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A GENERALIZATION OF KAEHLER GEOMETRY

S. I. GOLDBERG

1. Introduction

In this paper a class of non-Kaehler manifolds is introduced which by its very
definition is included in the generalization of Kaehler geometry given by Chern
[1] (see also Weil [8]). This class is of particular interest because of its addi-
tional structure thereby yielding in the compact case topological consequences
of special interest. The spaces considered are the globally framed /-manifolds
M(f, Ea, g), a = 1, - - , In — r, where dim M = 2n is even and rank / = r,
previously studied by Yano and the author in [2]-[4]. Thus, it is necessary that
the structural group of the tangent bundle of M can be reduced to the direct
product of U(r/2) and O(m — r), the unitary group in r/2 complex variables
and the orthogonal group i n m - r variables. In [3], the structure tensors / and
the Ea are assumed to be parallel fields with respect to the Riemannian con-
nection, but since this implies that there is an underlying Kaehlerian structure
the theory is not a satisfactory one. The proper generalization along these lines
is provided by assuming (a) the fundamental form F of the /-structure is closed,
(b) the Nijenhuis torsion of / vanishes, and (c) the field / is parallel along the
integral curves of the vector fields Ea. Conditions (a)-(c) are clearly satisfied
if (a) is replaced by the stronger condition that / be a parallel field and, in fact,
they are equivalent to the latter (Theorem 1, Corollary 2). When r = m, the
/-structure of M is Kaehlerian.

Chern's generalization of Kaehlerian geometry may be described as follows.
Suppose that the structure group of the tangent bundle of a real C°° manifold
of dimension m is reducible to a subgroup G of the rotation group in m vari-
ables. (Observe that U(r/2) X O(m — r) C O(m).) A connection can be defined
with the group G. The vanishing of torsion of this connection is then a natural
generalization of the Kaehler property. This includes the generalization due to
Lichnerowicz [6], namely the even dimensional orientable Riemannian mani-
folds carrying a 2-form, of maximal rank everywhere, whose covariant deriva-
tive vanishes.

Conditions (a) and (b) are analogous to those characterizing Kaehler mani-
folds, whereas (c) is required when the rank of / is less than 2n, and otherwise
is vacuous. The /-manifold has an associated Kaehler structure if and only if
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the 2n — r pfaffian forms ψ — g(Ea, •) are closed. If / is everywhere of highest
rank, then F is the Kaehler form. The theory of harmonic differential forms
is employed to obtain the cohomology of these spaces, and a decomposition
theorem generalizing the one obtained by Hodge for compact Kaehler manifolds
is given, the invariant r playing a significant role.

There is also an obvious odd dimensional generalization provided by those
framed manifolds satisfying conditions (a)-(c).

2. Framed manifolds

A Kaehler manifold is an hermitian manifold which is symplectic for the
fundamental 2-form Ω of the hermitian structure. That Ω is then a parallel field
is a consequence of the integrability of its almost complex structure J, that is,
its Nijenhuis torsion [/, /] vanishes, where [/, J](X, Y) = [JX, JY] - J[X, JY]
-J[JX,Y]-[X,Y].

An m-dimensional C°° manifold M which carries a linear transformation field
/ Φ 0 of class C°° satisfying the algebraic condition f + f = 0 is called an /-
manifold provided the f-structure f is of constant rank r on M. Such structures
exist if the structural group of the tangent bundle of M is reducible to U(r/2)
X O(rn — r), and conversely. Observe that r is even. As examples there are the
almost complex structures for m — 2n and the almost contact structures for
m = 2n — 1, the former having maximal rank and the latter having rank 2n — 2.

By putting

s=-f, ί = f + / ,

where / is the identity transformation field, we have

s + t = / , s2 = s , t2 = / , fs = -s , ft = 0 .

The operators s and t acting in the tangent space at each point of M are there-
fore complementary projection operators defining distributions S and T in M
corresponding to s and t, respectively. The distribution 5 is r-dimensional and
dim Ύ — m — r.

If there are m — r vector fields Ea spanning T at each point of M, and m — r
pfaffian forms ηa satisfying

(2.1) ηa(Eb) = δϊ ,

where $J, a, b — 1, , m — r, is the 'Kronecker delta', and if the structure
tensors are related by

(2.2) f = - / + ̂ (g) Ea ,

where (g) denotes the tensor product, then M is said to be a globally framed
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f-manifold or, simply, a framed manifold the summation convention is em-
ployed here and occasionally in the sequel.

