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HOLOMORPHIC MAPPINGS OF POLYDISCS
INTO COMPACT COMPLEX MANIFOLDS

K. KODAIRA

In this paper we prove an inequality in the manner of the Nevanlinna theory
expressing certain properties of holomorphic mappings of n-dimensional poly-
discs into compact complex manifolds of the same dimension and discuss some
of its applications.

1. Let W be a compact complex manifold of dimension n. For a point w
in W, we denote a local coordinate of w by (w', w?, - - -, w®). Take a complex
line bundle L over W. By a theorem of de Rham, the Chern class ¢(L) of
L can be regarded as a d-cohomology class of d-closed 2-forms on W. We say
that a real (1, 1)-form

1

r=iy g sWydws N\ dw? ,  i=+—1,
a,B=

on W is positive semidefinite (or positive definite) if the Hermitian matrix
(8.s(W)) por,... » is positive semidefinite (or positive definite) at every point
w ¢ W. Denote the canonical bundle of W by K. In this section we assume
the existence of a complex line bundle L over W together with a positive integer
m satisfying the following condition: The Chern class c¢(L) contains a positive
semidefinite d-closed real (1, 1)-form and

(1) dim H'(W,0(K™ ® L") > 0,

where O(K™ @ L") denotes the sheaf over W of germs of holomorphic sec-
tions of K™ @ L.

Cover W by a finite number of small neighborhoods U;,j = 1,2, ..., and
fix a local coordinate: w — (w}, - - -, w?) on each U;. Take a l-cocycle {I;;}
determining the line bundle L composed of nonvanishing holomorphic func-
tions l;;, = I;,(w) defined, respectively, on U; N U,. We then find a 0-cochain
{a;} composed of C~-differentiable functions a; = a;(w) > O defined, respec-
tively, on U, satisfying

aj(W)m = lljk(w)lzak(w)m 5 on Uj n U,

such that
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r=1i i 2iasW)dws N\ dwh = i3 log a;(w)
a,p=1

is positive semidefinite. Note that the d-closed real (1, 1)-form my belongs to
the Chern class ¢(L). We choose a holomorphic section

pe H'(W,0K"Q@L™), ¢+0,
and denote by ¢,(w) the fibre coordinate of ¢(w) over U;. It is clear that
v = a;(w) | o,W) /@[ 2)"dwy N\ dwi N - N dw) N\ dw

is' a volume element, i.e., a real continuous 2n-form which is nonnegative
everywhere on W. Fix a point p’e W such that ¢(p°) = 0, and assume that
p’e U,. We normalize the volume element v by the condition:

(2) a(P) (PP = 1.

Let C* denote the space of n complex variables, define |z| = max |z,| for
2=z, 525+ +,2,) € C", and denote by 4, a polydisc of radius r:

4, ={zeC"||z| < r}.

Take a polydisc 4, C C*, consider a holomorphic mapping f of 4, into W,
and assume that the Jacobian of f does not vanish at the origin 0 € 4; and that

(3) f0) =p°.
For simplicity we write
dV(z) = (i/2)™dz, N dZ; N\ - -+ N\ dz, N\ dZ, ,

and let f*(v) denote the volume element on 4, induced from v by the mapping
f. Then we have

) = §@dAV(z) ,  &@) = a;,(f@) | o;(FDF ™I (P ,
where
J4(z) = det (0W3/02)0 221,00 > Wy, -, wh = f(2) .
By hypothesis the Jacobian J,(z) of f does not vanish identically, and therefore
the equation £(z) = O defines a proper analytic subset of 4. Hence, by apply-
ing a suitable linear transformation to C” if necessary, we may assume that, for

any fixed values of z,, - - -, 2,_1, 2,1, + * +» 25, the function &(z,, -+ -, 2;, -+ +, Z,)
of z; does not vanish identically and that
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(4) J0) =1.
Set
g, = @/2)»dz, NdZ, N\ --- NdZ,_y Ndzg g, N oo N dZ,,

n
g = ag; »
izl

16/(2) /o2, = ; 2,.5(1(2))(@ws /92 (08 9Z,)

a, 1
where (W}, - - -, w}) = f(z). Moreover, setting z, = r,e"*, we introduce polar
coordinates (r;, 6,) and let

dS@) = 3. ridf; A o, .
=1

We denote the bundary of the polydisc 4, by d4,.
Now we define functions M(r), A(r) and N(r) of r, 0 < r < R, as follows:

M(@r) =rt flog &(2)dS(z2) ,

ady
A(r) = 4 f 3 10/2) 05,7V @)
4y
N(r) = drm™! f g+ 4rn f g,
(f*e)Ndyr () N4y

where (f*¢) and (J) denote, respectively, the divisors of the holomorphic func-
tions ¢,(f(z)) and J;(z).
Theorem 1. We have the inequality:

(5) f AWt + f N@-dt < M@ .

