J. DIFFERENTIAL GEOMETRY
5§ (1971) 211-227

QUARTIC STRUCTURES ON SPHERES

SAMUEL 1. GOLDBERG

1. Introduction

A C* tensor field f of type (1, 1) on a connected C~ manifold P is said to
define a polynomial structure of degree d if d is the smallest integer for which
the powers I, f, - - -, f* are dependent, and f has constant rank on P, where [
is the identity transformation field. An almost complex manifold is a polynomial
structure of degree 2. In the odd dimensional case, the almost contact mani-
folds provide examples of polynomial structures of degree 3. More generally,
a globally framed f-manifold is a polynomial structure of degree 3. These are
almost product spaces. In addition, almost product spaces are a source of fur-
ther examples of polynomial structures [8].

The affine spaces R** and R*"~! may be endowed with almost complex and
almost contact structures, respectively, so these give the simplest examples of
the manifolds considered the former having rank 2» and the latter rank 2n — 2.
On the other hand, an odd dimensional sphere $?*~! carries an almost contact
structure, so it is a polynomial manifold which is globally framed. However,
the even dimensional spheres are not almost complex except in dimensions 2
and 6, and whereas the contact structure on $**!is “integrable”, it is not even
known whether S°® can be given an almost complex structure which comes from
a complex structure.

In a previous work [6], polynomial structures f of degree 4 were introduced
and examples of them provided. These were of two types, namely,

f+f=0, F+D=0,

the first one having rank 2n — 1 and the second maximal rank 2xn. Moreover,
the former is globally framed and the latter is not. We show below that, except
for a set of measure zero, the even dimensional spheres may be endowed with
a quartic structure f, depending on a parameter 2, that is,

F+2DF+D =0, o<igt,
and
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Ft+i=0

on the set of points for which 2 = 0. On the other hand, each of the connected
components S\ {p € $** | A(p) = 0} may be characterized as a complete totally
umbilical noninvariant hypersurface of a cosymplectic manifold of constant

curvature.
It is these structures which we are preoccupied with below, that is, with even

or odd dimensional manifolds carrying a quartic structure of arbitrary rank.
2. Noninvariant hypersurfaces

We motivate our continuing study of polynomial structures by considering a
2n-dimensional manifold P imbedded as a hypersurface in an almost contact
manifold M(y, E, ), i: P — M being the imbedding, ¢ the fundamental affine
collineation of M, E its fundamental vector field and » the contact form. It is
assumed that E is nowhere tangent to the hypersurface i(P). Denoting by i,
the induced tangent map of i, we therefore have

2.1 gi, X =i JX + «X)E, ¢E=0,

where J is an almost complex structure on P and a(JX) = 5(i,X). Thus P
admits an almost complex structure J and a 1-form « whose vanishing at p ¢ P
means that the tangent hyperplane at p of the hypersurface is invariant by ¢,,.
If @ = 0, the submanifold i(P) is called a noninvariant hypersurface [3].

It is well-known that a metric G may be introduced on M with the properties

Glpx,y) = —G(x,¢y) ,

where x and y are vector fields on M, that is, ¢ is skew symmetric with respect
to G, and

(2.2) 7=G(E,") .
Let N be the unit normal to i(P) with respect to G. Then we may write
2.3) pi X = i, fX + «/(X)N

for some (1,1) tensor field f and 1-form ' on P. Moreover, since ¢N is orthog-
onal to N with respect to G, it is tangent to i(P) and so can be expressed as

(2.4) oN = —i, U

for some vector field U on P. There is clearly a relation between f,J, « and o’.
Indeed, since E is nowhere tangent to P,

2.5 E=iV+IN, 1%0,
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for some vector field V' and scalar field 2 on P. Clearly, [1] < 1.
From (2.2) and (2.5), »(N) = 2. Comparing (2.1) with (2.3) yields, by virtue
of (2.5),

f=l+a®V, o = Ax .

