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REGULARITY THEOREMS FOR PARTIAL
DIFFERENTIAL OPERATORS

RICHARD S. HAMILTON

1. In this paper we introduce the notion of a regular space and a regular
linear or non-linear map. This is done in such a way as to abstract the notion
of a space of smooth sections of a vector bundle and a linear or non-linear
partial differential operator with smooth coefficients. The abstraction depends
upon the notion of being able to take covariant derivatives of the sections as
well as of the operators. This creates a category of spaces and maps, which is
closed under composition and also inversion. These regular spaces, while being
Fréchet spaces in one sense, have enough extra structures so that we may retain
a number of the important theorems of the corresponding theory for Banach
spaces. We prove for example that the set of regular linear maps with a regular
inverse is open. We also prove an inverse function theorem: if a regular non- -
linear map has a derivative at a point which has a regular inverse, then the
non-linear map has a regular inverse in a neighborhood of the point. It is hoped
that the reader will find this a useful framework for passing from results for
Banach spaces to results for smooth sections.

2. A regular space is a Fréchet space whose topology is defined in the fol-
lowing way by a norm and a finite collection of linear operators. Let E be a real
(or complex) vector space with norm || ||, and let /', - - -, ' be a finite collec-
tion of linear operators which map E into itself and have closed graphs in the
norm topology. If I = (i,, - - -, i;) is a multi-index of length |I| =k with 1 <i,,

-, iy < N, we define the hlgher -order operator V;: E— E as the composition

VI:ViloVizo LR OV~

K773
For each integer r we define the higher-order norm
;= 14
1= % m, 1711l
Note that ||f||, = [|f]- Let 7, be the topology on E induced by the norm || ||,.
If the topology I~ U , is complete (and hence Fréchet) we say that E, or
more precisely the trlple

Communicated by J. Eells, Jr., November 5, 1969. The author was supported by NSF
grant GP-11767.



40 RICHARD S. HAMILTON
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is a regular space. As an example, if M is a compact manifold and 4 a vector
bundle over M, then let I'5(A) denote the regular space whose vector space
E is the space of smooth sections of A with a norm measuring the L, norms of
r derivatives, and with the operators V, - - -, I/ being covariant differentiation
with respect to vector fields z,, - - -, zy having the property that they span the
tangent space of M at each point. Note that L7(A) is the completion of 1';(A4)
with respect to the norm of I7;(A4). In general it should be clear that at many
points it would be possible to use norms other than the L, norms on our func-
tion spaces.

Let E and F be two regular spaces with the “same” operators V,, - - -, V. If
L: E — F is linear, we define V/;L: E — F by

7:L)(x) = V{L(x)} — LV :x) ,

and define J;L for all multi-indices I by a repeated application of this definition.
We say that the map L: E — F is regular if the maps V/;L are norm-bounded
for all 1. We shall show in the next section that if L is a linear partial differential
operator of degree r then (for any k > 0) L is a regular linear map of I'5+¥(4)
into /'%(B) in this sense. For this purpose we first prove some basic properties
of regular linear maps.

If L is norm-bounded, then ||L| denotes the smallest number with || Lx| <
IIL] ||x||. Consequently, the vector space RL(E, F) of regular linear maps of E
into F admits the operators V., ---,Fy and a norm. We shall show that
RL(E, F) is itself a regular space.

Lemma 1.

VALY = 2, e "V, LW kx) 5
Vi{LoM) = ;}(e{K(VJL)o(VKM) )

>

<

&

where ¢]¥ is the number of different ways in which the multi-indices J and K
can be combined to form I without disturbing their internal orders. (Thus eJ*
= O unless |I| = |J| + |K|.)

Proof. 1f |I| =1, then V,{L(x)} = (V;L)(x) + LV ;x) follows directly from
the definition, while

FALoM)}(x) = V{L-M(x)} — (L-M)(V :x)
= .M} + L{F (M(x))} — (LoM)(V ;x)
= {("iL)eM}(x) + {Lo(V;M)}x) ,

so V,(LoM) = (F;L)oM + Lo(V;:M). The cases |I| > 1 now follow by an in-
duction which is as easy to believe as it is clumsy to write.



REGULARITY THEOREMS 41
Lemma 2.

L&D, < WL 11 e 5

J+k=r

[LeM|l, < > [IL|; IM]fe -

J+k=r

Proof. These estimates follow from the previous formulas (and explain the
presence of the factor 1/|I|! in the definition of || ||,). Thus

Il = 5 m' P AL
= 2 0 2 e VLIV gx||
Iy |I| JK
1 &

<35 B T L
e s eI
(Smce 2t ]J|!|K|')

- 2 Ll

and the other formula is proved in the same way. Note that the composition of
two regular linear maps is a regular linear map by the second formula. More-
over, these two formulas show the very useful fact that the evalution maps

RL(E,F) X E—F, RL(E,F) X RL(F,G) — RL(E, G)

are continuous in the Fréchet topologies, a property which in general is lacking
for Fréchet spaces.

Also we see that L has a unique continuous extension L,: E* — F".

