A CHARACTERIZATION OF A STANDARD TORUS IN \boldsymbol{E}^{3}

KATSUHIRO SHIOHAMA \& RYOICHI TAKAGI

0. Introduction

Let M be a two dimensional, connected, complete and orientable Riemannian manifold of class C^{∞}, and $\iota: M \rightarrow E^{3}$ be an isometric immersion of M into a Euclidean three space. The purpose of the present paper is to find some conditions for M to be congruent to a standard torus in E^{3}; by a standard torus in E^{3} we mean a surface of revolution defined by

$$
\begin{gathered}
x=(a+b \cos u) \cos v, \quad y=(a+b \cos u) \sin v, \quad z=b \sin u, \\
a>b>0,0 \leq u<2 \pi, 0 \leq v<2 \pi
\end{gathered}
$$

which we shall denote by $T(a, b)$. One of the properties of a standard torus is that one of its principal curvatures is constant everywhere. There are a lot of classes of surfaces with such property, for example, sphere, right circular cylinder, standard torus, etc.. A characterization of a standard torus seems to be more complicated than those of a sphere or right circular cylinder under the condition that one of the principal curvatures is constant everywhere, since a standard torus has non-constant mean curvature and its Gaussian curvature changes sign. The authors were inspired on this subject by one of the problems stated by Willmore in [4], and were informed of this problem by Professor M. Obata.

Problem (Willmore [4]). Let $\iota: M \rightarrow E^{3}$ be an imbedding of a compact and orientable manifold M of genus 1 into E^{3}, and H be the mean curvature of $\iota(M)$ with respect to the induced metric from E^{3}. Then, does the following equality hold?

$$
\inf \int_{((M)} H^{2} d A=2 \pi^{2}
$$

where $d A$ denotes the area element of M and ι ranges over all imbeddings of M into E^{3}.

The main theorem of the present paper gives a partial solution to the above problem, and can be stated as follows:

[^0]Main theorem. Let M be a two-dimensional, connected, compact and orientable Riemannian manifold of class C^{∞} and nonzero genus, and $\iota: M \rightarrow E^{3}$ be an isometric immersion. Suppose that one of the principal curvatures of $\iota(M)$ is a constant R everywhere. Then we have

$$
\int_{M} H^{2} \circ \ell d A \geq 2 \pi^{2}
$$

where the equality holds if and only if c is an imbedding, and $c(M)$ is congruent to the standard torus $T(\sqrt{ } 2 /|R|, 1 /|R|)$.

In $\S 2$ we shall classify the surfaces satisfying that one of the principal curvatures is a constant everywhere, and a proof of the main theorem will be given in § 3 .

The authors wish to express their gratitude to Professor H. Nakagawa for his valuable advice about the treatment of differential equations (2.5) in $\S 2$, and to Professor M. Obata for his constant encouragement.

1. Definitions and notation

Throughout this paper let M be a two dimensional, connected, complete and orientable Riemannian manifold of class C^{∞}, and $\iota: M \rightarrow E^{3}$ be an isometric immersion of M into a Euclidean 3-space. When the argument is local in nature, a point $p \in M$ may be identified with $\iota(p)$. Let $\mathscr{F}(M)$ and $\mathscr{F}\left(E^{3}\right)$ be the orthonormal frame bundles on M and E^{3} respectively, and B the subset of $\mathscr{F}\left(E^{3}\right)$ defined by $B=\left\{b=\left(p, e_{1}, e_{2}, e_{3}\right) \mid\left(p, e_{1}, e_{2}\right) \in \mathscr{F}(M),\left(\iota(p), \iota_{*}\left(e_{1}\right), \iota_{*}\left(e_{2}\right), e_{3}\right) \in \mathscr{F}\left(E^{3}\right)\right\}$. Then, $\tilde{\iota}: B \rightarrow \mathscr{F}\left(E^{3}\right)$ is naturally defined by $\iota(b)=\left(\iota(p), \iota_{*}\left(e_{1}\right), \iota_{*}\left(e_{2}\right), e_{3}\right)$ where $b=\left(p, e_{1}, e_{2}, e_{3}\right)$. We may identify $\iota_{*}\left(e_{1}\right)$ and $\iota_{*}\left(e_{2}\right)$ with e_{1} and e_{2} respectively. The structure equations of E^{3} are given by