Proof. Let
#(z) = log &(2) .

The set I = {z|£(z) = O} is a proper analytic subset of 4, and p(2) is C=-
differentiable outside I'. For brevity we write

ZZ(ZnC), CZ(ZZs""Zn)'

We set
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w(r, ) = f 2”/,z(re”, &)de .

Lemma. y,(r, {) is a continuous function of (r,{), 0 <r <R, |{| <R,
and is a piecewise smooth function of r, 0 < r < R, when { is fixed.

To prove this lemma, take a point &% [{°| < R, and a real number r°, 0 <
r* < R, such that (%%, £ ¢ I" for 0 < 8 < 2z. Moreover, for each {, |¢| < R,
denote by p,({),h = 1,2,3, - - ., the roots of the equation:

0;(f(z, OV (2, )™ =0 .

Then for a small positive number ¢ we have, for |z,| < 1, | — {°| <,
p(@) = 2m™ 3 loglz, — pn(D] + =(2) ,

where the summation is extended over all roots p,({) with |p,({)| < r°, and ¢(z)
is a C~-differentiable function of z. Using the formula

fﬂnlog |ret’ — p|d6 = 2z max {log r, log |pl} ,
0

we hence obtain
(6) wm(r, ) = 4xm™! Zh} max {log r, log [0,(D} + 7.(r,0) ,

where ¢,(r, () is a C=-differentiable function of (r,), |r| <7, | — | <e.
Since the roots p,({), arranged in an appropriate order, are continuous func-
tions of ¢, | — &°| < e, the formula (6) proves the lemma.

Define

M(rv rZ’ DR rn) == fp(zl, Zz, trey Zn)d01d02~ . 'don 5

where the integral is extended over the domain: 0 < 8, < 2x, 0 < g, < 2nm,
-.+,0< 0, <2nr. Since

M(r, 1y, -+ oy 1) = fﬂl(rvzza e, Z,)d0,- - -db, ,

we infer from the above lemma that M(r,, r,, - - -, r,) is a continuous function
of (r, 1y -+ +,ry) # (0, ---,0), while, by (2), (3) and (4), the function p(z) of
z is C=-differentiable in a neighborhood of 0. Consequently M(r,, --.r,) is a
continuous function of (r,, - --,r,), 0 < r, < R.

Let 9, denote the exterior differentiation with respect to the variable z,. We
then have
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i0,0,44(2) = 10,0, log a,(f(z)) = |0f(z) /dz,[lidz, N\ dZ, .

Define
B, = [ 200 = [ 21of@)/ozfidz, A dz,
lz1l<r lzal<r

Setting z, = x + iy, we have

2i9,0,p = dxdy, xdp = (Qp/ox)dy — (Op/dy)dx .
Moreover the function pu(z,, {) is C~-differentiable in z, for z, # p,(£). Hence,
letting

§rau@ =t [ sdu@ 0
I lzi—pl=e¢

we obtain

B0 = [ @ — 5 frduta) .

lzsl=r

Note that § *du(z) = 0 for p # p,(0), h=1,2, ---. We denote by v(r, {, f*¢)

and yu(r, C,P J), respectively, the number of the roots on the disc |z,| < r of the
equations ¢(f(z;, {)) = 0 and J,(z,{) = 0. Since

1(z) = loga;(f(2)) + 2m~'log |¢;(f(2)| + 2 log|J,(2)| ,

we have

p3 § sdp(@) = dam=(r, ¢, ) + dm(r, C,7) .
el<r

Moreover we see readily that

f #dp(z) = rapm(r, O)Jor .
lzal=7r
Hence, setting
”(r5 C) = 477-'m_1”(r, - f*SD) + 47‘[9(", g, J) s

we obtain

B(r’C) + V(r9C) = rayl(r, C)/ar )
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and therefore
(7) f BG4, Ot + f W, Ot = p(r,0) — (s, ) -

This proves the inequality

#1(’:22,"',Zn)Zﬂl(S,Zz,"',Zn), forr>s>0.
It follows that
M(r,ry, - 1) > M(s, 1y -+, 1) forr >s.