If we put 8 = i*y and (Ca)(X) = a(JX), then 8 = Ca. Summarizing, we
have proved (cf. [1])

Theorem 1. Let P(J, ) be a noninvariant hypersurface of the almost con-
tact metric manifold M(p, n, G). Then there exist tensor fields f, U, V,a,a’, B
and 2,0 < |4| £ 1, on P defined by

D i X =i fX + XN, o = 2a,

i) ¢N= —i,U,

Gi)) E =i,V + 2N,

(iV) ‘B = Ca = i*r},

W) 2= 5NN).

The vector fields U and V vanish at those points on P for which 1 = =+ 1,
and at these points f coincides with J.

Noting that ¢* = —I + 7 ® E, Theorem 1 yields

Proposition 2. The structure tensors on the noninvariant hypersurface P
satisfy

Q) f=-I+adQU+8RV,
(i) aof=28, Bof= —2d,
(iii)) fU = =2V, fV = U,
vy JU)=1—-2, JdW¥V)=0,
W pU)=0, pV)=1-—2
Corollary 1. P(f,U,V,a, B, 2) is a quartic structure of maximal rank.
In fact,

F+Q+2F+2I=0,

that is,

F+2DfFF+D=0.

If fX =0, then X = o/(X)U + B(X)V. Hence 0 = o/(X)f?U + BX)fPV =
—2('(X)U + B(X)V), so 2 being nowhere zero, X must vanish.

In the sequel, unless explicitly mentioned to the contrary, we assume that
A# =1 and, in this case, we denote by P’the manifold defined by
{p e P|0 < a(p) < 1}. Geometrically this means that E and N are distinct vector
fields in the sense that E;,, # N, for all p e P’. This means that the Euler-
Poincaré characteristic y(P’) of P’ is zero since U (and V) are nonsingular
vector fields on P’. Topologically, this is the case for the odd dimensional
spheres, but y(5*") # 0. Note however that there are points on $** — {p e $** | A(p)
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= 0}, considered as a noninvariant hypersurface, for which 1 = +1.
If weput @ = (1 — 2)~'a’ and § = (1 — )78, then P’ is pseudo-globally
framed, that is, @(U) = 1,&(V) = 0, f(U) = 0, f(¥) = 1 and

f=—I+0a®U+EQV), p=1—2.

Corollary 2. The noninvariant hypersurface P’ is pseudo-globally framed.
Moreover,

and
fU= =1V, fV =20 .

If we put
1=f—2‘§®U

and compute its square, we get 2X = —X + a(X)U + B(X)V. Moreover,
fiU = —2V and f,V = 0. Hence X = —f X — A@(X)V, from which fiX =
—fiX. If f,X =0, then X = &X)U + S(X)V. Applying f, again gives 0 =
—2a(X)V, so @(X) = O since 2 and V are nowhere zero. Thus, rank f, = 2n — 1.

An even dimensional C* manifold P is said to be globally framed if there
exist a linear transformation field f, global vector fields E, and 1-forms »?,a =
1, .-, 2y, satis fying

7]a(EIJ) = 5(; s
f2= —1 + 7]G®Ea )

the summation convention being employed here and in the sequel.

Theorem 3. The noninvariant hypersurface P’ carries a globally framed
quartic structure (f, U,V , &, ) of rank 2n — 1, where f, = f — A8 ® U, that is,

) fi=—I1+a®U+FQV,

(i) @of, =0, ‘Boflz—z&,

(i) fU= -, iV =0,

iv) «U)=1, aWV)=0,

® AW =0, j=1,

and

firfi=0.

Corollary. The noninvariant hypersurface P'(J, a, g) of the almost contact
metric manifold M(p, y, G) may be endowed with a quartic structure of maxi-
mal rank 2n given by the (1, 1) tensor field
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o

J—z( JU
a® +1—22

Ca@U) )

where U is the vector field on P’ (of length 1) given by ¢N = —i U and the
function 2 is defined by E = AN — i,JU),n = G(E, -).

If we put f, = f, + 2@ ® V, then f,U = 0 and f,V = 0. Moreover, f2X =
—X 4+ aX)U + B(X)V. Applying f, again gives ;X = —f,X.

