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SUBMANIFOLDS OF CODIMENSION 2 WITH
CERTAIN PROPERTIES

MASAFUMI OKUMURA

Introduction

H. Liebmann [5] has proved that the only ovaloid with constant mean
curvature in a 3-dimensional Euclidean space is a sphere. Various generali-
zations of this theorem have been obtained recently. Y. Katsurada [1],
[2] and K. Yano [9] have generalized this theorem to a hypersurface of a
Riemannian manifold admitting an infinitesimal conformal or homothetic
transformation. A generalization of the theorem to the case of codimension
greater than 1 was first tried by the present author [8] when the enveloping
Riemannian manifold is an odd dimensional sphere. In [8], the present
author made full use of the natural contact structure on the sphere.

On the other hand Y. Katsurada [3], [4], H. Kojyo [3], T. Nagai [4] and
K. Yano [10] studied this problem when the enveloping manifold admits an
infinitesimal conformal transformation. They made full use of the existence
of an infinitesimal conformal transformation, and proved that under some
conditions the submanifold in consideration is umbilical only with respect to
the mean curvature normal. In the present paper the author studies the same
problem as that in [3], [4], [10] and proves that under certain conditions the
submanifold in consideration is not only umbilical with respect to the mean
curvature normal but also is totally umbilical.

In §1 we recall formulas for the submanifolds of codimension 2 in a
Riemannian manifold which will be used in the sequel.

In §2 we define a certain intrinsic normal vector field and consider some
properties of the normal bundle. In § 3 we derive some integral formulas for a
compact submanifold of codimension 2 in a Riemannian manifold admitting
an infinitesimal conformal transformation. Using these formulas, we estab-
lish, in § 4, a certain generalization to the most general form of Liebmann’s
theorem above stated. In the last §5 we study submanifolds of codimension
2 of a sphere or a Euclidean space.

1. Submanifolds of codimension 2 in a Riemannian manifold
Let M be an n-dimensional orientable differentiable manifold, and ¢ be an
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immersion of M™ into an (n + 2)-dimensional Riemannian manifold M2,
Then the Riemannian metric § of M™*? induces naturally a Riemannian metric
g on M" by the immersion ¢ in such a way that

8(X,Y) = g(ddX), dd(Y)) ,

where we denote by d¢ the differential map of ¢, and by X, Y vector fields in
M*. In order to simplify the presentation we identify, for each point p € M™,
the tangent space T ,(M) with d(T ,(M)) C T, ,,(M) by means of the immersion.

Since M™" is orientable, if we assume that M"*? is also orientable, in a certain
neighborhood U of p e M™ we can choose two fields of mutually orthogonal
unit normal vectors C and D of M™ at each point of U in such a way that, if
(B,, - -+, B,), is a positively oriented frame of tangent vectors at p then the
frame (d«(B)), - - -,d«(B,),C, D),,, is also positively oriented.

Let X, Y be tangent to M™. Then the covariant derivative of d¢/(X) in the
direction of d«(Y) is expressed as

1.1) Var,ddX) =VyX + h(X,Y)C + k(X,Y)D .

Although VX denotes the tangential components of a.@aduX), it is easily
verified that /. X is identical with the covariant derivative of X in the direc-
tion of Y with respect to the induced Riemannian metric g.

The tensors # and k of type (0.2) over M™ are called the second fundamental
tensors of M in M"** with respect to the normal vectors C and D respectively.
Since the Riemannian connections  and I are both torsionless we easily see
that 4 and k are symmetric.

The normal vectors C and D are unit vectors, and so we can put

(1.2) V,C=— AX) + X)D , VyD = — A'(X) — I(X)C ,

where A(X) and 4’(X) denote the tangential components of §/ ~C and VxD on
M?" respectively, and [ is the third fundamental form of M™ in M"*2.
Let X,Y e T,(M). Then we have the equations of Weingarten:

(1.3) gWC,Y) = — h(X,Y), gWiD,Y)= —k(X,Y).