Thus we infer that M(r, - - -,r,, - - -, r,) is a monotone nondecreasing function
of each variable r,. Since, by (2), (3) and (4), £(0) is equal to 1, we get

(8) M(rl,rzs“’,rn)20°

Define

At 1) = fB(t, DAV () ,

IKI<u

Nt u) = f o(t, DAV ()

131 <u

My, u) = f (t, 0dV(©)

IX1<u

where
avQ) = o, = (/D" 'dz, Ndi, A - Ndz, NdZ, .

Since idz, A dZ, = 2r,dr,df,, we have

u
Ml(r’ u) = f M(r’rzar39 "‘5rn)r2dr2r3dr3"'rndrn )
0

where the integral is extended over the domain: 0 < r, < u,1 = 2,3, .-.,n.
Hence, using (8), we obtain from (7) the inequality

(9) f "A(t, wi-dt + f NG, wie-de < My(r, u)

Set
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M(r) = fTM(tz, R 00 O ST | X | RIS 57/ A
0
A®r) = 4 f 18f(2) 32,V (2)
dr

N, = dzm™ f o, + 4r f v, .

(f*e)Ndy () Ndy

Since M,(r) = M\(r,r), A,(t) = A(t,t) < A(t,u) and N,(t) = N(t, 1) < N(t, u)
for t < u, we derive from (9) the inequality

f rAl(t)t‘ldt + fTNl(t)t“dt <M(® .

We infer in the same manner that
(10) f "A(0-de + f N@Odt < M)
0 0

Since

Mo = [u@ds@ = 5 [ w@rds, A do,,

ady lzl=lz31=7r

we have
M) = 3 M0,
while it is obvious that
A@) = ;1 A0, No= ;1 N .

Hence the inequality (5) follows from (10). q.e.d.
For a positive number B, we define

2, = f £(2)PdS(2) ,
and set

S = f dS(z) = 2ngmrn-t

ady
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Theorem 2. We have the inequality
11 fTA(t)t‘ldt + fTN(t)t‘ldt < B7r8(r) log (2,(r)/S(N) .
0 (]
Proof. Since log x is a concave function of x, x > 0, we have

rM(r) = flog &(2)dS(z) = ‘B_lfk’g £(2)°dS(2)

ady

< 81S(r) log (S(r)-1 f g(z)ﬂds(z)),

which together with (5) gives the inequality (11). q.e.d.

We have assumed so far that the system of coordinates (z,, ---, 2z, - -, 2,)
is general in the sense that, for each 1 and any fixed values of z,, - - -, z, 4,
Zis1 * * > 2, the function &(z,, - - -, 2, - - +, 2,,) Of Z, does not vanish identically.

However, this assumption is irrelevant to the inequality (11). The inequality
(11) holds for any system of coordinates (z,, - - -, z,) satisfying the conditions
(3) and (4). To prove this, suppose that the coordinates (z,, - - -, z,) are ob-
tained from a fixed system of coordinates (z{”, - - -, z{") by means of a linear
transformation u = (u,,) with det (u,,) = 1:

n
= 2 Uz .
v=1
There exists an everywhere dense subset G of the special linear group SL(n, C)
such that, for every u e G, the corresponding system of coordinates (z,, - - -, z,)

is general and, consequently, the inequality (11) holds. For our purpose it
suffices, therefore, to verify that each term of (11) depends continuously on u.

r
It is obvious thatf At~ 'dt and Q,(r) are continuous in u. Denoting the
0

positive part of log x by log*x, we have

f "N@Odt = dzm f log* (/|27 ,

(f*e) +m(J)

which shows that f TN(t)t"dt depends continuously on u. q.e.d.
0

Note that

(12) f t@rav@ = [0 wad .

Since A(¢) and N(¢) are nonnegative, the inequality (11) implies that
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(13) Qp(r) = S() .

Combining this with (12), we get

(14) f §PAV () >z
dr
In particular, setting 3 = 1, we obtain

(15) f f*) = wrn

2. A holomorphic mapping is said to be fotally degenerate if its Jacobian
vanishes identically. Let v, be a volume element which is positive everywhere
on W. Then, for any holomorphic mapping f of 4, into W, the quotient

f *(y) / f’vo may be regarded as a mean degree of the mapping f: 4, — W.
4 w

ISeﬁne

deg (f|4,) = ff*(vo)/f?)o ,

and further set
P,, = dim H'(W, O(K™)) , for m;=1,2,3,....