Theorem 4. The noninvariant hypersurface P’ carries a globally framed f-
structure (f,, U,V , a, B) of rank 2n — 2, that is,

B fi=—-1+a@U+ RV,

() aof,=0, Fof,=0,

(111) fo =0, sz =0,

v a«U) =1, aWV) =0,

W AW =0, V) =1,

where

h=f—2FQU —a®V).

Corollary. The noninvariant hypersurface P'(J, a, g) of the almost contact
metric manifold M(p, 7, G) may be endowed with an f-structure of rank 2n — 2
defined by the (1, 1) tensor field

J—Tl?«h®U+a®Jw,

where U is the vector field on P (of length 1) given by ¢N = —i U and the
scalar field 2 is given by E = AN — i, JU),» = G(E, -).

3. Symplectic quartic structures

Since the collineation ¢ is skew symmetric with respect to the metric G, the
field f has this property with respect to the induced metric. For, g(fX,Y) =
G(i,fX,i,Y) = Glpi,X — &/(X)N,i,Y) = —G(i, X, i, Y) = —G(i, X, i, fY)
= —g(X,fY). We put

FX,Y) = g(fX,Y)

and call F the fundamental form of the noninvariant hypersurface P(f, U, V, g).
Clearly,

F =i*0,

where @ is the fundamental form of the ambient space.
From (2.3)-(2.5),
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a’:g(U,')s ,B:g(Vs')'

Moreover, from formula (iv) of Proposition 2, U and V' are orthogonal, that is,
gU,V)=0. If we put §=(1—2)"'gon P/, then U and V form an orthonormal
pair with respect to the metric g. Setting F, = g(f,X,Y), we get

F,=F+2x1—M®aAN§.

Assume now that M is normal and @ is closed; for example, assume that M
is a cosymplectic manifold. Then, F is closed, so by Corollary 1 to Proposi-
tion 2, the ‘quartic’ structure on P is symplectic, that is, F is closed and of
maximal rank. (The ambient space cannot be a contact metric manifold since
P is a noninvariant hypersurface [3].) Observe that F(X,Y) = g(fX,Y) =
8UX,Y) 4+ a(X)A(Y), so F(X,Y) = $gUX,Y) — e(X,I] + (a N\ PX, Y).
Since a # 0, (J,g) is not an hermitian structure on P. However, (J,g*) is
hermitian where g* = g + a ® «. Indeed, g*(JX,Y) = g(JX,Y) + AX)a(Y)
= F(X,Y) — a(X)(Y) + a(Y)BX) = FX,Y) — 2« A B)(X, Y). Putting

2*X,Y) = g*(X,Y),
it is easily seen that
F=0%¥+2a N\ B.
Since f is of maximal rank and i is a regular map, the symmetric tensor
r=8—pX®P

defines a Riemannian metric, in fact, an hermitian metric with respect to J.
Since @ is closed, 7 is an almost Kaehler metric and F is the fundamental form
of the almost Kaehler manifold P(J, 7). M being normal, P(J, y) is a Kaehler
manifold [3].

Denote by K the ring of real-valued functions on P. To each vector field X
on P, we assign the 1-form & defined by

E == 5(X)F ’
where ¢ is the interior product operator given by
[«(X)01(X,, - - - ’Xp—l) = po(X,X,, - - ’Xp—l) >

0 being a p-form, p > 1, and «(X)k = 0, k¢ K. We therefore have an iso-
morphism # of the K-module of vector fields on P onto the K-module of 1-
forms on P defined by x(X) = &. This isomorphism may be naturally extended
to an isomorphism, again denoted by g, of the K-module of skew symmetric
contravariant tensors of order p with the K-module of p-forms.
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Following P. Libermann (see [7]) an operator % analogous to the Hodge star
operator is defined as follows:

%0 = z(,u“ﬁ)ﬁ .
n!

If 4 is a p-form, then %6 is a (2n — p)-form and
0 =0 .

We may also define the operator L = ¢ (F), the exterior product by F, on the
symplectic manifold P(f, g). It clearly coincides with the corresponding operator
of Hodge-Weil on Kaehler manifolds. We shall see below that its “dual” / with
respect to ¥ coincides with its dual with respect to *. In fact,

(3.1) A=%'L% = L% .
Thus
A0 = (p'F)0, p>2.

