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EXTRINSIC RIGIDITY THEOREMS FOR COMPACT
SUBMANIFOLDS OF THE SPHERE

ROBERT C. REILLY

Introduction

In this paper we consider immersions X: M —> Sm of a compact oriented
Riemannian n-manifold M into the standard unit m-sphere Sm, and wish to
find conditions on X which imply that it is a standard isometric immersion of
a constant curvature π-sphere into Sm, i.e., to find extrinsic rigidity theorems.
Our principal tools are certain integral formulas.

In § 1 we briefly discuss the problem of finding interesting integral formulas.
As an example we derive a simple integral formula relating the scalar curvature
to infinitesmal conformal transformations.

In § 2 we derive some integral formulas for compact hypersurfaces of Sn+1

(Theorem A) by means of a variant of Newton's formula, and use these inte-
gral formulas to prove our first rigidity theorem (Corollary A).

In § 3 we generalize the first two formulas of Theorem A to the case of
arbitrary codimension (Theorem B) and then derive an improvement of a
rigidity theorem, originally due to De Giorgi and Simons, for compact minimal
submanifolds of the sphere whose normal spaces are close enough to each
other (Theorem C).

In the appendix we prove a weaker form of Theorem C using the theory of
elliptic partial differential equations (Theorem D).

Notation and conventions. The inner product and norm in the Euclidean
space Em+1 of dimension m + 1 are denoted by ( , ) and | |, respectively.
All manifolds are assumed to be connected, and all immersions to be isometric.
We denote the directional derivative of an Em+^valued function / along a
vector v by FJ, which means componentwise differentiation. If e19 , en form
a frame field for M we shall at times use the notation ftJ for Fejf, particularly
if / is a component of a tensor. In all sections but the appendix we follow the
index convention 1 < /, j , k,l < n.
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1. General remarks about integral formulas

Most of the interesting and useful integral formulas in Riemannian geometry
follow from Stokes' theorem. That is, one considers a smooth vector field W
on a compact oriented Riemannian manifold M with volume element dV the

integral formula is I div (W)dV = 0. The interesting integral formulas there-
in

fore correspond to the vector fields on M having interesting divergences.
Unfortunately there are no general methods for finding such vector fields, for
there exist so many dull vector fields that one must be fairly lucky to find a
good example. Because of this it is reasonable to restrict one's attention to some
special class of vector fields which (hopefully) contains a higher percentage of
good examples.

If we consider a few of the well known integral formulas, e.g., in [1], [7],
or [8], we notice that the vector fields considered are of the form T(W), where
T is a symmetric tensor field of type (1,1) (i.e., T is a smooth field of self-
adjoint linear operators in the tangent spaces of M) whose definition may be
complicated but such that div(T) = 0, and W is a fairly uncomplicated smooth
vector field on M. We see that the restriction div(T) = 0 is reasonable. For
let e19 , en be an orthonormal frame field which is geodesic at a point q €
M. Let (tij) be the matrix of T relative to the basis e19 , en and let W'j =
QV'9ej). Then

div(W)(q) = (div(T), W) + ΣtiW,

= — Σ hj(Wij + Wjtί), (everything evaluated at q) ,

since T is symmetric and div(Γ) = 0.
Thus our program is this: a) find a symmetric tensor T of type (1,1) on M

such that div(Γ) = 0 b) find a vector field W having interesting properties
when combined with T.

Example. In the situation considered above, let (Rtj) be the matrix of the
Ricci tensor relative to the frame field e1 en and let R = 2 Rj'j be the

3

scalar curvature function. It is well known (cf. [3]) that 2 Rij.j = jR,i a t Q-

Thus if T is the symmetric tensor field on M with matrix tiά — ^Rdio — ir-
relative to the given frame field, then div(Γ) = 0. Now suppose that Wf is an
infinitesimal conformal transformation on M (cf. [3]) that is, the elements of
the one parameter group generated by Wf are conformal transformations of M.
Then W'itJ + W'ui = (2/n) div(*n<^. Thus

= Σ (±-Rδtj ~ R

= (0ι - 2)/2)R div(Ψ') .
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Since Cdi\(T(W'))dV = 0 we have:
M

Proposition A. // M is a compact oriented Riemannian manifold of dimen-
sion n > 2 with volume element dV and scalar curvature R, and if W is any

infinitesimal conformal transformation on M, then I R-άiw(W)dV = 0.