Theorem 3. Let W be a compact complex manifold of dimension n. If
there exists a holomorphic mapping f of C* into W which is not totally de-
generate, and if

(16) lim}gf rrdeg (f|4,) =0,

then all the plurigenera P,, of W vanish.
Proof. Suppose that one of the plurigenera, say P,,, is positive. Then, lett-
ing L be a trivial bundle, we have the inequality (1). Hence, by (15), we obtain

f ) > 7,

which contradicts (16), since the quotient v/v, is bounded on W. q.e.d.

By a surface we shall mean a compact complex manifold of dimension 2.
A surface W is said to be regular if the first Betti number b,(W) of W vanishes.
A regular surface W is rational if and only if all the plurigenera P, of W
vanish (see [9, Theorem 54]).
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Theorem 4. If a regular surface W contains C* as its open subset, then W
is a rational surface.

Proof. Let W be a regular surface containing C? and let f: C* G W denote
the inclusion map. It is obvious that deg (f| 4,) < 1 for each polydisc 4, < C*.
Thus by Theorem 3 all the plurigenera P,, of W vanish, and hence W is a
rational surface. q.e.d.

Letting U be a non-empty open subset of a compact complex manifold W,
we call W a compactification of U if the complement W — U of U is an ana-
lytic subset of W. F. Hirzebruch mentioned in his list [6] of problems the
classification of all compactifications of C*. Concerning this problem, A. Van
de Ven [13] pointed out that all the known examples of compactifications of
C? are rational surfaces. ,

Theorem 5. Every compactification of C? is a rational surface.

Proof. Let W be a compactification of C?. It is then obvious that b, (W) =
b,(C*» = 0. Hence, by Theorem 4, W is a rational surface. q.e.d.

The condition C* C W is much weaker than that W is a compactification of
C%. In fact, there exists an infinite sequence of mutually disjoint open subsets
U, U, U, --- of C* each of which is biholomorphically isomorphic to C* (see
§ 4 below). Thus, if C* G W, then U, G C* G W, and the existence of U, G W
together with the vanishing of b, (W) already implies the rationality of W.

3. Letting W be a projective algebraic manifold of dimension n, we call
W an algebraic manifold of general type if

an lim sup m~" dim H'(W, O(K™)) > 0,

where K denotes the canonical bundle of W. Recently litaka [7] introduced
the concept of canonical dimension. The condition (17) is equivalent to saying
that the canonical dimension of W coincides with the dimension n of W. In this
section we apply Theorem 1 to algebraic manifolds of general type and derive
a recent result of Griffiths [5].

Let W be an algebraic manifold of general type of dimension n, X a general
hyperplane section of W, and L = [X] the complex line bundle over W deter-
mined by the divisor X. Then, letting K denote the restriction of K to X, we
have the exact sequence:

0 — HW,0(K™ ® L) — H(W, 0(K™)) — H'(X,0KD) — - - -,

while dim H(X, O(K7%)) is a function of m of order O(m™~'). Hence, by (17),
dim H'(X, O(K™ @ L") is positive for a large integer m, and thus we have
the inequality (1). Obviously we may assume that the real (1, 1)-form

i 8. wdws N\ dwé = 90 log a;(w)

is positive definite. Therefore, setting
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g;(w) = det (g;,,(W)) ,

we find a positive constant ¢ such that
(18) a;(w) | o;w)'™ < cg;(w) , forweWw .

Now consider a holomorphic mapping f: 4, — W satisfying the conditions
(3) and (4), and set

o0 = 2, T() = f £V dV () .
Since

8,0 11,@F < T 10/ foz,f

we have, in consequence of (18),

) < o oM@/, @ < nle 310 05F
from which follows

T(r) < (4n)~cA(r) .

Combining this with (11) we obtain

(19) f T (Otidt < (4r)~'eS(r) log ((r) /S(@)) .
0

Set

o) = f T@Wede, T = 2nz-rmQQ)
0
and note that, by (14), T(r) > z"r**, Q(r) > (2n)~'z"r** and ¥(r) > 1. The
inequality (19) implies that
l‘Sro, r0=r0(09n),

where ry(c, n) is a constant depending only on ¢ and » (see Nevanlinna [11,
p- 235]). In fact, if 2(r) < r*Q(r)*, then the inequality (19) yields

r*U(r) < nc(41log¥(r) + (6n + 3)logr + 3nlogx) .
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Since ¥'(r) > 1 and e log x < x for x > 0, this proves that
r < r, = max {1, n*ce”'(6n + 7) + 3nlog=} .