As examples, there are the almost complex manifolds for m = 2n and the
almost contact spaces for m = In — 1. (Strictly speaking, because of the former
example, the indices a, b should run though 0, 1, , m — r with Eo = 0 and
η° = 0.) The framed structure on M will be denoted by M(f, Ea, ψ). From (2.1)
and (2.2), one easily obtains

(2.3) fEa = 0, ηaof = 0, a= 1, ...,m - r .

The framed manifold M(f,Ea,η
a), a = 1, , m — r, is called a framed

metric manifold if a Riemannian metric g on M is distinguished such that

(i) ηa = g(Eα, •) , α = 1, , m — r ,

(ϋ) g(fX,Y)= ~

Note that (ii) implies that / is skew-symmetric with respect to g, and (i) that
the Ea form an orthonormal basis at each point of T. A framed manifold carries
many metrics with these properties. We put

F(X, Y) = g(fX, Y)

and call F the fundamental 2-form of the framed structure.
Observing that on a framed manifold of any rank r

ι(Pa)Frn = 0

for each a = 1, , m — r, and therefore

m — r a=i

where c and s are the interior and exterior product operators, respectively. De-
noting by * the Hodge star operator, we see that

* F r / 2 = kηι A Λ τ)m-r ,

where k is the C°° function given by ±c(E1) -c(Em_r)*Fr/2. Since

| F r / 2 | 2 * 1 = Fr/2 A *Frl2 = kη1 A "- A ηm~r A Fr/2 ,

η1 A " - A 7]m~r = ± - ^ y * F r / 2 ,

from which
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*1 = ± φrf Λ Λ r~r Λ Ft* ,

a formula giving the volume element of (M, g).
Let M(f, Ea, ηa) be a framed metric manifold of dimension m = 2n and rank r.

Then, an almost complex structure

/ = 1, , n — r/2, is defined on M in terms of which the metric g is hermitian.
It follows that a framed manifold is orientable, a fact required in § 4. (If
dimM = 2n + 1, an almost contact metric structure (f,E2n_r+ι,η

2n~r+ι) is
defined.) Setting F(X, Y) = g(fX, Y), we obtain

(2.4) F = F + 2ΣvίiA 7]H~l , i = 1, , n - r/2 .
i

If the fundamental form F and the ηa are closed, the almost hermitian structure
(/> g) o n M is almost Kaehlerian. It is Kaehlerian if either / has vanishing
covariant derivative, or by Theorem 1 of [4], M(f,Ea,η

a) is normal, that is,
[/, /] + dηa(g)Ea = 0. (In this case, the Ea are holomorphic vector fields with
respect to / . ) By (2.4), / is parallel if / and the ψ are also parallel fields, that
is, M(/, Ea, ηa) is a X-manifold (see [3]). Thus a J£-manifold carries a Kaehler
structure.

3. Quasi-symplectic manifolds

An even dimensional framed metric manifold M(/, Ea, g) of rank r is called
quasi-symplectic if F is closed and parallel along the integral curves of the vector
fields Ea (see [3]). It is symplectic if d imM = 2n and r = 2n. We shall be
primarily concerned with compact even dimensional quasi-symplectic spaces of
rank less than 2n. If, in addition the torsion [/, /] is zero, a theory on M anal-
ogous to Weil's generalization of Hodge's theory on algebraic varieties may be
developed. Under these conditions we shall see that DXF vanishes if X is hori-
zontal, that is, if for each P € M, X(P) is orthogonal (with respect to g) to the
subspace spanned by the Ea(P), a = 1, , 2n — r, where Dx is the operator
denoting covariant differentiation with respect to the Riemannian connection.
Thus / is a parallel field. A generalization of Kaehler geometry is thereby ob-
tained, since M is endowed with a Kaehler structure if and only if the ψ are
closed forms.

A quasi-symplectic manifold with zero torsion will be called an integrable
quasi-symplectic manifold.

Theorem 1. Let M(/, Ea9 ηa) be a framed metric f-manifold with zero torsion.
If the fundamental 2-form of M is closed, then
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(3.1) Dxf = va(X)DEJ

for any vector field X on M.
Corollary 1. // X is a horizontal vector field, then Dxf = 0.
Corollary 2. The linear transformation field f of an integrable quasi-sym-

plectic manifold is a parallel field.
Proof. Evaluating the torsion in terms of covariant derivatives we get

= υx, m - /[*, m - fux, Y] + fix, π
= DfX(fY) - Dfγ(fX) - f{DΣ{fY) - DfYX]

+ f{Dr(fX) - DfxY) - DXY + DYX + rf([X, Y])Ea

= {Dfχf)Y - {D,yf)X ~ f{{Dχf)Y - Φγf)X)
, Y])Ea .