Analogous to the codifferential operator 4, the symplectic codifferential ope-
rator § is defined by

(3.2) § = ¥d% = %d% .
Clearly
?=0.

We relate the operators %, 4 and § on the symplectic manifold P to the cor-
responding operators of Hodge-Weil on the underlying almost hermitian struc-
ture (J, 7). Since F(X,Y) = y(JX,Y), we obtain

(3.3) F_:L — (_l)n(n—l)/z*l ,
n!

where *1 is the volume element of y. Clearly,
# = (=1)?

on p-forms.
The operator C previously applied to « may be extended to a mapping, again
denoted by C, on p-forms 4 as follows:

COX,, -+, X,) = 0UX,, -, JX,) .
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It has the obvious property
C = (—1)%0 .
Moreover, it commutes with * and L. From the definition of %, we obtain
F = (=Dre-bixC-t
Hence
A6 = 57L¥0 = Cx'LxC~§ = CAC™0 = CC™'A6 = A0,

so the operators / and / coincide.
From (3.2), we get

3.4 §=cosc.
For, 66 = Cx~'d«C~'¢ = C5C~'9. Hence, from the formula
dAd — Ad = —CaC™!
valid for almost hermitian manifolds, the purely symplectic relations
dd — Ad = —§,

and

are obtained.
Finally, from (3.3) and (3.4),

féagl =0
P

if P is compact.

If P’ is compact, its topology can therefore be studied from the symplectic
point of view (f,g) in comparison with the symplectic point of view (J, y) of
Hodge-Weil, the interesting thing being that F' is the fundamental from of both

structures.

4. Hypersurfaces of cosymplectic spaces

Denote by 7 the Riemannian connection of M(p, 7, G) and by D the induced
connection on the hypersurface P. Then, the equations of Gauss and Weingarten

arc
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(Dyi )Y = h(X,Y)N
and
DyN =V 4N = —i HX

respectively, where 4 and H are the second fundamental tensors (of types (0,2)
and (1,1), respectively) of P with respect to the normal vector field N. The tensor
h is symmetric and A(X,Y) = g(HX,Y).

Covariant differentiation of (2.3) along P yields

Wiy p)ieX — WX, V)i, U + i, fDyX + a/(DyX)N
= h(fX,Y)N + i,(Dy)X + i, fDyX + (Dya')(X)N
+ «(DyX)N — «(X)i, HY .

Covariant differentiation of (2.4) along P gives
P iwx9)N — iy HX = —W(X,U)N — i, DU ,
from which follows
W, x9N — i, fHX — o/ (HX)N = —h(X,U)N — i, DU .
Differentiating (2.5) gives rise to
VixE=HMX,V)N + i,DyV + (XN — 2 HX .
Similarly we have, from g = i*y,
DY) + DY) = Vi x(iypX) + h(X, Y)n(N) + p(DyY) ,
and, from 1 = »(N),
X1 = (7ix)N) — BHX) .
If the ambient space is cosymplectic, then
V=0, VFp=0, VE=0
(see [3]). Thus

(DxNY = «/(Y)HX — h(X,V)U ,

(Dxe')(Y) = —h(X,fY) , (Dxp(Y) = (X,Y) ,
(4.1) D.U=fHX, D,V =iHX,

KX, U) = (HX), h(X,V) = BHX) ,

X1 = —pBHX) .
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Observe that g is closed.

The manifold P’ is said to be totally flat if its structure tensors are parallel
fields with respect to the Riemannian connection.

P’ is called normal if its induced globally framed f-structure is normal [4].

Proposition 5. If the ambient space of the symplectic quartic manifold P
is cosymplectic and h = pa @ «, then f is covariant constant and 2 = const.
On the other hand, if P is totally umbilical, then V is a conformal vector field.
If H commutes with f, then U is a Killing vector field, and conversely.

Although f has vanishing covariant derivative, (f, g) is not normal (see § 6).
However, we do have

Corollary 1. If P is totally geodesic and the ambient space is cosymplectic,
then P is totally flat and normal.