2. Integral formulas for hypersurfaces of Sn+1

Theorem A. Let X\ M —> *Sn+1 be an immersion of the compact orientable
n-dimensional manifold M as a hyper surface in the unit (n + 1)-sphere Sn+ι

C En+2. Let N be the unit normal vector field of M, and σλ, σ2, on be the
mean curvature functions on M. Let A be any fixed element of Sn + ί, and set
U = (N, A) and V = (X, A). Then for r = 0 ,1, , (n - 1) we have:

ί (Uσr+1 - Vσr)dV - 0

(We set σ0 = 1).
The proof of the theorem is based on the following lemmas.
Lemma A. Suppose that (bi3) is an n X n symmetric matrix of differen-

tiable real-valued functions on an open set in Euclidean m-space. Let S3 be
the j-th elementary symmetric function of the eigenvalues of (bί3), and br

kl be
the (k, ΐ)-th element of the r-th power of the matrix (b^). Then:

a) rPχSr+ι — Σ bijPx(Sr$ij — Sr-ib]j + +(—l) r^Γy)

for any vector x in the domain of (bί3)

b) (r + l)S r + 1 = Σ (Srb)Ί - Sr^b)Ί + Sr_2b)r +(_l)'fe;ji) .

Lemma B. Let (bί3) be the matrix, relative to a local orthonormal frame
field e19 , en which is geodesic at q € M, of the second fundamental form of
a hypersurface M in a Riemannian manifold Mr of constant sectional curvature.
Let Sr be the r-th elementary symmetric function of the principal curvatures
of M in M\ and let br

kl denote the (k, ΐ)-element of the r-th power of the matrix
(bί3). Then for each i — 1,2, n we have at q:

ex r + \ , e3

Remark. These lemmas are correct for all integers r if we define Sr = 0
for r > n.

Proof of Lemma A. a) Let us consider the quantity
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• Qr = Σ bυFx(srδυ - Sr.M, + ••• + ( - D % )

= Σ y/ΛSr - Sr_iyj + • • • + ( - D ' y p ,

where y l5 ,yn are the eigenvalues of the symmetric matrix {btj). We can

write Qr=ΣΣ i-iy-'yjQrΦ where Qrtj = ?&&-'). Notice that Qrtj

j = l ί = 0

is the sum of terms of the form VJj^y^ -yi^)'1), there being exactly one
such term for each choice of integers zl5 i29 , it satisfying 1 < iγ < i2 <
< it < n. These terms can be classified as either Type A, if / e {z15 , /J,
or Type 5 , if / <£ {/1? . ., it). Then we write Qrtj = QrtjA + QrtJB, where QrtjA

(Qrtjβ) is the sum of the terms of type A (of type B) in Qrtj. By inspection
we see that (-iy-^QrtjA + ( - l y - ^ Q ^ . ^ = 0,soQr=Σ QrrJByj. That

3

is, Qr is the sum of all the terms of the form yjVx{yixyi2' -yir), 1 < h < i2

< < ir < n, 1 < / < w, / $ {/Ί, , ίr}. Thus, every summand of the form
yixyw - 'Pxiyij)' y ί r + 1, I < *Ί < i2 < * < K+i ̂  w» appearing in the ex-
pression for FxSr+1 appear exactly r times as a summand of Qr. Thus Qr —
rVJSr+1.

b) Let us set cυ = tbi3 where t is a new real variable, and for each k let Tk

be the &-th elementary symmetric function of the eigenvalues of (c^). Then
by applying a) to the matrix (c^), with Vx — d/dt, and using the fact Tk =
tkSk, we see that each side of equation b) is equal to (l/tr)(d/dt)(Tr+1).

