has
an H-invariant measure dg,, defined as above. If 7 is a geodesic in V' tangential
to W at w then 7 is left fixed by each 4 e H,. Thus (ii) implies y C W so W is
a totally geodesic submanifold of V. Defining 6 by (3.8) the only part of the
proof above which requires change is the justification of the formula

(3.14) f Lof)h-wydh = (UL )W) -
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For this we use Theorem 2.2 and the subsequent remark to split L, into its
“orbital part” and transversal part. The orbital part gives integral O over H-w,
so in the integral (3.14) we can replace L by its transversal part L, ,. Putting
fi(w) = f,(h-w) for h e H, we have, by the H-invariance of L, r,

(LV,Tfl)(h'w) = (LV,T(HL))(W) s

which, by the definition of transversal part and radial part, equals A(L;,)(f*)(w),
W being totally geodesic. But then the left hand side of (3.14) equals

f L) o(fih-w))dh

H/HO

which equals (4(L;) f D(w) because now h and w are independent variables.
This proves (3.14) and therefore also Theorem 3.3.
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