If P satisfies the conditions in Corollary 1, then DJ =Osince J = f —a® V.
Hence (J, g*), as well as (J, y), is a Kaehler structure on P.

Corollary 2. The hermitian structure (J, g*) on the totally geodesic hyper-
surface P of the cosymplectic manifold M is Kaehlerian.

Corollary 3. If the hypersurface (P, g) is totally umbilical, that is, if h = ag
(with respect to N) and (M, G) is of constant curvature, then for n > 1,(P, g)
is of constant nonnegative curvature g°.

Proof. Indeed, V; xi, Y = i,D;Y + ag(X,Y)N, so

ViaVixi Y = iyD;D3Y + o{g(Z,DxY) + gD, X,Y) + gX,D,Y)
+ Zo-g(X,Y)}IN — o8 X, V)i, Z .

Denoting by R and R the curvature tensors of the metrics G and g, respectively,
we get

RG,7,i X)i,Y = i {R(Z,X)Y — @’lg(X,Y)Z — g(Z,Y)X]}
+ {Zo-g(X,Y) — Xo-8(Z,Y)}N .

Thus, R being zero,
R(Z,X)Y = {g(X,Y)Z — g(Z,Y)X}

and Zo-g(X,Y) = Xo-g(Z,Y), each of these relations implying ¢ is constant
on M. -
Under the conditions of Corollary 3, equations (4.1) become

(DxNY = old/ (V)X — g(X,Y)U],

(Dxa)(Y) = oF(X,Y) , (Dxp)Y) = 208X, Y) ,
DU = ofX , DyV =0iX ,

X1= —aBfX) .

“4.2)
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Observe that F = —Da’, so F is an exact 2-form, that is, F does not give
rise to a nontrivial cohomology class. Moreover, the second and third state-
ments of Proposition 5 clearly hold. It may also be checked that de is of bi-
degree (1,1) with respectto J =f — a @ V.

In [3] it was shown that a noninvariant hypersurface of a cosymplectic mani-
fold is a complex manifold. Thus P(J, g), as well as P’(J, g), is endowed with
the integrable almost complex structure of formula (2.1).

The even dimensional sphere: We regard E*"*! as a cosymplectic space and
let S be the unit sphere in E**' minus the set of points (the equator) on which
2 = 0 (see also [1]). Then, since S*" is a totally umbilical hypersurface of E?"+!
with ¢ = —1, equations (4.2) become

(DxNY = gX, U — ()X,

(DXOC/)(Y) = _F(X, Y) 5 (DXﬁ)(Y) = _Zg(X’ Y) s

DyU= —fX, DyV = —iX,

Xi=pX).
Thus, for every n, S* (as well as () = §™\{pe S |A(p) = 0, +1, —1})
carries the integrable almost complex structure of formula (2.1). (Observe that
none of the points on $** for which 2 = 0 can be a zero of the closed conformal
vector field V'; see [10, p. 170].)

Corollary 4. If the hypersurface (P, g) is totally geodesic and its ambient
space (M, G) is of constant curvature, then (P, g) and (P, 1) (as well as (M, G))
are locally flat.

Proof. Let D denote the Riemannian connection of y. Then, by the defini-

tion of the Riemannian connection and the formulas DJ = 0 and (Da)(Y) =
—h(X,JY)(see [3]), we get

so that
4.3) D,Y =D,Y — h(X,Y)JU = D,Y ,

since (P, y) is a totally geodesic hypersurface [6].
Again, since 2 = 0, the Gauss equation (with respect to N) is

VixiyY = i,DyY = i, DY .
Thus, denoting the Riemannian curvature tensor of (P, 7) by R,

RG,X,i V)i, Z =V, 5, ViplisZ — VixipisZ = ixRX, Y)Z ,
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from which 7 is a locally flat metric since R = 0 and i is a regular map.
Corollary 5. Under the conditions of Corollary 3, if P(J, g) is an invariant
hypersurface or 2 = +1, then P is loocally flat (n > 1).
The is an immediate consequence of the formula

RX,YV)Z
— RX,V)Z + o {g(Y, ) (2_1213 ®V + I)X — ¢z, X) (31_‘8 ®V + 1) Y}

obtained from (4.3) by putting & = gg.