We now prove that RL(E, F) is itself a regular space. For let {L,} be any
sequence in RL(E, F) which is Cauchy in each norm || ||,. By Lemma 2, for
eachxeE

HLn(-x) - Lm(x)”r = ”(Ln - Lm)xnr
f; jE: “lhz"— lzmlb ”x”k'

+k=r

Hence {L,(x)} is a Cauchy sequence in F for each x¢ E. Let L,(x) — L(x).
This defines a linear map L of E into F. Moreover since V,{L,(x)} =
S eZ5(V ;L,)(F xx) it follows by induction on |I| that (F;L,)(x) — ( L)(x) for
K,J

each x. But since {F;L,} is Cauchy in the norm || |, it follows that I";L, — VL
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in the norm || ||, for each |I|. Hence L, — L in each norm ||||,. Thus L, — L
in the Fréchet topology of RL(E,F), so RL(E,F) is complete and hence a
regular space.

We shall also define regular multi-linear maps. If L: E, X .-+ X E, —» F
is multi-linear we define ';L: E, X --- X E, — F by

(VzL)(xu e 5xn) == Vz‘{L(xU tt ’xn)} - L(Vixla Xoy * ':xn) -

- L(xla s Xnn szn) .

Then the space of regular multi-linear maps of E, X --- X E, into F is again
a regular space, denoted RL(E, X --- X E,,F), or RL"E,F)if E, = -.- =
E, = E. The evaluation maps ¢: RL(E,F) X E— F and &: RL(E,F) X
RL(F, G) — RL(E, G) are regular bilinear maps; in fact, ;e = 0 and J/;z = 0,
as follows directly from the definition.

3. Let A and B be vector bundles over M, and 2 be a functor mapping the
category V of finite-dimensional vector spaces and linear maps into itself. We
say that 2 is smooth if for any vector spaces E, E', F, F’ in V the map

A: L(E',E) X L(E,F') — L(E, F), A(E', F))

is always smooth, where for convenience we assume A to be contravariant in
the first variable and covariant in the second. Then we can define a new vector
bundle A(4, B) in the following way. If p e M, then the fibre (4, B), is just
A(A,,B,), whileif @: U X E—~A and¥': U X F — B are charts on 4 and B
over an open set U C M, then A(@4,¥): U X A(E,F) — A(A4, B) is a chart on
A(A, B), where of course

WD), = AD;LT,) .

In order to do covariant differentiation we need to have connections on our
bundles. If z: 4 — M is the projection map for the bundle 4, and if ae A4,
then VTA, =Ker Tr,: TA,— TM,, is the subspace of vertical tangent vectors
at a. A connection on the bundle A4 selects at each point a € A a complementary
subspace HTA, of “horizontal” tangent vectors. For each tangent vector
zeTM,, let C(z,a) be the unique vector in HTA, with Tz{C(z,a)} = z.
Clearly C is linear in z for each fixed a. If C is also linear in a for each fixed
z, then the connection C is called an affine connection. If @: U X E — A is
a chart on 4, then T@: TU X TE — TA is a chart on T4 and we can write
a= 9d(u,e), and for ze TM,

C(z,a) = TO(z, (e, 7(2)e)) ,

where TE =~ E X E and y: TU — L(E, E). We call y the local representative
of the connection in the chart @. In case the reader is lost in all the linear
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algebra, let ¥, - .-, x" be coordinates on U, so that 3/ox', - - -,3/9x™ form a
basis for TU at each point, and let e, - - -, e, be a basis for E. Then we can
write

(2@ = T e,

where the I"%, are smooth functions on U and are called the Christoffel symbols
of the affine connection. It is an easy matter to show that for any connection
and any point p € U we can choose the chart ¢: U X E — A so that y, = 0.
Moreover, for any symmetric connection on the tangent bundle TM of M, we
can choose around any point p e M a chart ¢: W C R® — U C M such that
if @: U X R* — TM is the natural chart @(¢w, v) = To(w, v) then y, = 0 in
the natural chart @; this is just the familiar theorem on the existence of
geodesic coordinates. A symmetric connection on TM is one with C(z,w) =
C(w, 2). We say that the chart @ is flat at p if y, = 0. This means just that
HTA, = TO(TU,, X {0D and VTA, = TO({0} X E).

Now it is not hard to prove that if 4 and B are bundles with connections
and if 2 is a smooth functor of V-into itself, then there exists a unique con-
nection on (A4, B) with the property that if the charts @ and ¥ are flat at p then
so is the chart (@, ¥). This can be expressed more generally by the following
formula; if y: TU — L(E, E) and §: TU — L(F, F) are the representatives of
the connections on 4 and B in the charts @: U X E >A and ¥: U X F —
B, then the representative of the connection on A(A4, B) in the chart (@', ¥)
is given by

¢: TU — L((E, F), AE, F)) ,

where DA(id, id) is the derivative of
2: L(E,E) X L(F,F) — L(AE, F), A(E, F))

evaluated at the identity maps of E and F.

Suppose now that we take 1 to be L. Let 4 and B be bundles over M with
connections, and let I/, represent covariant differentiation with respect to the
vector field z. If [ is a section of L(A4, B) and x is a section of A4, then I(x) is
a section of B defined by I(x), = [,(x,).