Remark. Part b) of Lemma A is the classical Newton's formula [11].
Proof of Lemma B. The proof is by induction on r. The truth of the lemma

in the case r = 0 follows directly from the Codazzi equations for hypersurfaces
in a space of constant curvature. Now suppose that we have proved Lemma B
for r = 0, , k. Then at the given point and for each / we have

M * + i = Σ ΓejiStbtj - sk_xb\3 + + ( - i ) % + 1 )

For fixed h, 1 < h < n, multiplying both sides of the equation by bίh and
suming over i = 1, , n we get:

( * ) Σ bihPeiSk+ι = Σ bthPej(SkbtJ - Sk_, bij+ . + ( - 1 ) % + 1 ) .

However,

Σ bίhVe.Sk + ι = Σ ^et(Sk + 1bih) - Sk + ι Σ VepiK
i i i

= Σ rej(Sk+ιbJh) - Sk+1 Σ Γeniδijbij) ,

the last equation being a consequence of the Codazzi equation. Also,
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Σ

= Σ

ij ^ l %3 l J β h

again using the Codazzi equations. Combining these equations with equation
(*) we get:

Σ FβyGS4+Ai - skb\s + + (-i)k+ιbiγ)
3 ®

= Σ ((Sk+Aj - skb]j + + (-Dk+1bi;Ψehbtj)

= (k + 2)FehSk+2 - (k + l)FehSk+2 = FehSk+2 .

The equality ® follows from the induction hypothesis while the equality ©
follows from using b) and a) of Lemma A on the first and second terms, re-
spectively, of the left hand side of equality ©. This completes the induction
and the proof.

Proof of Theorem A. Let T be the tensor of type (1,1) on M whose matrix
relative to a local frame field e19 , en is {tί3) = (Srδij — S r _ i ^ + +
( - l)rbr

i3). Let W be the tangent vector field Σ (A> ej)er τ h e n ΐ) div(Γ) = 0,
3

for this is the content of Lemma B. ii) If e19 , en are geodesic at a given
point, then ^(W^j + W'Jtί) = {A,N)bij — (A,X)di3- at the point; this is a
simple computation. Thus if we set W = T(W'), then by the remarks in § 1
we have

div(»0 = Σ —hjiW'u + w'j,i)

= Σ (A,N)(srb)Ί - Sr^Pjj + + (-i)'fc ;1)

— ^(A9X)(Srδij — Sr^bij + + {—lybl^δij

= U(r + l)S r + 1 - V{n - r)Sr .

If we express Sr9 Sr+ί in terms of α>, σr+19 we get diw(W) = n \/((n — r— 1) \r!)
-(Uσr+ι — Vσr). An application of Stokes' theorem thus gives the required
integral formula.

Remark. Theorem A was also proved by Katsurada in [8], where a more
general result was obtained. We get this result by replacing the vector field
Wf — Σ (Ayeι)ei i n o u r proof of Theorem A by an arbitrary vector field
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tangent to M and replacing Sn+1 by an arbitrary space M/ of constant sectional
curvature. If M' is flat, we get the Hsiung formulas [7]. However Katsurada
does not explicitly consider the situation in Theorem A.

Corollary A. Suppose that for some r, 1 < r < n—l, either
i) σr and ar_λ are constant on M, U > 0, and at some point of M all the

principal curvatures are non-zero, or
ii) σr and σr+ί are constant and V > 0.

Then X embeds M as a hyper sphere in Sn+ι.