Remark. Since in the totally flat case, 4 is constant, we may consider the
one parameter family of hypersurfaces P,, 0 < || < 1. For each value of 1, P,
is a noninvariant hypersurface carrying a globally framed quartic structure f,
of rank 2n — 1, that is,

1= —1+a®@U+5QV,
fU=—av, fV=0,
al)=1, ay)=0,
juy=0, j»m=1.

P, also carries a globally framed f-structure f* of rank 2n — 2 where
f=f—2QU—-a®V).

There are no noninvariant hypersurfaces of a normal contact metric mani-
fold [3].

5. Metric polynomial manifolds

An m-dimensional C> manifold P is said to be pseudo-globally framed (see
§ 2) if there exist a C* tensor field f of type (1,1), global vector fields E, and
1-forms %,a = 0,1, - . -, 2y, with E, = 0, %° = 0, satisfying

5.1 7(Ey) = 8%,
(5.2) ff=eIt+(—2DpPr®E,, |A<1.

If 2 = 0, then (f, E,, %) is globally framed (see [4]). If 2 = +1, then f defines
an almost complex structure, so m is even. If, in addition, m = 2y, P is a
parallelizable almost complex manifold. (Observe that a compact complex
parallelizable manifold is Kaehlerian, if and only if, it is a multi-torus [9].)
Clearly, the only pseudo-globally framed polynomial structures defined by f are
those givenby 2 + I = 0, +f=0and ff + (1 + BOf + 2L = 0,2 = +1,
the second case arising by assuming fE, = 0,a =1, ---,2y, and the latter
including f* + f=0 as a special case. In the sequel, we study those structures
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for which 4#0. The case =0 was the subject of a previous paper [6].

From (5.2), ff/E, = —R2E,,a=1,.-..,2u.

IffX =0, then X = (1 — 9 X)E,. Applying f* to this relation yields
(1 — 9p«X)E, = 0, so X = 0 at those points for which 1= +1, since
A+ 0. At those p € P where A(p) = +1,f, = —I,. (We shall presently see that
the dimension of P is even.) Hence the linear transformation field f has maxi-
mal rank everywhere on P.

We assume below that

(5.3) fE2i_1 - —ZE” 3
(5.4) szi:lEziq; i:l’.'.’y'

The pseudo-globally framed manifold P(f, E,, n%) is called a pseudo-globally
framed metric manifold if it carries a Riemannian metric g such that

(i) ﬂa = g(Ea,9 '),

(i) g(fX,Y) = —gX,fY).
We put F(X,Y) = g(fX,Y) and call F the fundamental form of P(f,7%,g).
From (i) and (ii), we obtain

(5.5 Pilof = I,

(5.6) phof = —apit.
If we put

(5.7) J=1— %ﬂ QE, ,

then J is an almost complex structure, so m = 2n.

Theorem 6. The manifold P with structure tensors (f,, 7%, 8),a=1, - - -, 2,
where f,=f— W Q@ Ey,_,i=1,---,v, is an even dimensional globally
framed quartic structure of rank m — v, that is,

() f=—1+7QEF,

(il) 7]21'—1 ° fl — O, ”215 Of — __2021:—1,

(iii) flEZi-l = —REZh f1E2z' =0,

iv) 7*(Ep) = 33,

v fi+hi=0
Proof. Employing (5.3)—(5.6),

fiX = (f — 2" @ Ey )X — 2 9(X)E,;_y)
=X + PP X)E,; + PP (X)E,;_,
= —X + (1 — O*(X)E, + P*(X)E,
= —X + »"(X)E,.
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Moreover, f,E,; , = —AE,;,fiE;; = AEy;_, — 2E,;_, = 0. Hence iX = —f X
— AP YX)E,;, from which fiX = —fiX.

If f,X = 0, then X = 5*(X)E,. Applying f, again yields 0 = — 2" (X)E,,,
that is, *"'(X) = 0, so X = p*(X)E,;.