Hence

g{(DfXf)Y, Z) - g((Dfrf)X, Z)

{Φf)X, fZ) + g(ΦJ)Y, fZ) = 0.

Evaluating the exterior derivative of F, we get

dF(X, Y,Z) = X F(Y,Z) - Y F(X,Z) + ZF(X, Y)

- F([X, Y], Z) + F([X, Z], Y) - F([Y, Z], X)

= g(Dx(fY),Z) + F(Y,DXZ) + gφγ{fZ),X)

+ F{Z,DrX) + gφz(fX), Y) + F(X,DZY)

- F([X, Y], Z) + F([X, Z], Y) - F([Y, Z], X) ,

so that

g(φxf)Y,Z) + g{φγf)Z,X) + g(φzf)X, Y) = 0 ,

since F is closed. Replacing Z by fZ in the last relation and subtracting from
(3.2) we obtain

g{φfXf)Y,Z) - g{φJγf)X,Z) - g(Φ/zf)X, Y) = 0 ,

since g(φzf)X, Y) + g{φzf)Y, X) = 0. Interchanging Y and Z in the previous
equation and substracting, g(φfXf)Y, Z) = 0, from which it follows that DfXf
= 0 since g is definite. Applying (2.2) we get (3.1) and

ΦZF){X, Y) = ψ{Z)g{φEaf)X, Y) .
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Theorem 1 is of fundamental importance for the study of the cohomology
of integrable quasi-symplectic manifolds.

4. Cohomology of quasi-symplectic spaces

The most successful tool in the study of the homology of compact Kaehler
manifolds is Hodge's theory of harmonic integrals [5] and [7]. We employ this
method below. Define dual operators L and A on M of degrees 2 and —2 re-
spectively by L = ε(F) and A = t(F). Then

A = (-1)**L*

on /7-forms. A p-form (p > 2) is said to be effective if it is a zero of A. For
p = 0 or 1 every form is said to be effective. On a framed metric manifold of
rank r < In there are many effective forms. Indeed, the exterior products
ηu A Λ rfv are effective p-forms. The notion of an effective form is a for-
mulation in terms of cohomology of the effective cycles of Lefschetz on an
algebraic manifold [5, p. 182].

An orthonormal basis of MP of the form

{XΛ,XA.9Ea}, A = l,...9r/29 XA* = fXA., a = 1, . ., In - r ,

dimM = 2n, will be called an f-basis. To see that such a basis exists, let

M'P = {XeMP\g(X,Ea) = 0 , fl= 1, . . . , 2 / ι - r } .

Equations (2. l)-(2.3) show that /l^^ is an almost complex structure on Mf

P and
gljfj, is an hermitian metric. If an orthonormal (with respect to g\Mp) basis of
MP of the form {XA, (J\MP)XA}> A = 1, — -, r/2, is then chosen, an /-basis of
MP is obtained.

In terms of an /-basis {XA,XA*, Ea} with dual basis {ωA,ωA*,ηa}, L and A
may be expressed as

L=Σ ε(a>MωA*) , A =Σ WAMXA)
A = l A = l

Since c(X) is an anti-derivation, AF = r/2.
A p-form a on M is said to have tridegree (λ, μ, v) if it is expressible as a

sum of decomposable forms a = ωAl Λ Λ ωAχ A ωB* Λ Λ ωB*μ A ηai

A Λ ψv. We call α ^ ^ Λ Λ ^ Λ ^ Λ Λ ωB*μ the horizontal
part and «„ = ^α i Λ ηav the vertical part. Thus # = αA Λ av. Clearly

(4.1) Aa = Aah A av .

Lemma 1. On a framed metric manifold, L and A satisfy
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ΛLa — LΛa = 0/2 + v — p)a

for any p-form a of tridegree (λ, μ, v).
Proof. By linearity, it suffices to consider the decomposable forms ah and

ah A av. The result then follows from formula (4.1) and the corresponding
relation for almost hermitian spaces:

(ΛL - LΛ)a = A((Lah) A av) - L(Λah) A av

= ((AL - LA)ah) A aυ = (r/2 - λ - μ)ah A av

= (r/2 + v - p)a .