Let {x%}, i =1, - - -, n, be local coordinates in an open neighborhood U’ of
p e M*. The set of vector fields (3/dx", - - -, 9/0x™) is called the natural frame
of M", and spans the tangent plane of M" at each point of U’. We choose a
positively oriented frame (B,,---,B,, C, D), where B, = di(d/0x"), i =
1,---,n, at each point of the neighborhood U N «(U’) of «(p) ¢ M"*+2. Then
A(X) and A’(X) are represented as linear combinations of B;, i =1, -- -, n,
and consequently we get, by (1.2),

(1.4) VpC=— iZﬂH,iBi + LD, VgzD=— ;KﬁBi —L,C,
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where L; denotes I(B;). Thus by virtue of (1.3) we have

def

H;; = h(3/0x',3/0x") = —g(W,C, B

(1.5) .
= ;ijg(Bk’Bi) = ijgm' ,
K, == k(3/ox7,8/ox") = —g(7,D, B,)
(1.6) :

= Z;Kjig(Bk,Bi) = Kjkglci P

where g;; denotes g(d/dx’,d/dx"), and we use Einstein’s summation conven-
tion for simplicity.

Let R and R be curvature tensors of M"*2 and M respectively. Then the
equations of Gauss, Mainardi-Codazzi and Ricci-Kiihne are respectively given
by

g(R(Blcv Bj)Bi, Bh) = Rkjih - Hkinh + HkiHjh

(1.7
- KjiKkh + Kkinh 5
(1 8) g(R(Bk,Bj)BuC) = VkHji - Viji - Lchji + Liji 5
) g(R(Bk’ Bj)B’L‘, D) = Vchji - Viji + Lchji - Liji )
and
(1.9) g(R(B,,B,)C,D) =V,L; — V,L, — Ki;H;* + K;H,' ,
where

Ryjin = g(R(0/0x*,0/0x7)d[ox?,9/ox") ,

and F; denotes the operation of covariant differentiation in classical tensor
calculus.

2. Submanifolds and some vector fields

Let g’* be the inverse matrix of g;;, and put H,” = g’H,;, K,” = g"’K, ;.
Then the vector H defined by

@.1) H=1 @ C+ KD
n

is independent of the choice of mutually orthogonal unit normal vectors of
M", and so defines a vector field along M". We call this vector field the mean
curvature vector field along M" with respect to M"*?. Next putting H/* =
g/"H ', K/ = gi"K *, we consider a vector
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(2.2) W = (K,/H;K'" — H'K,K/)C + (H,H ;K" — K,"H ;HI)D .

It can be easily verified that W is also independent of the choice of mutually
orthogonal unit normal vectors of M”, and so defines a vector field along M™.

When at each point of M™ there exist functions 4’ and &’ such that A(X, Y)
= hgX,Y),k(X,Y) = k'g(X, Y) or equivalently

(2.3) H; = h/gji s K; = k/gji ,

we call M™ a totally umbilical submanifold. From this definition, if M™ is
totally umbilical we have

2.4) w=lnu- w=1lkr.
n n

Proposition 2.1. A necessary and sufficient condition for a submanifold of
codimension 2 to be umbilical is that the following equations are satisfied:

2.5) %WE%WW, mm:%mw.

Proof. This follows from the identities

(Hﬁ - ﬂé’ji) (H” - ﬂgﬁ) = H;H" — i(H/)2 ,
n n n

K,
n

(Koo = B (Kot = Brlgr) = ke - ko

n n
and the positive definiteness of the Riemannian metric g;.

Proposition 2.2. The vector field W vanishes identically if the submani-
fold is totally umbilical.

Proof. Substituting (2.3) and (2.4) into (2.2), we get W = 0. This com-
pletes the proof.

Next we consider the normal bundle N(M") of M". For X ¢ T(M"),
N e N(M™), a connection 'V on N(M") is defined by

(2.6) TN = TxN)Y,

where (7 yN)" denotes the normal part of V+N. When VN vanishes identi-
cally along M™ we say that N is parallel with respect to the connection of the
normal bundle N(M").

Proposition 2.3. The mean curvature vector field H is parallel with respect
to the connection of the normal bundle if and only if the following two equa-
tions are both valid.

(27) VjHTr = KTTLj s VjKTT = —HTTLJ» .
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Proof. Since

PoH = L@WHC+ HPyC+ VKD + K,T,D),
n
we have

J

PoH— "\(H 'H +K'K)B, — (7;H" — K, L,)C
n
— (7K, + HL,)D}

because of (1.4). Thus we get
2.8)  (73/ox)H = “{,H,” — K ’L,))C + (7 K, + H, LD},
n

from which we have Proposition 2.3.