Therefore, if r > r,, then (19) implies that Q2(r) > r*Q(r)*. It follows that either
Q@) > TE)? or T(r) > rQ(r)%. If Q(r) > T(r)?, then

dr = Q()dT(r) < T(x)dT(r) .
If T(r) > rQ(r)*, then
dr = T(r)'rdQ(r) < Q(r)~*dQ(r) .

Hence we get
r—n=[la <~ [axo + 00

<T@ + Q) < @2n + Da",
which proves that
r<r,, rp=r 4+ 2n 4+ D" .

Thus we obtain the following

Theorem 6. Let W be an algebraic manifold of general type, and p® a
point on W such that o(p°) + O for an element ¢ ¢ H(W, O(K™ @ L™")). Then
there exists a constant r, with the following properties: For any holomorphic
mapping f: 4, — W with f(0) = p® and J,(0) = 1, the inequality R < r, holds,
where J,(0) denotes the Jacobian of f at the origin 0.

This theorem has been proved by Griffiths [5] under the assumption that the
canonical system | K| is ample. We remark that his proof also applies to the case
in which |K]| is not assumed to be ample, and establishes the above Theorem 6
(see Kobayashi and Ochiai [8, Addendum]).

4. Bieberbach [2] constructed an example of a biholomorphic mapping f
of C? onto a proper open subset U of C*. His construction is as follows. Let
7 2 — 7z be a biholomorphic automorphism of C? of which the origin 0 is a
fixed point: 70 = 0. Obviously 7 induces a linear transformation of the tangent
space To(CH(=C? of C* at 0. Let 2 and p denote the eigenvalues of this linear
transformation, and assume that |1] < |p| < 1. Then there exists a biholomor-
phic mapping f,: z — f,(z) of a neighborhood N of 0O into C* with f,(0) = 0
such that g = f5'9f, takes the normal form

8:2=1(2,2) > gz = Az, + Bb, 1z ,

where p is a positive integer and § is a constant which vanishes unless 2 = p?
(see Lattes [10], Sternberg [12]). Obviously g is a contraction in the sense that
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lim g"z =0, for ze C*.

For every positive integer m, we have
(20) fl@ = n"f(g"z) ,  forzeN,
provided that gN C N. Since 5 ™f,g™ is defined on g=™N and U g "N = C,

it follows from (20) that f, can be continued analytically to a biholomorphic
mapping f of C* onto an open subset U of C* (see Sternberg [12, p. 816]).
For every integer m we have

) = p~™f(g™z) , forzeC?.

It follows that
U = {z| lim »™z = 0} .
Now we specify 7 to be the automorphism
7:2=10(2,2) > 92 = (2, 2, + (X — D(sinz, — z)) ,

where 2 is a constant with 0 < [2] < 1. Note that the normal form of this 7 is

g:z2=1(2,2) — gz = (Az,, —27,) .
We define a translation

t:2=1(2,2,) — (z, + 27,2, + 27) .

Then 7 and ¢ are commutative: 5z = ¢z, and therefore, for each integer &,
%0 = (2k=n, 2kn) is a fixed point of » and

o*U = {z| lim 7™z = ¢*0} .
It follows that *U and ¢/U are disjoint for k + j. Thus we obtain an infinite
sequence of mutually disjoint open subsets z*U, k = 0, +1, +2, - . -, each of

which is biholomorphically isomorphic to C2.
Letting {r} denote the infinite cyclic group generated by r, we have

C/{c) =C* x C.

Clearly we may regard U = U <*U/{r} as an open subset of C* x C. Thus
k

we see the existenc of a biholomorphic mapping: C* G C* x C. Combining
this with Theorem 4, we infer that if a regular surface W contains C* x C as
its open subset, then W is a rational surface. This result can be verified also in
the same manner as in the proof of Theorem 4. In fact, if C* x C C W, then
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f: (zy, z,) — (exp zy, z,) is a holomorphic mapping of C? into W with deg (f|4,)
= O(r). Thus by Theorem 3 all the plurigenera of W vanish, and hence W is
a rational surface.
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