Lemma 3. There exists a connection on L(A, B) such that

Vl®} = @.Dx) + IF.x) .

Proof. 1If the chart @ is flat at p and if x also denotes the representative of
the section x in the chart @, then the covariant derivative is given at p by
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V.x = Dx(2) -

Choose charts @ and ¥ on A and B which are flat at p, and let L(A4, B) have
the unique connection such that (@', ¥) is flat at p. Then by the product rule
at p
V {l()} = DlIx)](z) = Di(z)(x) + I[D(x)(2)]
= D@ + IF.x) .

Now let I'%() denote the induced map of I'¥(4) — I'%(B) defined by
rsx) = l(x) for xel¥(A).
Remembering that I/, is covariant differentiation with respect to z, we see that

T D) = TDx) = P} — (7 x)
= VAT D)} — TEOT x)
= [7.lED1()

Hence I's(F ;) = 7, (). In fact, this is what motivated our original definition
for the covariant derivative of a linear map. If / is a smooth section, then so
is 7,1 for every I. Consequently V;I';(]) = I';(V;]) is always a norm-bounded
linear map, and the map I'%(J) is regular.

Next we claim that the r-jet extension map j™: I'5*%(4) — I';(j"A) is regular
To see this we must recall the definition of the jet bundle. If we choose con-
nections on 4 and TM, then

j’A =~ P"(TM, A) ,

where P’(E, F) is the functor of polynomial maps of E into F of degree < r,
and the r-jet extension is given by

ix(@) =x 4+ Vx(z) + --- +%V’x(z, 7).

In particular, if we choose flat coordinates on 4 and geodesic coordinates on
M, then the local representative of j"x is just the r*® order Taylor polynomial
for the local representative of x. We can write (in local coordinates)

ﬁ@@=%ww@uw+“w

where the dots denote derivatives of x of degree < r. Consequently
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Vi) = W{j'®)} — j" 7 :2)](2)
= [D{j" ()} (zs) — j'(Dx(z:)](2)

- r—l'DT*'lx(z, RS zi) B rilDH‘l(x)(zi’ Lyt Z) + oy

where the dots denote terms involving derivatives of f of degree < r. Now
ordinary derivatives are symmetric, so the two terms we have written cancel.
Moreover any derivative of f of degree < r can be recovered from j’f. Hence
there exists a smooth section [; of L(j"4, jA) with

4 i]'r = li(jr) .
Hence

Vlcijr = Vlc[li(jr)] = (Vklz)(jr) + li(Vk.ir)
= Vil; + Lol)G) = L)

and in general we can show by induction on |I| that there always exists a smooth
section I; of L(j"A4, j*A) with V/;j* = 1,(j). Consequently j": I';**(4) — I'%(A)
is regular. Now the composition of two regular linear maps is regular. There-
fore any linear partial differential operator L = I'¥(I)oj" is a regular linear map
of I';**(A) — I'%(B), if I is a smooth section of L(j"4, B).

4. Now we shall prove some theorems about the inverses of regular linear
maps. Let E and F be regular spaces with the “same” operators and let L: E
— F be a regular linear map.

Theorem 1. If L is invertible, and L' is norm-bounded, then L' is
regular.

Proof. We will show that F/,L~! is norm-bounded for all by induction on
|I|. This is assumed to hold if I = @. If |I| > 1,

0= V](LOL'l) = LOVIL—1 + IKZ E{K(VJL)O(VKL_I)

I<II]

by Lemma 1. Thus
ViL™' = —L7% 3 e*(F;L)o(VL™) .

IKI<IT]
Now F xL~! is norm-bounded for |K| < |I| by the induction hypothesis. Since
the composition of two norm-bounded maps is norm-bounded, the Theorem is
true.
Theorem 2. If A is a regular linear map of E into itself and | A|, < 1,
then I — A has a regular inverse.
Proof. Consider the power series

I +A+ A4+ -« + A + ...,
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By a multiple appplication of Lemma 2, if n > r, then

A, < 2 Al 14,
J +in=r

1o n

< nAlFIIAle™"

since at most r of the j, - --,j, can be non-zero and there are n” terms alto-
gether. Consequently

lim sup YA, = |4/, <1.
Therefore the above infinite series converges by the root test in each norm || ||,.
Since RL(E, E) is complete, the series converges to a regular linear map in
RL(E, E), which we denote by B. Since the series converges absolutely in each
norm | ||,, we can rearrange terms, so B(I — A) = (I — A)B = I. Hence
I — A has a regular inverse.

Corollary 1. If L and A are regular, L has a regular inverse, and || Al||,
<|IL7||s*, then L — A has a regular inverse, and hence the set of maps in
RL(E, F) with a regular inverse is norm-open.

Proof. (L — A)™'=L"YI — AL ).

Corollary 2. If AeL(E", E") and ||A|, <||L|;*, then L, — A has an in-
verse in L(E", E).

Proof. This follows from the convergence of the series in || ||,. We shall use
this fact later.

We say that the regular map L has a left (or right) quasi-inverse M, if M is
regular and for each r there is a constant C, with

I[(ML - I)x”r+1 _<_ Cr Hx”r (Or ”(LM - I)x||r+1 S Cr ”xHr) .