$$
\begin{align*}
d p & =\sum_{\alpha=1}^{3} \tilde{\omega}_{\alpha} e_{\alpha}, & d e_{\alpha} & =\sum_{\beta=1}^{3} \tilde{\omega}_{\alpha \beta} e_{\beta}, \tag{1.1}\\
d \tilde{\omega}_{\alpha} & =\sum_{\beta=1}^{3} \tilde{\omega}_{\alpha \beta} \wedge \tilde{\omega}_{\beta}, & d \tilde{\omega}_{\alpha \beta}=\sum_{\gamma=1}^{3} \tilde{\omega}_{\alpha \gamma} \wedge \tilde{\omega}_{r \beta}, & \tilde{\omega}_{\alpha \beta}+\tilde{\omega}_{\beta \alpha}=0
\end{align*}
$$

where $\tilde{\omega}_{\alpha}$ and $\tilde{\omega}_{\alpha \beta}$ are differential 1-forms on $\mathscr{F}\left(E^{3}\right)$. Putting $\tilde{\tau}^{*}\left(\tilde{\omega}_{\alpha}\right)=\omega_{\alpha}$ and $\tilde{\imath}^{*}\left(\tilde{\omega}_{\alpha \beta}\right)=\omega_{\alpha \beta}$ where $\tilde{\imath}^{*}$ is the dual map of $\tilde{\imath}_{*}$, we get

$$
\begin{align*}
\omega_{3} & =0 \\
\omega_{i 3} & =\sum_{j=1}^{2} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} \quad(i, j=1,2) \tag{1.2}
\end{align*}
$$

The quadratic form $\sum h_{i j} \omega_{i} \omega_{j}$ is called the second fundamental form of M. A point $x \in M$ is called a umbilical point if the matrix $\left(h_{i j}\right)$ takes the form

$$
\left(h_{i j}\right)=\left(\begin{array}{ll}
r & 0 \tag{1.3}\\
0 & r
\end{array}\right)
$$

at the point, where r is a real number. If a point is not umbilical, there exists a neighborhood all of whose points are not umbilical. In such a neighbourhood, we can take an orthonormal frame field with respect to which $\left(h_{i j}\right)$ takes the form

$$
\left(h_{i j}\right)=\left(\begin{array}{cc}
r_{1} & 0 \tag{1.4}\\
0 & r_{2}
\end{array}\right), \quad r_{1}>r_{2} .
$$

In a neighborhood containing no umbilical point we always use only such frame field, which can be considered as a local cross section, to be denoted by σ, of M to the bundle space B. For simplicity we identify $\sigma^{*} \omega_{i j}$ and $\sigma^{*} \omega_{i}$ with $\omega_{i j}$ and ω_{i} respectively, $i, j=1,2,3$. Then, we have

$$
\begin{align*}
d \omega_{i} & =\sum_{j} \omega_{i j} \wedge \omega_{j}, \tag{1.5}\\
d \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j} \quad(i, j, k=1,2,3) .
\end{align*}
$$

Denoting by K and H the Gaussian curvature and the mean curvature of M respectively, we have the following well known formulas

$$
\begin{equation*}
K=r_{1} \cdot r_{2}, \quad 2 H=r_{1}+r_{2} . \tag{1.6}
\end{equation*}
$$

Since M is orientable, a unit normal vector field e_{3} can be globally defined on M. Then we can consider r_{1}, r_{2} as continuous functions on M satisfying $r_{1} \geq r_{2}$, and can reduce the assumption that one of the principal curvatures is everywhere a constant R to one of the following:
(i) $r_{1} \equiv R \geq r_{2}$,
(ii) $r_{1} \geq r_{2} \equiv R$.

Furthermore we may assume that $R \geq 0$ (by replacing the unit normal vector field e_{3} by $-e_{3}$, if necessary). It follows from a theorem of Massey [2] that $\iota(M)$ is a cylinder if $R=0$. We shall classify the surfaces with the properties (1.7) and $R>0$ in the next section.