Proof, i) By Theorem A, C(σrU - σr_λV)dV = 0 = C(σr+1U - σrV)dV.
M M

If we multiply the left hand side by the constant σr and the right hand side by

the constant ar_x and then subtract the resulting equations we get I U(σ2

r —
M

σr-ι<7r+ι)dV = 0. But Newton's inequality [6] says that a\ — σr_λσr^ > 0 and
by hypothesis U > 0, so we must have o\ — σr_1σr+ι = 0. Now if q is a point
of M at which no principal curvature vanishes, then so is any point close to q.
Also since the Newton inequality is in this case the equation σ\ — σr_ίσr+ί — 0,
then every such q is an umbilic of M (c.f. [6]). However the principal curva-
tures are all constant in any open connected set of umbilics. Thus the subset
of M consisting of all umbilics at which the principal curvature equals that at
q, clearly a closed subset, is also a nonempty open subset and thus equals the
connected set M. Hence M is a hypersphere.

ii) By similar reasoning we conclude from the constancy of σr and σr+1 that

V(σ2

r — σr+ισr_ι)dV = 0, and since F > 0 w e conclude that σ\ — σr+ισr_x

= 0. It can be shown, by considering the place where V is minimum, that
there exists a point of M at which all the principal curvatures are positive.
With this fact we proceed as in i) to finish the proof,

Corollary B. Suppose that for some r, 1 < r < n — 1, σr = 0, σr+ι has
constant sign and U > 0. Then σr+1 = 0.

Proof. If σr = 0, then by Theorem A, Γ Uσr+ιdV = 0. But U > 0 and
M

σr+1 has constant sign, thus σr+ι = 0.
Remark. The case r = 1 of Corollary B was considered by De Giorgi [5]

and Simons [9]. It is a special case of Theorem C in § 2.

3. A generalization to higher codimensions

A major advantage of our proof of Theorem A over that of Katsurada is
that with our formalism the theorem is easier to generalize, which we do in this
section.

Notation. We consider an immersion X: M —>Sn + p. Our local calcula-
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tions are done relative to an adapted positively oriented orthonormal frame
field e19 - - , en+p on Sn+P, i.e., e1- -en is tangent to X(M) and positively ori-
ented to M. We follow the index conventions 1 < /, j,k < n and n + 1 <
r, s < n + p. The matrix of the vector-valued second fundamental form rela-
tive to er -en+p is brij9 the mean curvature vector is σλ = (1/ri) Σ Σ brjjer

r 3

and the second mean curvature is σ2 = (l/n(n—l)) Σ Σ (brίibrjj — b2

rίJ). The
r ij

exterior algebra of Rn + P+1 is denoted by Λ, and the subspace spanned by m-
planes by Λm. We define non-negative functions Br, B on M by B\ — Σ b2

rίj

and B2 = Σ Bl- N ^ e * a t β2 = " 2 k i P ~ w(w—l)σ2, and the vanishing of 5 2

on M is equivalent to the immersion being totally geodesic. We set N = en+ι

A Λ en+p € Λp. Thus N is the (smooth) field of oriented unit normal p-
planes of M in Sn+P. N is independent of the choice of local frame field and
thus is globally defined on M. For each r we set Z r = e n + 1 Λ Λ er_x Λ
X Λ er+1 Λ Λ en+p. Let An+19An+2, -,An+v be an orthonormal set of
vectors in En+p+\ and set A = An+ι Λ Λ An+P <ε Ap. In terms of the
standard inner product on Λp (cf. [10]) set U = (N,A), Vr = (Xr,A) and

if r ^ 51 and Λrri</ = 0. Note that

ϋ) f/2 + Σ Σ ΛU < i
r<s i<j

for U and /zrsO are just some of the components of the unit p-plane A relative
to the orthonormal basis of Λp generated by the vectors ei9 er, X in En+p+ι.

Theorem B. a) Let Ar be any vector in En+p+ί. Then

b) Γ [n(n - \)σ2υ - n(n - 1) Σ Oi> er)vr
J r
M

+ 2 Σ Σ Σ (Pritb,jk - brjkbsik)hrsiJ]dV = 0 .
r<s i<j k

Proof, a) Consider the real-valued function z — (X, Ar). One easily com-
putes that Δz — Π(OΊ, A') — n(X, A'). Hence an application of Stokes' theorem
gives the required integral formula.

b) Define a vector field W by the formula W = Σ Wjβj, where

n+i Λ Λ er_λ Λ ^ Λ er+1 Λ Λ en+p,A) .
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Clearly W does not depend on the choice of orthonormal frame field. Then
b) follows by computing άiv{W) and applying Stokes' theorem. The computa-
tion of div(JF) uses the Codazzi equations, the symmetry of brij in / and / and
the antisymmetries i) of hrsij. q.e.d.