Theorem 3. If L is regular and has a left (or right) quasi-inverse M, and A
is regular with ||A |, < |M|;*, then L — A has a left (or right) quasi-inverse
given by

N=M+ MAM + MAMAM + ... .
Proof. For the n** term, if n > r + 1, then
|MA - AM||, < 2n + D" || A|7 (M7 Allz~" " IM]]g~"

as before, so the series converges absolutely in each norm || ||, by the root test.
Rearranging terms we see that

NL—-—A) —I1=M+ MAM + .- )L — A) —1
=0+ MA + MAMA + ---)Y(ML — 1) .

The rest of the proof is obvious.
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S. Let V be a real finite-dimensional vector space, and E and F be complex
ones. The Fourier transform defines an isomorphism of the regular space
I';(V, E) of maps of V into E, all of whose derivatives lie in L,, and with operators
9/0x/, onto another regular space I'{”(V*, E) of functions which are in L, with
respect to any polynomial weight function, and with operators multiplication
by ixi. In the first case the norm is ] f |0,f(x) Fdx where a,=~‘a—,,

e, oxh. .. gx'
and in the second case the norm is

b f[g(x)lzx”dx .
II<T »
V*

If Q is a partial differential operator from E to F of degree r with constant
coefficients, then Q e L(P"(V, E), F) and there is a unique O e P (V*,L(E, F))
with

Q/(\f)(v) = O f() forall ve V* .

We say that Q is elliptic if Qr(v) is invertible for all v = 0, where O, is the r®
order part of Q.

If Q is elliptic, then O: I'(V*,E) — IT'O(V*,F) clearly has a two-sided
quasi-inverse given by gb(v)Q(v)‘l where ¢ is a smooth function which is = 1
for large v and vanishes for those v for which O(v) is not invertible. This is a
quasi-inverse, since it is a true inverse except for v in a bounded set, where all
polynomial weight functions are comparable. By applying the inverse Fourier
transform we see that Q: I'5(V,E) — I's(V, F) has a two-sided quasi-inverse
if Q is elliptic with constant coefficients. By Theorem 3 it follows that any
linear partial differential operator whose coefficients are sufficiently close to
constant elliptic ones in the supremum sense has a two-sided quasi-inverse as
amapof I';(V,E) — 'YV, F).

Suppose M is a compact manifold and that Q is a section of the bundle
L(P"(TM, A), B), so that Q defines a linear partial differential operator of
degree r from A to B (remember j*4 =~ P"(TM, A)). Then there is a natural
transformation of functors which takes Q into a section Q of the bundle
P (TM*,L(A, B)). The highest order homogeneous part Q, e L"(TM*,L(A, B))
is called the symbol of Q, and Q is elliptic if and only if 0,(v) is invertible for
all non-zero cotangent vectors v ¢ TM*. If pe M and we choose charts in a
neighborhood of p, then we can write Q = Q, — B, where Q, has constant
coefficients equal to those of Q at p and B, vanishes at p. If ¢, is chosen to be
= 1 on a neighborhood W}, of p but to vanish outside a neighborhood W7, of
p which is sufficiently small, then regarding O, — ¢,B, as an operator on a
whole vector space by setting it equal to Q, outside the domain of the coordi-
nate chart we can make Q, — ¢,B, have a two-sided quasi-inverse N, by the
previous remark, provided we make W? sufficiently small. Choose a finite
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number of points p such that the {W.} cover M, and let {2,} be a partition of
unity with respect to this cover. Finally, let x, be chosen to be =1 on the
support of 2, and to have compact support in W3,.
Let N = 3] 4,N,4,. Then
p

NOF —f = T N, 4,0f — f
= 2 NoA(Q, — 0,B)f — f
(since 2,0, = 2,)
= 2 tNo(@y — 0Bo)Af + T 1Nol2, Op — 0,B,1f —
= 3 wINQ, — 0,8, — ILf + 3 1,4y, 0, — 0,8,
(since p,2, = 2, and )} 2, = 1).
But N, is a two-sided quasi-inverse for @, — ¢,B,, and [1,, 0, — ¢,B,] is

a differential operator of degree at most r — 1. Hence for each k& we can find
a constant C, with

”(NQ - I)f||r+k+1 g Ck ”f||7‘+k .

Likewise,
ONg — 8 = 2@y — 9Bu)p,N, 2,8 — 8
(since the operator (1 — ¢,)B,u, vanishes everywhere)
= 210, — ¢uBu 1IN, A8 + 3 1(Q — 9rBIN A8 —8
= 210, — 9By 1IN, A8 + 3 11(Qp — 0,B,)N, — 1128,

and hence also
1ON — Dgllxs: < Cill8llx -

Let O, and N, denote the unique continuous extensions of Q and N to
L;**(4) and L%¥(B) respectively. It now follows from the Rellich selection
theorem that N,Q, — I: L1**(4) — L:**(A4) and Q,N, — I: L¥B)— L¥(B) are
compact for every k. Hence Q,: L;**(4) — L¥(B) is Fredholm for every k, as
in N,: LXB) — L;**(4). Moreover deg N,Q, = 0 so deg N, = —deg Q,.
Since dim ker Q, cannot increase with k& while dim coker Q, cannot decrease
with k, we have that deg Q, is a non-increasing function of k. But the same
applies to deg N, so deg O, is constant. This means that dim ker O, and
dim coker Q, must be constant. Consequently Q: I';**(4) — I'¥(B) is
Fredholm. This proves the well-known result that every linear elliptic operator
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is Fredholm on the smooth functions. It also shows that if f € L;(4) and Qf is
smooth, then f is smooth.