We define the operators d', dh', d°, δ', δ" and °̂ in terms of the Riemannian
connection of the framed metric structure

d ' = Σ £«>A)DZA , d" - Σ e(ωA.)DZAm , d° = Σ ^a)DEa ,
A A A

δ'=-Σ *XA)D*Λ. , s" = -Σ WA*)DZA , δ° = - Σ *Ea)DEa,

A = 1, •• , r / 2 ; f l = l , - > -,2n—r. Then the exterior differential operator d is
the sum of d\ d" and J° and its dual δ is the sum of the duals δ', δ" and °̂
of d', d" and d°. (Although the operators of exterior differentiation are defined
explicitly in terms of the Riemannian metric g, only the property that the
Riemannian connection is torsion free is relevant. Note also that the basis
vectors are orthonormal with respect to g.) Observe that the primed operators
have their analogues in almost hermitian manifolds.

Lemma 2. On a framed manifold,

d'df = 0 , d'd" + d"d' = 0 ,

d"d" = 0 , d°d' + d'd° = 0 ,

d°d° = 0 , d°d" + d"d° = 0 .

Proof. Since dd=O, the relations follow by comparing tridegrees.
Lemma 3. On an integrable quasi-symplectic manifold,

(i) δ'L - Lδ' = -d",
(ii) δ"L - Lδ" = d\

(iii) δ°L = Lδ°,
(iv) δL-Lδ = d'~ d".
Proof. Since F is closed, DXF = 0 by (3.1), provided X is horizontal. Thus

δ'La - Lδ'a = - Σ ΛS»A)DZJF A a) + F A Σ c(ωA)DZA/x
A A

= - Σ ι(ωΛ)(.F A DXΛtcc) + F A Σ
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= - Σ W V ~ L Σ '(O>A)DXA,CC + L 2 ί(ωA)DXAta
A A A

= -d"a .

A similar computation gives (ii).
To obtain (iii), we use the fact that DEaF = 0, a = 1, , In — r. Then

δ°La = - Σ c{Ea)DEa(F A a) = - Σ Li(Ea)DEaa = L5°α .
α a

To obtain (iv) one simply adds (i), (ii) and (iii).
Lemma 4. On a quasi-symplectic manifold

(i) dL = Ld, Λ<5 = <5Λ,
(ii) d'L = Ld', d"L — Ld", d°L = Ld°,

Proof, (i) is an immediate consequence of the fact that F is closed, and (ii)
is obtained from it by comparing tridegrees. The relations (iii) are the duals
of the corresponding formulas in (ii).

For the proof of Lemma 5 we shall require the dual of Lemma 2, namely
the formulas

δ'δ' = 0 , δ'δ" + δ"δ' = 0 ,

δ"δ" = 0 , δ°δ' + δ'δ° = 0 ,

do<5° = 0 , δ°δ" + δ"δ° = 0 .

Lemma 5. On an integrable quasi-symplectic manifold,
(i) d'δ" + δ"df = 0,

(ii) d"δf + δ'd" = 0,
(iii) d'δ° + δ°d' = 0,
(iv) d"δ° + δ°d" = 0.
Proof, (i) and (iii) are both immediate from Lemma 3 and the dual of

Lemma 2 as are (iii) and (iv). We give only the proof of (iii). By Lemma 3,

d'δ° = δ"Lδ° - Lδ"δ° = -δ°δ"L + δ°Lδ" ,

δ°d' = δ°δ"L - δ°Lδ" .

Adding these relations, we get (iii).
Lemma 6. On an integrable quasi-symplectic manifold the Laplace-

Beltrami operator Δ has the expressions

Δ = 2(d'δ' + δ'd') + (d°δ° + δ°d°) = 2(d"δ" + δ"d") + (d°δ° + δ°d°) .