Theorem 7. The manifold P with structure tensors (f,, 7%, 8),a=1, - - -, 2y,
where f, = f — 2" Q E,;_, — 7" ' Q® E,;), is an even dimensional globally
framed f-structure of rank m — 2v, that is,

@ fi= —I+7"®E,

() 790f, =0, fE,=0,

(i) pu(E,) = é2.

Proof. Sincef,=f, + " 'QE,;, f,E,;_, = —AE,; + AE,; = 0and f,E,; = 0.
Hence

£X = (f, + 7 @ ED)(LX + 2 (X)E,)
= fiX = —X + P*(0E, .

Moreover, ;X = —f,X + 7°(X)f,E, = —f.X.

If f,X = 0, then X = »*(X)E,, so rank f, = m — 2y since f,E, = 0,a =
1,---, 2.

A pseudo-globally framed metric manifold is said to be totally flat if the
covariant derivatives (with respect to the Riemannian connection) of its structure
tensors are zero.

Theorem 8. Let P,(f, 7%, g) be a complete totally flat pseudo-globally framed
manifold. If P, is simply connected, then there is a Kaehlerian submanifold
whose dimension is rank f.

Proof. Clearly, f, is also a parallel field, so DF, also vanishes where
F(X,Y) = g(f,X,Y). Thus P}, = {X e P,,,| F(X, P,,) = 0O} defines a parallel
distribution, and therefore the orthogonal complement P/, (with respect to g)
also gives a parallel distribution. Observe that the E, do not belong to P,. By
the de Rham decomposition theorem P, = P; + P{ where F, vanishes on P
and F, has maximal rank on P}. Since Df, vanishes so does the Nijenhuis tor-
sion [f,, f,]. The almost complex structure on P; obtained by restricting f, to
P} is therefore integrable. F; being closed, P} is symplectic. In fact, since F,
has vanishing covariant derivative, P} is a Kaehler manifold.

On a pseudo-globally framed quartic metric manifold, if we define

=+ 0 =D QEyu_, — 77 @ Eyl

and
F=f—0+ VP QE,u_, — "' QE,],

i=1,---,v, then f and f are almost complex structures other than J.
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Moreover, ( f,2) is an almost hermitian structure on P. Setting F(X,Y) =
g(fX,Y), we obtain

F=F+21—-D% 7 A7,

If the fundamental form F and the 7 are closed forms, the almost hermitian
structure on P is almost Kachlerian. It is Kaehlerian, if and only if f has
vanishing covariant derivative with respect to g, that is, if P(f, 7%, g) is totally
flat. In this case, the E, are infinitesimal automorphisms of the Kaehlerian
structure. The same conclusion prevails if we consider f instead of f.

Theorem 9. If the pseudo-globally framed metric manifold P(f,7%,g8) is
totally flat, then it carries the Kaehler structures ( f ,8) and ( f ,9).

A corresponding theory may be developed for odd dimensional manifolds by
letting ae {1, -.-,2v + 1},ie{l, - - -,v} and by setting fE,,,;, = 0, in which
case from (5.7),J: = —I + 7**'® E,,,,. Hence J is the fundamental affine
collineation of the almost contact manifold P(J,E,, ;,7**"). We give the
analogues of Theorems 8 and 9:

Theorem 10. A totally flat odd dimensional pseudo-globally framed metric
manifold P(f, y*, g) may be endowed with the cosymplectic structures ( 7, 7,8)
and (f,7,8).

Proof. That P is almost cosymplectic is a consequence of the fact that f and
the »” are covariant constant, and 2 = const. Thus ¢ and 7 also have vanishing
covariant derivatives. The normality of P follows from the vanishing of

D,x0)Y — D,y )X + ¢(Dyp)X — ¢(Dx0)Y + {(Dxp)(Y) — (Dyn)(X)}E .

Corollary. Let P(f,7% 8) be a complete totally flat odd dimensional
pseudo-globally framed manifold. If P, is simply connected, then there is a
Kaehlerian submanifold of dimension rank f.

The proof is similar to that of Theorem 8.