6. We add a few remarks on duality. Let E be a regular space with operators
v, ---,Vy, and let these operators act trivially on R, the real numbers. Then
E* = RL(E, R) is a regular space. If L: E — F is regular, it is easy to show
that the adjoint L* defines a regular linear map of F* into E* with V;L* =
7 ,L)*.

Suppose that the norm on E comes from a regular bilinear inner product

B:EXE—-R.

We say that E is a regular Hilbert space if E = E*, i.e., if every l ¢ E* is given
by I(x) = B(x,y) for some y ¢ E.
Theorem. [';(A) is a regular Hilbert space with the inner product

Bl = % f o, V1g>dv

where { , > is a Riemannian metric on the bundle A, and dV is a smooth
measure on M.
Proof. First we show that B, is regular. The map I75(4) X I'5(A) — I'(D)
given by (f,8) — >, <V:f,V;g> is regular by the same reasoning we applied
1Ii<r

to linear partial differential operators. We must show that any map of the form

f— f f-@dV where ¢ is a smooth function is a regular map of [';(I) into R.
M

We can always write locally

f fopdV = f fe()dx ,
Pf=29 g,

oxt
where ¢ is a function depending on the connection. If
L() = ff.¢dV ,
M

then
WL = VA{LA} — LWV f) = —LFf)

_ f 1) {%[ngo(x)] + so(x)sb(x)} dx



50 RICHARD S. HAMILTON

_ f Odx = f fopdv

for some globally defined function ». Hence covariant differentiation of a map
of the type of L always gives another map of the same type. Since such a map
is norm-bounded, it is regular.

Finally, suppose L: I';(A) — R is regular. Then L is norm-bounded, so
L(f) = B,(f, g for some g e L;(4). Moreover, B,(f, 8) = B,(f, Qg) by Green’s
theorem, where O will be an elliptic (self-adjoint) operator of degree 2r. Since
L is regular,

L) = (=D LT ,

where I* is I backwards; this formula follows easily by induction on LV ;f) =
—(7;L)(f), and is true because the operators on R are trivial. Therefore | L(F;f)|
< C;||f]|;~ for some constant C; and all I. Hence

[ 0av < crifls -
M
It is a standard argument in distribution theory that if 4 e LY(A4), and

J@itmy| < Criflg

for all I, then A is smooth. Hence Qg is smooth, and g will be smooth since Q
is elliptic. Thus L(f) = B,(f, g) for ge I';(A).

Regular Hilbert spaces have the following beautiful property.

Theorem. Let E and F be regular Hilbert spaces, and L: E — F be regular.
If L,: E° — F° is invertible, then so is L, and L' is regular.

Proof. Form the adjoint L*: F* — E*. Since E and F are regular Hilbert
spaces, E = E* and F = F*. Hence L*L maps E into itself and is regular.
Moreover,

(L*Lx,x) = (Lx, Lx) > e(x, x)
for some ¢ > 0, since L, is invertible. Therefore

(I — kL*L)x, I — kL*L)x)
= (x,x) — 2k(L*Lx,x) + k¥(L*Lx,L*Lx)
< (1 — 2ke + K*||LIP) || x| .

Choose k < 2¢/||L|PF. Then ||[I — kL*L| < 1. It follows from Theorem 2 that
kL*L has a regular inverse. Hence L*L and likewise LL* have regular inverses
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A and B. Since AL*L =1 and LL*B = I, L is invertible and has a regular
inverse L' = AL* = L*B.

Corollary. If the linear partial differential operator Q is invertible as a map
of Banach spaces Q: Li+**(A) — L¥(B), then it is invertible as a map of Fréchet
spaces Q: C~(A) — C=(B).

7. We now turn our attention to non-linear partial differential operators.
Let U be an open set in the vector bundle 4, and «: U C A — B be a smooth
map which takes fibres into fibres, i.e., 7z0a = 7,. If we choose connections
on 4 and B, then for any point a € U we have direct sum decompositions T4,
~ HTA,®VTA, and TB,,, =~ HTB,,, ® VTB,,,.- Consequently we can

write Ta, as a matrix
I 0
Ta, = .
Ve, Da,

If nja=peM, then HTA, = TM,, VTA, = A,, HTB,,, = TM,, and
VTB,., ~ B,. Hence T, is determined by two linear maps Va,: TM, — B,
and De,: A, — B,. This defines new maps Va: UC 4 — L(TM, B) and
Da: UC A — L(A, B) which also take fibres into fibres. We can think of Ve
and D« as being the horizontal and vertical derivatives of «.