Proof. Let Λl denote the linear space of horizontal /?-forms. Then, from
Lemma 3, the expression δ'Lδ" + δ"Lδ' - δ"δ'L + Lδ'δ" is equal to



A GENERALIZATION OF KAEHLER GEOMETRY 351

d"δ" + δ"d" from (i) and to d'δ' + δ'd! from (ii). We need only show now
that Δ = 2{d'δ' + δ'd') + (d°δ° + δ°d°), and to see this we expand Δ =
dδ + δd:

dδ + δd= (d' + d" + d°)(δ' + δ" + δ°) + (δ' + IT + δ°)(d' + d" + d°)

= d'δ' + d'δ" + d'δ° + d"δ' + d"δ" + d"δ°

+ d°δ' + d°δ" + d°δ° + δ'd' + δ'd" + δ'd°

+ δ"d' + δ"d" + δ"d° + δ°d' + δ°d" + δ°d°

= (d'δ' + δ'd') + (d"δ" + δ"d") + (d°δ° + δ°d°)

= 2(d'δ' + δ'd') + (d°δ° + δ°d°)

by Lemma 5.
Lemma 7. On an integrable quasi-symplectic manifold, Δ commutes with

L and A.
Proof. Apply Lemmas 2-4. That ΔΛ = ΛΔ follows from the fact that

As a matter of fact, the Laplace-Beltrami operator lies in the centre of the
algebra of operators on an integrable quasi-symplectic manifold, and it is for
this reason that Hodge theory is useful in obtaining the cohomology of these
spaces.

Lemma 8. On an integrable quasi-symplectic manifold M the forms Fq =
FA Λ F (q times) are harmonic of degree 2q for every integer q < r/2.

The proof is by induction on the integer q. To begin with, F is harmonic.
For, since M is quasi-symplectic, F is closed. Thus d'F = 0, d"F = 0 and
d°F = 0. By (i) of Lemma 3,

δ'F = Lδ'l - d"\ = 0.

Similarly, (ii) and (iii) yield

δ"F = 0 and δ°F = 0 .

(That F is harmonic may also be seen by observing that F is a parallel tensor
field.) Finally,

ΔF« = Δ(LF^-1) = L(ΔF«-1) = 0 .

Theorem 2 The betti numbers bn{M) of a compact integrable quasi-sym-
plectic manifold M are different from zero for q = 0, 1, , r/2.

Proof. The theorem is trivial for q = 0. The proof is now a consequence
of the previous lemma and the fact that Fq Φ 0 for q < r/2. In fact, we need
only show that Fr/2 Φ 0, and this is so since Fr/2 Λ ηι Λ Λη2n~r defines an
orientation of M.
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5. Effective forms

There is a special class of forms defined as the zeros of the operator A on
the space of harmonic p-forms. They are called effective harmonic p-forms,
and the dimensions of the spaces determined by them are topological invari-
ants. This important fact hinges on a relation measuring the defect of the oper-
ator LkA from ΛLk where Lka = aΛFk. That these operators do not commute
is crucial for the determination of these invariants.

Lemma 9. On a framed metric manifold,

(ΛLk - LkΛ)a = k(r/2 + v - p - k + l)Lk~ιa

for any p-form a of tridegree (λ, μ, v), p < r/2 + v — 2k + 2.
Proof. By recursion on the integer k using Lemma 1:

ΛLk+ιa = ALk(La)

= LkΛ(La) + k(r/2 + v - p - k - \)Lka

= Lk[LΛa + (r/2 + v - p)a] + k(r/2 + v - p - k - l)Lka

= Lk+1Λa + (k + l)(r/2 + v - p - k)Lka .

Lemma 10. // a is an effective p-form of tridegree (λ, μ, v), then, for any
integer s > Q,

(~l)kΛkLk+sa

= (s + 1) (s + k)(s - n + p) -(s - r/2 - v + p + k - \)Lsa .

This follows inductively from the preceding lemma.

Corollary. There are no effective p-forms of tridegree (λ, μ, v) for p > r/2

+ v+l.
This is an immediate consequence if one takes k — r/2 + v + 1 and s > 0.
Theorem 3. On a framed metric manifold, a p-form a of tridegree (λ, μ, v),

P < r/2 + v, may be uniquely represented as a sum

(5.1) a= ΣLkψp_2k ,

where the fp_2k
 are effective forms of degree p — 2k and s = [p/2].

Proof. The theorem is trivial for p = 0 and 1. Proceeding inductively, as-
sume it is true for p < r/2 + v — 2. Then, associated to any p-form β, there is
a unique p-form a such that

(5.2) ΛLa = β, p < r/2 + v - 2 .