Proposition 2.4. If the mean curvature vector field is parallel with respect
to the induced connection of the normal bundle, then (H;)? 4+ (K;)? is
constant.

Proof. From Proposition 2.3 this is easily verified.

Proposition 2.5. Let M" be a totally umbilical submanifold of M™** such
that at each point of M" the tangent space is invariant under the curvature
transformation of M"**. Then the mean curvature vector field H is parallel
with respect to the induced connection of the normal bundle.

Proof. Since at each point of M™ the tangent space is invariant under the
curvature transformation of M"*2, equation (1.8) reduces to

(2 9) VkHji - Viji = LkKji - Liji ’

’ VkKji - Viji - —‘LkHji + Lme' 5
from which we get equations (2.7), which, together with Proposition 2.3, thus
imply the assertion of Proposition 2.5.

Proposition 2.6. Let M™ be a totally umbilical submanifold of an (n + 2)-
dimensional Riemannian manifold of constant curvature. Then the mean
curvature vector field H is parallel with respect to the induced connection of
the normal bundle.

Proof. Since the enveloping manifold is of constant curvature, for a con-
stant ¢, the curvature tensor of the enveloping manifold has the form
R(B;, B;)B; = C{g(B;, B,)B, — g(B;, B;)B;}. This shows that the tangent
space of M" is invariant under the curvature transformation of the enveloping
manifold. Thus, by Proposition 2.5, we have Proposition 2.6.
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3. Integral formulas

Let M™ be a compact submanifold of M™** in which there exists an infini-
tesimal conformal transformation X, that is, in which X is a field of M™*? and
satisfies for any vector fields Y, Z ¢ T(M"*2),

(3.1 (XY ,2) = gWeX,2) + (¥, V;X) =2 p8(Y,2) ,

where #(X) is the operator of Lie derivative with respect to X and pis a
function on M"*2. The vector X being a tangent field of M"*?, it is represented
as a linear combination of B;, C and D. Hence we put

(3.2) X=X+aC+pD, X =1B,,

from which we get

(3.3) a=gX,0), p=gX,D).
Since (1.1) and (3.2) yield that

eWyX,Z) = g0y X — h(X,Y)C — k(X,Y)D, Z)
= gyX,Z) = gWy(X — aC — D), Z)
= gWyX,Z) — agW,C,2) — pgWyD,Z)
= gWyX,2) + ah(Y,Z) + Bk(Y,Z) ,

3.4

we have
(3.5) gWyX,Z) + g(Y,V,X) =2{og(Y,Z) + ah(Y,Z) 4 Bk(Y,Z)}

because of (3.1). Substituting vi9/9x?, 9/dx’ and 3/dx" for X, Y and Z respec-
tively in (3.5), we get

(3.6) Vv, +Vw; = 2(ngn + aHj, + BK;.) »
which implies that
(3.7 divX =V vt = np + aH;’ + BK;* = n{p + g(H, Y)} .

Since M™ is compact we have
(3.8) [oam = — [z, Dyam
Mn mn

because of (3.3).

Now we put F = H,”A 4+ K,”A’. Then it is easily verified that F is inde-
pendent of the choice of mutually orthogonal normal vectors C and D and
consequently that F defines a linear transformation on T(M"). Let ¥ = FX,
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that is,
3.9 Y = H AW /ox?) + K,"A'(v'd/ox?) .
Putting ¥ = u’/d/ox?, we have
(3~10) U, = g(Y’ a/axl) - HrrHih’Ui + KrTKih/vi >
from which
Vu, = H, (Hy,V 0t + v ;Hy) + K (Kl ot + 0 ,K,)
+ V;H,"v'H;, + VK, v'K,, .
Thus we get
divY =V = }(H,"H?* + K"KV v, + V,v,)
(3.11) + H,"ViH; v + K,"VIK; vt + V,;H,"H,;,v¢
+ VK, K v?
because of the fact that H is symmetric.
Substituting (3.6) into (3.11) and making use of (2.1) and (2.2), we obtain
div Y = ng(H, X)(H;H'* + K;K') + p{(H)* + (K;)%} + W, X)
+ H,V'H;v¢ + K,"VIK;v* + V,;H,"H;,v* + V,K,"K,;,v* .
Since M" is compact it follows that
— fp{(Hii)2 + (K;)*dM = f{ng(H,X)(HjiH” + K ;K7 + g(W, X)
(3.12)  y» s
+ HViH; v + K,"VIK; ;v + V,;H,"H;,v* + V,;K,"K;,v'}dM .