The map « induces a map L%(«) of an open set W in L¥(A4) into L¥(B) for k
greater than the dimension of M by the Sobolev inequalities. This map has a
Fréchet derivative ; in fact it is easy to see that DL¥(«) = L¥(Da). If we regard
TI'¥(A) as a normed vector space, we can also write DI %(a) = ['¥(Da) with the
derivative being taken in the norm topologies. (Recall that L¥(A) is the com-
pletion of I'¥(A4), which as a space contains only smooth sections.)

Let x be a section of A whose range lies in U. Then

T 1
X, =
’ Vx,

in terms of the horizontal and vertical decomposition of T'4,.,,. Here Ix is a
section of L(TM, A); if z is a vector field, then V,x = Fx(z). Since

T(aox), = TaypoTx, ,

(ren,) = e el
V(aox),) \Potyp Dagy)\Vx, ’

$0 V(aox), = Vetypy + DagpVx,. Hence, if z is a vector field, then

we have

V (oox) = V,a0x + (Daox)olV x .
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Consequently, since aox = I'#(a)(x), we have
VAT a)(x)} = TEW,0)(x) + T'EDa)(x)(F (%)) -

Now I'*(Da) = DI'*(«r). We would also like to write I'¥(V,a) = V,I"¥(«). This
suggests the following definition.

Let E and F be regular spaces with the “same” operators Vy, - - -,V y. Let
U be a norm-open set in E, and let P: U C E — F. We say that P is norm-
smooth, if all the derivatives D"P: U C E — L*(E, F) exist in the norm-
topologies and are norm-continuous. The map P extends in this case uniquely
to amap P7: U” € E™ — F~ on the closure of U in | ||,, and this map P, will
be differentiable and D"(P") = (D"P)". We define V';,P: U C E — F by the
formula

Px) =V i{P (x)} — DP(x)(V ;x) .

If 7 ,P is norm-smooth, we can define V,/,P = V;;P, and so on. If V/,P is
defined and norm-smooth for every multi-index I, we say that P is regular.

We now prove a series of lemmas leading up to the assertions that D*P(x)
is a regular k-multilinear map, and that D*P: U C E — RL*(E, F) is regular
with D;(D*P) = D*(D,P).

Lemma 4.

V {D¥*P(x)} = D*(V;P)(x) + D**'P(x)(V ;x) .
Proof. 1If k = 0, the lemma follows from the definition of V/,P. We proceed
by induction on k.
DEP(x)(0y, -+ -y Vs Y)
= lim [D*P(x + ty)(v,, - - -, v) — DEP(x)(vy, - - -, v)][2

where the convergence is in the norm topology. Since I; has a closed graph in
the norm topology, we must have

VAD* ' P(x)(vy, - - -, Vi, M)}
= ltl_l:{)l Vz[DkP(x + ty)(vla ) vk) - DkP(.X)(’Ul, R vk)]/t s
which by the induction hypothesis equals
lim [P {D*P(x + ty)(v,, - - -, v)} — VAD*P(X)(v,, - - -, v)}1 /1

= lim [7{D*P(x + )}(0,, - - -, v)
+ DkP(x + ty)(V,-’vl,’Uz, .. -,’Uk) + AR
+ DkP(x + ty)(vl, tt Vi’vk) - Vi{DkP(x)}(vu Tty ’Uk)
— D*P)(F 0,5 0y =+ -, V) — -+ -
— D*Px)(vy, - - -,V wi)l/t
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= lim [D*(7.P)(x + 1)(0,, - - -, )
+ D¥*1P(x + ty)(vy, -+, Vg, Vix + 7 5y)
— D*(W ,P)(x)(vy, -+ +, Vi) — D¥'P(X)(v,, - - -, Vg, V)11
+ D¥MPxX)(V 0y, Vgy -+ Vi, Y) + -0 4+ DEFIP()(0y, - -, V08, Y)
= lim [{D*(V,P)(x + ty) — D*(V:P)(D)}(w,, - - -, v)]/t
+ lim [{D**'P(x + ty) — D**'P()}(v,, - - -, v, V:2)] /1
+ D¥F PV 01,05+« +,V5,Y) + -+ - + DEFPX)(vy, - - -,V 0k, Y)
+ Um D**'P(x + ty)(vy, - - -, Vi, Vo)
= D**' (V7 ;P)x)(v,, - - -, Vg, ¥) + D¥?P(X)(vy, - - -, v, VX, ¥)
+ D¥FIP(X)(V ;01,05 - + +,V5,Y) 4+« +« + DEFIP(X)(vy, - -+, Vi, V1Y)

Hence recalling the formula for applying //; to multi-linear maps we have
V{D*P®)} = DI P)X) + D PR )

which is the formula for £ + 1. This completes the induction.
Lemma 5.

V{D*P(x)} = 3, ef¥vEaD*+n(7 ,PY )V g X, - - -, VX

where ¢J%vEn is the number of ways of combing the multi-indices J,K,, - - -,
K, to form I without changing their internal orders, and such that the last
number in K, preceeds the last number in K,,,. Here we must always have
|K,| > 1, but J can be empty.