For,
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β = Σ %
A;=0

where the θv_2k are effective (p — 2/;)-forms. By (5.2) and Lemma 9,

Λ L a = Σ Λ L « + i ψ p _ 2 k = Σ « + Ό(r/2 + v - p + k ) L « ψ p _ 2 k .
fc = 0 k=0

Since p < r/2 + v — 2, r/2 — p + v + k Φ 0, so in order that (5.2) hold,

we need only take

ψp 2k = ^ * , k = 0 ,1, , s .
Ψp~2k (k + l)(r/2 + i; - p + k)

By uniqueness, this is also necessary. The remainder of the proof is omitted.
Denote by A*1*1'" the linear space of p-forms of tridegree (λ, μ, v).
Corollary 1. On a framed metric manifold, ΛL is an automorphism of Aλ'μ'v

for p < r/2 + v - 2.
Corollary 2. On a framed metric manifold, L is an isomorphism of Aλ'μ'v

into A**1*"*1*" for p < r/2 + v - 2.
Assume now that M is an integrable quasi-symplectic manifold of rank r.

Then, by Lemma 7, we obtain
Corollary 3. On an integrable quasi-symplectic manifold, a harmonic p-

form a of tridegree (λ, μ, v), p < r/2 + v, may be uniquely represented as a sum

s

a = Σ LkΨP-2k 9

where the ψp_2k are effective harmonic forms of degree p — 2k and s = [p/2].
Corollary 4. The betti numbers bp of a compact integrable quasi-symplectic

manifold satisfy the monotonicity condition bp_2 < bp, p < r/2.
For, L is an isomorphism sending harmonic (p — 2)-forms into harmonic p-

forms.
The difference bp — bp_2 may be measured in terms of the dimension ep of

the space of effective harmonic forms of degree p, p < r/2. For, by Corollary
3,

Λ£ = Λ J . Θ L Λ J £ 2 Θ Θ L * Λ£β2 s , s = [p/2] ,

where Λ& and Λ&e denote the linear spaces of harmonic and effective har-
monic p-forms, respectively. Hence

By Lemma 7 and Theorem 3, Corollary 2, dim L Λ& = dim Λg, from which
bP+2 = ep+2 + bp, p < r/2 - 1.
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Theorem 4. On a compact integrable quasi-symplectic manifold,

ev — bp — bp_2 , p < r/2 .

Remarks, (a) If the ηa, a = 1, , In — r, are closed forms, then the

effective forms ηix Λ Λ ηip are harmonic forms of degree p. For, under

these conditions, there is an underlying Kaehlerian structure given by (f,g).
In this case,

bp > bp_2 + (2n - r) , p < r/2 ,
\ p I

the parentheses denoting the binomial coefficient.
(b) Parallelisable manifolds are trivially quasi-symplectic and integrable

since their fundamental forms vanish. The operator Δ is given by d°δ° + δ°d°.
A p-ίorm is expressible as a linear combination of the forms rf1 Λ Λ ηip.
Thus all forms are effective. If the rf are closed, then M is Kaehlerian, and if
M is compact, then it is a multi-torus.

6. Examples

Let TV be a (2n + l)-dimensional normal contact manifold with fundamental
affine collineation φ, fundamental vector field E and contact form η. Consider
a 2/2-dimensional manifold M imbedded in N with immersion /: M —> N such
that E = i*E'. The structure induced on M turns out to be a framed structure
of rank 2n — 2 which is neither almost complex nor almost contact [3]. As
examples, we may consider R2n imbedded in R2n+\ or the torus T2n imbedded
in T2n+1. Let Φ be the fundamental 2-form of N. Then M is quasi-symplectic
since F = /*Φ is closed. Thus, if / is integrable, the framed structure on M is
not normal, for then i*η would be closed and / would vanish (see [3, formulas
(4.2)]). Observe that F is not a parallel field.

If the ambient space is a cosymplectic manifold, that is, if η is closed, then
Vψ = 0 and Vη = 0, where V denotes covariant differentiation with respect to
the Riemannian connection of N. Denoting by D the induced connection on M,
f is parallel with respect to D if M is totally geodesic. In this case, the framed
structure on M is normal. Hence there is an underlying Kaehlerian structure.
(There are no totally umbilical framed hypersurfaces of a normal contact man-
ifold.)

To illustrate that our results transcend Kaehler geometry we need only take
the direct product of a Kaehler manifold N and a parallelisable space P. (In
the odd dimensional case, P may be the 3-sphere, for example.) This suggests
the study of framed manifolds as bundle spaces over Kaehler manifolds with
parallelisable fibres.

The deformation theory of framed manifolds is also suggested as a problem
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for future study. Indeed, families of Kaehler manifolds parametrized by a

parallelisable space may be considered.
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