2. Surfaces one of whose principal curvatures is a positive constant

First, let M possess the property (i) of (1.7). Later, it will be seen that the discussion on $r_{1} \equiv R$ essentially covers the one on $r_{2} \equiv R$. Suppose that there is a non-umbilical point p on M. Then, there exists a neighborhood V of p in which every point is nonumbilical. From (1.2) and (1.4) we observe

$$
\begin{gather*}
\omega_{13}=R \omega_{1}, \tag{2.1}\\
\omega_{23}=r_{2} \omega_{2}, \quad R>r_{2} \tag{2.2}
\end{gather*}
$$

where r_{2} is differentiable on V.
Lemma 1. There are differentiable functions u and f defined on V satisfying

$$
\begin{align*}
\omega_{12} & =f \omega_{2} \tag{2.3}\\
\omega_{1} & =d u . \tag{2.4}
\end{align*}
$$

Proof. Taking exterior differentiation of (2.1) and making use of the structure equations (1.5), we have

$$
R d \omega_{1}=R \omega_{12} \wedge \omega_{2}=r_{2} \omega_{12} \wedge \omega_{2}
$$

Since $R-r_{2} \neq 0$, we have $\omega_{12} \wedge \omega_{2}=0$ and $d \omega_{1}=0$, from which the Lemma follows.

Taking exterior differentiation of (2.2) and (2.3) and making use of the structure equations (1.5) again, along every integral curve of e_{1} we get

$$
\begin{align*}
\partial r_{2} / \partial u & =f\left(R-r_{2}\right), \tag{2.5}\\
\partial f / \partial u & =-\left(R r_{2}+f^{2}\right),
\end{align*}
$$

which imply

$$
\left(R-r_{2}\right) \frac{\partial^{2} r_{2}}{\partial u^{2}}+2\left(\frac{\partial r_{2}}{\partial u}\right)^{2}+R r_{2}\left(R-r_{2}\right)^{2}=0
$$

or

$$
\begin{equation*}
\phi\left(\frac{\partial^{2} \phi}{\partial u^{2}}+R^{2} \phi-R\right)=0 \tag{2.6}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\phi=1 /\left(R-r_{2}\right) \tag{2.7}
\end{equation*}
$$

By solving (2.6) and making use of (2.7), (2.5) we thus have

$$
\begin{align*}
r_{2} & =\frac{R(a \cos R u+b \sin R u)}{a \cos R u+b \sin R u+1 / R} \\
f & =\frac{R(-a \sin R u+b \cos R u)}{a \cos R u+b \sin R u+1 / R} \tag{2.8}
\end{align*}
$$

Lemma 2. Every integral curve γ of e_{1} in V is a geodesic of M, and moreover is a part of a cixcle of radius $1 / R$.

Proof. From (2.3) we have $\left(d e_{1}\right)\left(e_{1}\right)=\omega_{12}\left(e_{1}\right) \cdot e_{1}=0$, which shows that γ is a geodesic of M. Moreover we have along γ,

$$
\begin{aligned}
d p & =e_{1} d u \\
d e_{1} & =R e_{3} d u \\
d e_{3} & =-R e_{1} d u \\
d e_{2} & =0
\end{aligned}
$$

Therefore γ is a part of a circle of radius $1 / R$. q.e.d.
Suppose again that there is a non-umbilical point p on M. From now on V_{0} denotes the set of all non-umbilical points on M, and V is the connected component of V_{0} containing p.

Lemma 3. The integral curve γ_{p} of e_{1} through p is a closed geodesic, and is a circle of radius $1 / R$. Furthermore there does not exist any umbilical point on γ_{p}.

Proof. By Lemma 2 it is sufficient to show that there is not a sequence $\left\{u_{n}\right\}(n=1,2, \cdots)$ of parameters of γ_{p} converging to u_{0} such that $\lim _{n \rightarrow \infty} \gamma_{p}\left(u_{n}\right)$ is a umbilical point. Assume that there is such a sequence. From (2.8), we have

$$
R-r_{2}\left(\gamma_{p}(u)\right)=1 /\left(a_{0} \cos R u+b_{0} \sin R u+1 / R\right),
$$

where a_{0}, b_{0} are constants along γ_{p}. Noting that $R-r_{2}$ is a continuous function on M we see

$$
\lim _{u \rightarrow u_{0}}\left[R-r_{2}\left(\gamma_{p}(u)\right)\right] \neq 0 .
$$

This fact implies $\lim _{n \rightarrow \infty} \gamma_{p}\left(u_{n}\right) \in V$, which contradicts the assumption.
Proposition 4. Let M be a surface with $r_{1} \equiv R \geq r_{2}$. Then M is either totally umbilical or else umbilic free.