Proof. We merely use the above formula and induction on |I|. Indeed, if
|I| = 1 this is Lemma 4, while

Vi{D*P(x)} = V {V (D*P(x)}
= V{2 g KnD™ W PYX)V i, %, + -+, Vi, X}
=2 E{KI"'Kn{Dn+k(Vz'JP)(x)(VK1x; cee, VKnx)
+ DR PYX)W ox, Vi X, -+ -, Vg, X)
+ D" W PYX)W sz, Ve Xy -+ 3 Vg, %)
+ oo + D" P)YX)T X, -5 Vig, 0} -
Consequently ;,{D*P(x)} is composed of the right sort of terms, and we merely
need to count the multiplicities. As we apply the numbers in I, each time we
can do one of three things:
(a) addi to the front of J,

(b) addi to the front of some K,
(c) form a new index with 7.
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Parts (a) and (b) require that we can combine J, K, - - -, K,, to form I with-
out changing their internal order (since i is always added to the front of J or
K, from the front of I), while part (c) requires that the first number in K,
should preceed the first number in K, ,,. This completes the proof.

As a corollary we have the following very important formula.

Corollary 2.

V{P(x)} = DPx)(V;x) + - -,
where the dots denote terms of the form
Dn(VJP)(x)(Vle’ A VKnx)

with [J| + |K,| + --- + |K,|=|I| and |K,| <|I| for all K,, i.e., the dots in-
volve only derivatives of x of degree < |I|.

It is clear from Lemma 5 that V/;{D*P(x)} is a norm-bounded multi-linear
map for all 1. Hence D*P(x) is a regular multi-linear map and D*P: U C E —
RL*(E,F). It therefore makes sense to ask if D*P is regular. Since D*P is
smooth as a map into the larger space L*(E, F), it is smooth as a map into
RL*(E,F) C L*(E, F) in the norm topology. From the formula of Lemma 4,

{r (D*P)}(x) = V {D*P(x)} — D**'P(x)(V ;x) = D*(V ,P)(x) .

Thus V(D*P) = D*(F,P). 1t follows that VV,(D*P) = D*(V,P) for all I. Thus
DE*P is regular for all R.

8. Let E” denote the completion of E in the norm || ||,. If U is a || ||,-open
set in E, we define the completion U” of U in the norm || ||, to be the unique
open set in E” with U" N E = U. If P: U C E — F is regular, then by the
formula of Lemma 5 the maps D*P all have continuous extensions

D*P . U" C E" — L*E",F") .

Lemma 6. P is smooth and D*PT = D*P".
Proof. Assume we have shown that D* P~ exists and equals D*P" for some
k > 0. For x e U and y ¢ E sufficiently small we will have

D*P(x + y) — D*P(x) = f 1D"“P(x + ty)(y)dt .

By continuity, for all xe U” and y ¢ E sufficiently small we will have
D*P"(x + y) — D*P"(x) = f D (x + )t
0

and hence
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D*P"(x + y) — D*P"(x) — D**'P"(x)(y)
i I
= [[D%P G + ) - DFP 10N
0

Now if ||y||, is sufficiently small, we can make
| D¥*'P7(x + ty) — D¥*'P(x)||, < e
for any ¢ > 0. Then we will have
ID*P"(x + y) — D*P'(x) — D PG|, < |||, -

This proves that D*P" is differentiable and DD*P" = D**'Pr. Hence by in-
duction on k, P7 is smooth and D*P" = D*Pr.

Theorem 4. If P and Q are regular, so is PoQ. If VP and V,Q exist and
are norm-smooth for |I| < r, then the same holds for PoQ. Also V(P-Q) =
VPoQ + (DP-Q)V Q).

Proof. If P and Q are norm-smooth, then so is PoQ and

{FiP-D}x) = F{(P-Q)(x)} — DP-Q)(x)( ;. X)
= (7:P)(Qx) + DP(Qx)IV (Qx)] — DP(Qx)[DQ(x)(V ;)]
= (F:P)(@x) + DP(@0)[(7 . Q)] .

So Vy(PoQ) = V;P-Q + (DP-Q)(V;Q). Hence if I/,P and F,Q are both norm-
smooth, so will be V;(P-Q). Moreover by applying the formula repeatedly, we
see that if ;P and V;Q exist for |I| < r, so will V;(P-Q) which can be ex-
pressed as a formula involving terms of the form

(DnVJPOQ)(VKIQs .t ':VKnQ)

with 7] + K| + -+ + [Ky| = |I.

9. Now we prove an inverse function theorem for regular maps.

Theorem 5. Suppose that P: U C E — F is regular, and that for some
xe U,DP(x) has a regular inverse. Then P gives a bijection of a norm-open
neighborhood V of x onto a norm-open neighborhood W of P(x), and
P': WCF—V C E is regular.

Proof. First we observe that DP%x) will be invertible, so by the inverse
function theorem for Banach spaces, P° gives a diffcomorphism of an open set
V? containing x onto an open set W°. Let ¥V = V' N E and W = W' N F. With
no loss we can assume that W is the ball of radius p around P(x), and hence
is convex. Then W” = W° N E7 will be convex, and hence connected, for
every r.

Consider the completions P7: V" C E" — W" C F".