Despite the relative complexity of the equation b) in Theorem B we are able
to draw from it an interesting geometric conclusion. To do this we need a
simple algebraic lemma, whose proof can be found in [2].

Lemma C. Suppose that C = {ci3) and D — ( d o ) are symmetric n x n
matrices. Then

Σ (Σ feΛ - CM)* <2(Σ cϊyXΣ *«)
i,k j ij k,l

We use this lemma to estimate the quantity

Q = Σ Σ Σ (brijbsjk — bsίjbrjk)hrsίk
r<s i<k j

in terms of B2. First of all, the Cauchy-Schwartz inequality implies that

Q2 < (Σ Σ (Σ Φrιjb,Jk - Kkjbsίjm(Σ Σ Ksώ .
r<s i<k j r<s ί<k

By ϋ), Σ Σ Λ*r.« < 1 - V\ By Lemma C,
r<s ί<k

Σ ( Σ ΦriAjk - brkjbsl3)Y
i<k j

= ^Σ(Σ (briAiic - brkjbslj)f < (Σ bu,)(Σ bh)

= B\B\ (for fixed r, s) .

Thus

Σ Σ ( Σ (brijbsjk - brtjbHJ)Y < Σ BW .
r<s ί<k j r<s

Now the Newton inequalities imply that

Σ BIB) < (p(p - 1)/2)(Σ Blip)2 = ((p - l)/2p)β4 .
r<s r

Combining all these inequalities we see that

^ V(P- DβpWT^TΓ2 B2.

Theorem C (DeGiorgi-Simons). Suppose that X: M -> Sn+P is a minimal

immersion of the compact oriented n-manifold M into Sn+P such that function

U defined above satisfies the hypothesis U > V(2p — 2)/ (3/7 — 2). Then

(M,X) is totally geodesic. In particular, this is the case if U > V2/3, inde-
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pendently of p.
Proσf. Theorem B and the estimate for Q imply that if σλ — 0 then

0 = Γ (-B2U + 2Q)dV < ΐ(-B2U + 2 J(p - l)/2p Vl - U2 B2)dV .

If U > V(2p — 2)/(3p — 2), then we easily see that

This, together with the integral inequality at the beginning of this proof,
implies that B2 = 0 on M, i.e., (M, X) is totally geodesic.

Remark. Theorem C improves Theorem 5.2 of [9], since the hypothesis

there is U > V(p + Ό/(P + 2). Thus our result is better in every codimen-

sion, and more importantly gives the single bound V2/3 which will work for

any codimension. For further discussion, see the appendix.

Appendix

In this appendix we consider the DeGiorgi-Simons theorem (Theorem C) in
a different light. We use the notation of that theorem.

In [9] Simons asks if we can weaken the hypothesis on U in Theorem C to
U > 0. Unfortunately we are unable to answer this question, but we can derive
a weaker form (Theorem D) of the DeGiorgi-Simons theorem which shows
more clearly why one has to assume that U is fairly far from 0.

First of all let us indicate the geometric significance of the nonvanishing
of U. C o n s i d e r t h e m a p Y = f . ( X - Σ (X,AS)AS): M -> Sn, w h e r e Sn

s

is the great n-sphere in Sn+P perpendicular to An+ι, - - - ,An+p, and / =

1/Vl — Σ (X>AS)
2. If M is compact and connected, then one easily checks

that Y is a diffeomorphism if and only if U Φ 0 on M.
Now let us consider the cone over the immersion (M, X). This is the immer-

sion (M\Xf), where Mf = M X (0, oo), s o M ; is of dimension n + ί, and
X': Mf -> En+p+ί is defined as X'(q, t) = X(q) t, q <ε M, t € (0, oo). It is well-
known (cf. [9]) that the immersion (M,X) into Sn + P is minimal if and only if
(M', X') is a minimal immersion into En+P+1. Also the unit normal p-plane on
Mf at (q, t) is independent of /. The inner product U\q, t) of this normal p-
plane and the fixed p-plane An+ι A An+2 A Λ An+P is still U(q) > 0.