Proof. Suppose that there is a non-umbilical point p on M. For any point $q \in V$ let γ_{q} denote the integral curve of e_{1} which is a closed geodesic. γ_{q} is a circle of radius $1 / R$ and contained entirely in V by Lemma 3. Since V is open in M, it suffices to show that V is closed in M. Let $\left\{p_{n}\right\}(n=1,2, \cdots)$ be a sequence of points belonging to V such that $\lim _{n \rightarrow \infty} p_{n}=p_{0} \in M$, and set $\gamma_{n}=\gamma_{p_{n}}$. By completeness of M we can choose a subsequence $\left\{\bar{\gamma}_{n}\right\}$ of $\left\{\gamma_{n}\right\}$ converging to some closed geodesic γ_{0} through p_{0}. It follows from (2.8) that for each n there exists a point q_{n} on $\bar{\gamma}_{n}$ for which $r_{2}\left(q_{n}\right)=0$ holds. Then we can choose a subsequence $\left\{\bar{q}_{n}\right\}$ of $\left\{q_{n}\right\}$ converging to a point q_{0} on γ_{0}. Thus we have $r_{2}\left(q_{0}\right)=$ $\lim _{n \rightarrow \infty} r_{2}\left(\bar{q}_{n}\right)=0$ by continuity of r_{2}, and hence $q_{0} \in V$. This fact together with $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma_{0}$ implies that the tangent vector of γ_{0} at q_{0} coincides with $e_{1}\left(q_{0}\right)$. Thus we have $\gamma_{0}=\gamma_{q_{0}}$, in particular $p_{0} \in V$.

Corollary to Proposition 4. Let M be a surface with $r_{1} \equiv R \geq r_{2}$. If there is a umbilical point on M, then M is totally umbilical and hence M is isometric to the sphere $S^{2}(R)$ of radius $1 / R$.

Proposition 5. Let M be a surface with $r_{1} \equiv R \geq r_{2}$. If r_{2} does not change sign, then $\iota(M)$ is congruent to either $S^{2}(R)$ or the right circular cylinder $S^{1}(R) \times E^{1}$, where $S^{1}(R)$ is a circle of radius $1 / R$.

Proof. By virtue of Proposition 4 it suffices that $f \equiv 0$ and $r_{1} \equiv 0$ hold if M is umbilic free. Then we may assume that the orthonormal frame field (p, e_{1}, e_{2}, e_{3}) under consideration is globally defined on M. For any point $p \in M$, the integral curve γ_{p} of e_{1} through p is a circle of radius $1 / R$. From (2.8) we have, along γ_{p},

$$
r_{2}=\frac{R \sqrt{a^{2}+b^{2}} \sin (R u+\Phi)}{\sqrt{a^{2}+b^{2}} \sin (R u+\Phi)+1 / R}
$$

where $\cos \Phi=a / \sqrt{a^{2}+b^{2}}, \sin \Phi=b / \sqrt{a^{2}+b^{2}}$. Since u can take all real numbers, r_{2} changes sign if $a^{2}+b^{2} \neq 0$, from which we must have $a=0, b=0$. Therefore a and b must vanish identically on M and then we have $f \equiv 0$ and $r_{2} \equiv 0$. The remainder of proof follows immediately from the structure equations. q.e.d.

Now let M possess the property (ii) of (1.7), i.e., $r_{1} \geq r_{2} \equiv R>0$. Also in this case the previous discussions are valid by exchanging the role of r_{1} and the one of r_{2} mutually. Assume that there is a non-umbilical point p on such M. Then there is a point p_{0} on the integral curve of e_{2} such that $r_{1}\left(p_{0}\right)=0$, which contradicts $r_{1}>0$. Thus we have proved

Proposition 6. If M is a surface with $r_{1} \geq r_{2} \equiv R$, then M is isometric to $S^{2}(R)$.

As a contrapositive of Proposition 4, we state that r_{2} changes sign if M is neither isometric to a sphere nor to a right circular cylinder. Thus if M is compact, which is not isometric to a sphere, and possesses the property $r_{1} \equiv$ $R \geq r_{2}(R>0)$, then r_{2} changes sign. This case will be dealt with in the next section.

3. A characterization of a standard torus

Throughout this section let $\iota: M \rightarrow E^{3}$ be an isometric immersion of a connected, compact and orientable riemannian manifold M of nonzero genus, and let M possess the property $r_{1} \equiv R \geq r_{2}(R>0)$. First we shall prove the following

Theorem 7. If c is an imbedding, then M is diffeomorphic to a standard torus.
Proof. We may assume that the orthonormal frame field (p, e_{1}, e_{2}, e_{3}) is globally defined on M. Fix an arbitrary point p of M, and let λ_{p} be the integral curve of e_{2} with $\lambda_{p}(0)=p$. Then there is a positive number L such that the restriction $\lambda_{p} \mid[0, L)$ traverses every circle $\gamma_{q}(q \in M)$ just once and $\lambda_{p}(L) \in \gamma_{p}$.