6. Normal symplectic structures

Recall that the framed structure (f, U, V, «, 8, 2) on P’ is normal if the under-
lying globally framed f-structure (f,, U, V, &, ‘5) is normal. The condition for
this is given by the vanishing of the tensor field [f,,f,] + da@ U + df ® V of
type (1,2).

The direct product of the pseudo-globally framed hypersurfaces P(f,;,, U;,
Vs @y Bss 2,0 = 1,2, also has the naturally induced almost complex structure
J on P] x P, defined by

j(px,pg)(Xl’Xz) = (f(I)Xl - z1[51()(1)(]1 + zldl(Xl)Vl - Bz(Xz)Vl - dz(Xz)Ul s
farXy — 2B (XU, + 2(X)V, + B(XDV, + &(X)U,) .
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If the P, are normal, then J is integrable [4]. The converse is obtained by
employing [J, J1(X, X 0, Y, X 0) = 0, [J, J1(0 X X,,0 x Y,) = 0,[J, J1(0 x X,,
Y, x 0) =0 and [J, J1(X, X 0, 0x Y,) = O in the expression for J,J1X, x X,
Y, X Y,) where X X Y = (X, Y). Define a metric on P; X P; by g, + g,, where
g; = i¥G,j = 1,2, is the metric induced on P by the almost contact metric G
of M(go,r;, G) Assuming that M is cosymplectlc, the 2-form & on P, x P,
defined by O=F >0 + (0, F ) + (@,,0) A (0, &) + (B, 0) A (0, 3,), where
F, =if0,j = 1,2, is the fundamental form of P}, is the Kaehler form of
P; x Pj. For, since @ is closed, F,, and F, are closed. The 1-forms &; and
Bi,i = 1,2, will also be closed if the P, are totally geodesic. Although the
metrics g; of P, need not be Kaehlerian we do have the following result.

Theorem 11. The direct product of the symplectic quartic structures
P(f > Uz, Vi, 6y, ‘Bz), i = 1,2, has a naturally induced almost complex structure
given by J. If the quartic structures are normal, then J is integrable, and con-
versely. If the P} are totally geodesic hypersurfaces and the ambient space is a
cosymplectic manifold, then P; X Pj is Kaehlerian.

Corollary. Let P be a totally geodesic hypersurface of a cosymplectic mani-
fold with the induced symplectic quartic structure. Then the direct product of
P with itself is Kaehlerian.

Remarks. (a) LetP(f,7*, 8),a=1, - --,2y, be a totally flat even dimen-
sional pseudo-globally framed manifold. We have seen that P(f, g) and P(f, g)
are Kaehler manifolds. If P is compact, then its topology may be studied from
several points of view, first as a compact Kaehler manifold and secondly by
introducing a theory on P(f, %%, g) analogous to Weil’s generalization of Hodge’s
theory of harmonic integrals on algebraic varieties. Whereas F and F are the
Kaehler 2-forms of P(f,g) and P(f,g) respectively, F plays that role in the
latter theory. Although f has maximal rank, (f, g) is not a Kaehler structure on
P. However, if v = n, then (f, g) is Kaehlerian. This therefore yields a general-
ization of Kaehler geometry (see § 3).

(b) Let P(f, E,, 5%, 2) and P( f, E,, 7%, 7) be pseudo-globally framed spaces
of the same dimension and rank. A diffeomorphism z of P onto P is called an
isomorphism of P onto P if

ﬂ*‘”f:f"#*
and
tsEo = E, .

IfP=Pand f =f,E, = 2, 7% = 7° for all a, then x is an automorphism
of P. The set of all automorphisms of P clearly forms a group which we denote
by A(f, E.,n%). If pe A(f, E,, %), then p*p* = 3%, hence 10y = 2. More-
over, p,of,="fop,, where f,=f— A(7* ®Ezi 1 — 7 QE,). Thus
¢ € A(f,, Eq, 7, from which we conclude that p e A(f, E,, 7% N A(f,E,, 7).
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Conversely, if pe A(f, E.,n® N A(f, Eq, 7%, then pe A(f, E,yn®). If P is
compact and (f, E,, %, 2) is normal, we conclude just as in [5] that the group
of automorphisms of a pseudo-globally framed space is a Lie group.
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