Lemma 7. P*(V") is open in W for all r, if p is sufficiently small (in-
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dependent of r). _
Proof. Choose p so small that for all y e V*,

IDP'(Y) — DP()|ly < 1/|[DP@)7l, -

By Corollary 2, if ye 7", then the map DP"(y) will be invertible. Hence by
the inverse function theorem for Banach spaces, P7(¥'") will contain a neigh-
borhood of P7(y) for every y e V. Hence P"(V") is open in W".

Lemma 8. P7(V'7) is also relatively closed in W', and hence Pr(V™) = W".

Proof. Suppose z,¢ V" and P7(z,) —»w e W". Choose y, eV with ||y,—Zz,|,
< 1/n. Then P(y,) —we W7 in || ||,. We proceed by induction on r. Suppose
P77~ = W7-'. Since P° is one-to-one, P! must be as well. Therefore
P! will have a smooth inverse (recall that DP ~!(y) is always invertible) so
the sequence y, will converge to some point y € V7! with D"~!(y) = w. More-
over by Corollary 2, if |I| = r, then

V{POW} = DPy )V 1ya) + -+,

where the dots denote terms of the form
DV sPY3 )V g Yns « + 5 V V)

with |K,| < r. Since P(y,) convergesin || ||, V;{P(y,)} will converge in || ||,; as
will each sequence Vg, y, with |K,| <r, and hence each expression denoted
by the dots. Therefore the sequence DP(y,,)(V;¥y,) = u, converges in || ||, More-
over each DP(y,) is invertible and DP(y,)! converges to DP(y)~'in || |,- There-
fore the sequence V;y, = DP(y,)~'u, converges in || ||, for every I of length r.
But this implies that y, converges to y in || ||,. Thus w = P(y) ¢ P7(V'"), which
proves that P7(V'") is relatively closed in W7, and hence P"(V'") = W since W~
is connected.

It follows immediately that P(}) = W. Also P is one-to-one, since P is.
We must show that P~': W C F — V C E is also regular.

Lemma 9. P~!is norm-smooth.

Proof. We know from the inverse function theorem that P’ is invertible and
(PY! is norm-smooth. Moreover, D(P®)~'(x) = DP((P°)~'x)~!, so if xe F,
then DP~(x) exists and equals DP(P~'x)~'. Since DP(P~'x) has a regular in-
verse, DP~'(x) maps F into E. Hence P~': W C F — V C E is C! in the norm
topology. Since

DP-'(x) = DP(P~'%)"" ,

is follows that if P! is of class C¥, then so is DP-!'; so P! is of class C**',
Hence P! is norm-smooth.
Lemma 10. VP! is norm smooth and

VP~ = —(DPoP~ )"V ,PoP™") .
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Proof. We showed before that
Vi(PoQ) = V;PoQ + (DP-Q)(V;Q) ,
if P and Q are both norm-smooth. Hence letting Q = P!,
0 =V, (PoP™") = FV;PoP™* + (DPoPH)(V,P7Y) ,

so VP~ = —(DPoP~Y)~}(F;PoP™"). Since I/;P, DP and P~ are all norm-smooth,
so is I/ ,P.

We now conclude that P is regular. For if //;P~! exists and is norm-smooth
for all I with |I| < r, then it will also exist and be norm-smooth for all I with
[I| < r + 1 by the above formula, once we have shown the following.

Lemma 11. Let U C RL(E, F) be the set of elements in RL(E,F) with a
regular inverse, and let Q: U C RL(E,F) — RL(F,E) be given by Q(L) =
L='. Then Q is regular.

Proof. We know that Q(L) is smooth and DQ(L)(M) = —Q(L)oMoQ(L).
Therefore

V.QL) =r{eW)} — DLW L)
= —QL)oV LoQ(L) + QL)oV LoQ(L) = 0 .
Hence //;Q = 0.

10. Finally we point out how this result can be applied to non-linear partial
differential operators. If « is a smooth map of an open set U in the bundle j*4
into the bundle B, then the induced map I':(«): I'S(U) C I'k(j"A) — I'Y(B) is
regular, since for every multi-index I we can find a smooth map V;a: UC j*4
— B which also takes fibres such that

Vilfa) = I'iV ) ;

this follows from the remarks at the beginning of the last section. Moreover
the r-jet extension j: I'5**(4) — I'%(j*4) is regular, and the composition of
two regular maps is regular. Hence any non-linear partial differential operator
QO = I'*(a)oj" is a regular map of an open set in I';+¥(A4) into I"%(B). Moreover
for any section x with Im j=x C U the derivative of Q at x

DQO(x) = I'{(Da(x))oj"

will be a linear partial differential operator and hence a regular linear map of
I'T*¥(A) into I'¥(B). Suppose that its completion

DQ(x),: L;**(4) — Li(B)
is invertible. It follws from the results of § 6 that

DQ(x): I'7**(A) — I';(B)
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is invertible and has a regular inverse. Therefore by Theorem 5 the non-linear
partial differential operator Q gives a bijection of a neighborhood of x onto a
neighborhood of Q(x) and the inverse will be regular. Consequently the condi-
tion for inverting the operator Q on the smooth functions is just the same as
that for inverting it on an appropriate L, completion.
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