Making use of λ_{p} we can easily construct a simple and closed curve $\tilde{\lambda}_{p}:[0, L]$ $\rightarrow M$ which traverses every circle $\gamma_{q}(q \in M)$ just once. $\tilde{\lambda}_{p}$ can be considered as a cross section of the base space $\tilde{\lambda}_{p}([0, L])$ to the circle bundle space M. Hence M is diffeomorphic to a standard torus. q.e.d.

Define an orthonormal frame field ($p, \bar{e}_{1}, \bar{e}_{2}$) on M by $\iota_{*}\left(\bar{e}_{i}\right)=e_{i}, i=1,2$. Furthermore, define a mapping $\phi: M \rightarrow E^{3}$ by $q=\phi(p)=\iota(p)+(1 / R) e_{3}(\iota(p))$. Then we have $d q=d p+(1 / R) e_{3}=\left(1-r_{2} / R\right) e_{2} \omega_{2}$, which shows that the curve $C(\bar{v})=\phi(p(\bar{u}, \bar{v}))$ is regular because $r_{2} \neq R$, where \bar{u} (resp. \bar{v}) denotes the parameter of some integral curve of \bar{e}_{1} (resp. \bar{e}_{2}). We shall call the curve C the central curve of M. Since M is compact, C is closed (not necessarily simple). It can be seen by a straightforward calculation that $C(\bar{v})$ is a circle, i.e., $\iota(M)$ is congruent to a standard torus if and only if both functions a and b in $\S 2$ are nonzero constants. Here we shall estimate $\int_{M} H^{2} \circ \iota d A$. It is evident that the following inequality holds:

$$
\begin{equation*}
\int_{M} H^{2} \circ \iota d A \geq \int_{\iota(M)} H^{2} d A \tag{3.1}
\end{equation*}
$$

where the equality holds if and only if there does not exist any open subset W of $\iota(M)$ whose inverse image $\iota^{-1}(W)$ has at least two components.
In order to compute $\int_{:(M)} H^{2} d A$, we will use the formulas of Frenet-Serrét $\left(C, \xi_{1}, \xi_{2}, \xi_{3}\right)$ for the central curve C. Retake the parameter of C so that it represents arc length from a fixed point on C. Then we obtain an immersion ιp of $S^{1}(1) \times S^{1}(2 \pi / l)$ onto $\iota(M)$ defined by

$$
(\iota p)(u, v)=C(v)+\frac{1}{R}\left(\xi_{2} \cos u+\xi_{3} \sin u\right) .
$$

Denoting curvature and torsion of C by κ and τ, the formulas of Frenet-Serrét for C are

$$
\begin{align*}
& d C=\xi_{1} d v, \\
& d \xi_{1}=\quad \kappa \xi_{2} d v \\
& d \xi_{2}=-\kappa \xi_{1} d v \quad+\tau \xi_{3} d v, \tag{3.2}\\
& d \xi_{3}=\quad-\tau \xi_{2} d v .
\end{align*}
$$

Then the orthonormal frame field and the basic forms on M can be expressed as

$$
\begin{align*}
& e_{1}=-\xi_{2} \sin u+\xi_{3} \cos u \\
& e_{2}=\xi_{1} \tag{3.3}\\
& e_{3}=-\xi_{2} \cos u-\xi_{3} \sin u
\end{align*}
$$

$$
\begin{align*}
& \omega_{1}=\frac{1}{R}(d u+\tau d v), \tag{3.4}\\
& \omega_{2}=\left(1-\frac{\kappa}{R} \cos u\right) d v
\end{align*}
$$

Making use of (3.1) and (3.2), the connection form ω_{12} and other forms of $\iota(M)$ can be expressed as

$$
\begin{align*}
\omega_{12} & =\frac{R \kappa \sin u}{R-\kappa \cos u} \omega_{2}, \\
\omega_{13} & =R \omega_{1} \tag{3.5}\\
\omega_{23} & =\frac{R \kappa \cos u}{R-\kappa \cos u} \omega_{2} .
\end{align*}
$$