From now on our index conventions are 0 < i,j,k,l < n, n + 1 < r, s <
n + p, n>2. Let Ao, — ,An be vectors in En + p+ί such that AQ, , An,
An+19 - ',An+p form an orthonormal basis for En+P+1. Let En+ί be the vector
subspace spanned by Ao, , An. Set Xj = (Aj9 Xf) and yr = (Ar, X'). Then
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the functions (xQ, x19 , xn) define a diffeomorphism Ύr between Mf and the
open set En+ι ~ {0} in En+1 and in particular the xά form a global coordinate
system on M\ This is true, because /• Ύr is the cone over the diffeomorphism
Y :M -> Sn and En+1 ~ {0} is the cone over Sn.

Since the Xj are global coordinates for M' we shall view the functions yr as
functions of the Xj. Thus Xf(M) has the nonparametric representation as the
set of all points (*0, - -, xn, yn+ι(χ^ ' * -χn)> , )>π+3>(>o, , *n)) with
(*0, .-.,Λn) gfc (0, - . . , 0 ) .

The metric tensor of (M\ Xr) relative to the coordinates x0, , xn is

*, 3 * , < ^

We denote the inverse of the matrix (gtj) by (gίj), and the Christoffel symbols
(of the second kind) by Γι

ύk. If z is any smooth function on M, then its
Laplacian is given by (cf. [3])

* = Σ *« ί - ^ - - Σ
<y \ aXdX fc

Also a necessary and sufficient condition for an immersion into Euclidean space
to be minimal is that the coordinate functions be harmonic [9],

Thus in the case of the minimal cone (M7, X') we must have Δxό — Δyr —
0. However,

XiOXj Jc=o dXjc I ίj=o

so the condition Δyr = 0 becomes

That is, each yr satisfies the second order elliptic partial differential equation
(*). The yr are smooth except for a possible isolated singularity at the origin.
Since the yr are conical functions, i.e., yr(tq) = tyr(q), t real, we know that
if the origin is not a singular point of the yr, then they must be linear functions
of the Xj. In this case X(M) is a clearly great π-sphere in Sn + P.

In order to show that if U is sufficiently close to 1 on M then the yr are
smooth at 0, we shall need a result from the theory of elliptic partial differ-
ential equations (cf. [4, p. 132]).

Proposition B. Suppose that z — z(x0, , xn) is a smooth solution of a

uniformly elliptic second order partial differential equation J] atj = 0,
«,i=o dXidXj

n > 2, with an isolated singularity at the origin. If z is Θ(r1'n+δ) at the origin
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for some δ > 0 (in particular if z is Lipschitz at the origin), and if lim sup
X->0

\<tij(x) — δij\ w sufficiently small (although we don't assume the atj are con-

tinuous at the origin), then z is actually smooth at the origin.

To be able to apply Proposition B to our situation we first notice that each

yr, being a conical function, is Lipschitz at the origin. Secondly we notice that

if U is close to 1, then gίj9 and thus gij, is close to δiά at each point (i.e.,

uniformly). Indeed it is easy to show that 1 > l / J l + Σ @}\ /9**)2 >\V\

and thus if U close to 1, then dyr/dxk is close to 0 for each r, k and therefore

gij is close to δtj. In light of our earlier remarks, we have thus proved

Theorem D. // Mn is a compact minimal submanifold in Sn+P such that

the function U is sufficiently near 1 on M, then M is a totally geodesic

submanifold of Sn+P.
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