Form (2.2), (3.4) and (3.5) we have $r_{2}=\frac{-R \kappa \cos u}{R-\kappa \cos u}$. Thus,

$$
4\left(H^{2}-K\right)=\frac{R^{4}}{(R-\kappa \cos u)^{2}} .
$$

From (3.4) the area element $d A$ of $\iota(M)$ is given by

$$
\begin{equation*}
\omega_{1} \wedge \omega_{2}=\frac{1}{R^{2}}(R-\kappa \cos u) d u \wedge d v \tag{3.6}
\end{equation*}
$$

On the other hand, the Gauss-Bonnet theorem implies

$$
\begin{equation*}
\int_{((M)} K d A=4 \pi(1-g)=0 \tag{3.7}
\end{equation*}
$$

Taking account of these facts, we have
(3.8) $4 \int_{\iota(M)} H^{2} d A=\int_{\iota(M)} 4\left(H^{2}-K\right) d A=\int_{0}^{l}\left\{\int_{-\pi}^{\pi} \frac{R^{2}}{R-\kappa \cos u} d u\right\} d v$,
where l denotes the length of the central curve C.
Since (3.4) implies necessarily $|\kappa|<R$ and κ depends only on v, we find

$$
\begin{equation*}
\int_{\iota(M)} H^{2} d A=\frac{\pi R^{2}}{2} \int_{0}^{l} \frac{d v}{\sqrt{R^{2}-\kappa^{2}}} \tag{3.9}
\end{equation*}
$$

By virtue of the Schwarz's inequality, we have

$$
\begin{equation*}
\int_{0}^{l} \frac{d v}{\sqrt{R^{2}-\kappa^{2}}} \geq l^{2} / \int_{0}^{l} \sqrt{R^{2}-\kappa^{2}} d v \tag{3.10}
\end{equation*}
$$

Recalling the inequality, we have

$$
\begin{equation*}
\left(\int_{0}^{l} \sqrt{R^{2}-\kappa^{2}} d v\right)^{2} \leq R^{2} l^{2}-\left(\int_{0}^{l} \kappa d v\right)^{2} \tag{3.11}
\end{equation*}
$$

Here by virtue of the generalized Fenchel's theorem according to Milnor [3], we have

$$
\begin{equation*}
\int_{0}^{l} \kappa d v \geq 2 \pi \tag{3.12}
\end{equation*}
$$

where the equality holds if and only if C is a convex curve in a plane.
Combining the inequalities (3.1), (3.10), (3.11) and (3.12), we obtain

$$
\int_{M} H^{2} \circ \iota d A \geq \frac{R^{2} l^{2} \pi}{2 \sqrt{R^{2} l^{2}-4 \pi^{2}}}
$$

where the equality holds if and only if the equalities in (3.1), (3.10), (3.11) and (3.12) hold simultaneously. In other words, C is a circle of radius $l /(2 \pi)$ and ι is an imbedding. Summing up the above results, we can state as follows:

Theorem 8. Let M be a two-dimensional, connected, compact and orientable Riemannian manifold of nonzero genus, and $\iota: M \rightarrow E^{3}$ be an isometric immersion. Suppose that one of the principal curvatures of M is a positive constant R everywhere, and let l be the length of the central curve of M. Then we have

$$
\int_{M} H^{2} \circ \iota d A \geq \frac{R^{2} l^{2} \pi}{2 \sqrt{R^{2} l^{2}-4 \pi^{2}}}
$$

where the equality holds if and only if c is an imbedding, and $\iota(M)$ is congruent to a standard torus $T(l /(2 \pi), 1 / R)$.

Proof of main theorem. Considering the right hand side of the inequality in Theorem 8 as a function of $R l$, we can easily see that it attains the minimum $2 \pi^{2}$ for $R l=2 \sqrt{ } 2 \pi$, and hence our main theorem follows from Theorem 8.

References

[1] W. Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238-252.
[2] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. J. 14 (1962) 73-79.
[3] J. W. Milnor, On the total curvature of knots, Ann. of Math. 52 (1950) 248-257.
[4] T. J. Willmore, Note on embedded surfaces, An. Şti. Univ. "Al. I. Cuza" Iaşi Şect. I a Mat. 11 (1965) 493-496.
[5] -, Mean curvature of immersed surfaces, An. Şti. Univ. "Al. I. Cuza" Iaşi Şect. I a Mat. 14 (1968) 99-103.

[^0]: Received July 8, 1969.