4. Compact submanifolds with certain properties

In this section we assume that M” is a compact submanifold of M"*? in
which there exists an infinitesimal conformal transformation X of M”*? and
that M" satisfies the following conditions:

1) The tangent space at each point of M" is invariant under the curvature
transformation of M"*?,

2) The mean curvature vector of M” in M"*? is parallel with respect to
the connection of the normal bundle and is non-vanishing at almost everywhere.

Then the condition 1), together with (1.8), implies that

VkHji - Vme' - LkKji - Lij' )

“4.1)
VkKji _ Vijz == —LkHji + Lijl .
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Furthermore, from the condition 2), Proposition 2.3 and (4.1) it follows that

Substituting (2.7) and (4.2) into (3.12), we get

—{HY + K} [ pam
(4.3) "
= [(Ing(t, D H + KK + gW, X)lam

Mn

because of Proposition 2.4. Substituting (3.8) into (4.3), we have

f[ ng(H, )?)KHﬁHﬁ ~ % (H,;i)2>

(4.4)
+ (KjiK” _ % (K;‘)Z) + W, X’)HdM ~0.

Thus, if the vector field W is on the same side as H with respect to the normal
parts of X in the normal bundle, that is, if H and W satisfy the inequality
g(H,X)g(W,X) > 0, then the integrand of (4.4) has a definite sign. In this
case we have H;;H’* = (1/n)(H,%)* and K ;,K’* = (1/n)(K,;")*. Consequently we
have, from Proposition 2.1,

Theorem 4.1. Let M™ be a compact submanifold of M"** whose tangent
space at each point is invariant under the curvature transformation of M"*2.
Suppose that M"** admits an infinitesimal conformal transformation X and
that the mean curvature vector field of M™ in M™*? is parallel with respect to
the connection of the normal bundle and g(H,X) is non-vanishing at almost
everywhere on M". If, with respect to the normal part of X, the vector field
W defined by (2.2) is on the same side as the mean curvature vector field in
the normal bundle, then M™ is a totally umbilical submanifold of Mr+e,

5. Applications

Let M™ be a submanifold of a Riemannian manifold of constant curvature.
As we have seen in the proof of Proposition 2.3, the tangent space of M" is
invariant under the curvature transformation of the enveloping manifold. Thus
Theorem 4.1 can be applied to submanifolds of a sphere or of a Euclidean
space, and therefore in this section we consider submanifolds of such manifolds.

In order to get further results we use the following theorem due to M. Obata
[61, [7].

Theorem. Let M™ be a complete, connected Riemannian manifold of
dimension n( > 2). In order for M™ to admit a non-constant function f with
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5.1 gWygrad f,Y) = —cfe(X,Y),

for any X and Y ¢ T(M™), it is necessary and sufficient that M" be isometric
to a sphere S* of radius 1/c.

Let S*** be a sphere of radius 1/c. Then on S*** there exists a function f
satisfying (5.1) [7]. It is easily seen that for such f, grad f is an infinitesimal
conformal transformation.

Theorem 5.1. Let f be the function on a sphere S**? satisfying (5.1), and
M™ a compact submanifold of S***. Suppose that the mean curvature vector
field H of M™ in S*** is parallel with respect to the induced connection in the
normal bundle and g(H, grad f) is non-vanishing at almost everywhere on M™.
If, with respect to the normal part of grad f, the vector field W is on the same
side as H in the normal bundle, M" is a totally umbilical submanifold and
consequently a sphere.

Proof. Applying Theorem 4.1, we know that M" is totally umbilical. The
last part of Theorem 5.1 is proved in the following way. Let X be the tangen-
tial part of grad f to M", and put grad f = X + «C + D as (3.2). Then

(5.2) a=df(C), p=dfD),
and, by (3.4),
80, X,0/0x) = g, grad f, B,) + aH,;; + BK,; .
Since
g7, X,8)ax)) = (8/ox)) g(grad f, B,) — g(X,V,, ;3/ax) ,

the above equation can be written as
Vry.f= g(ﬁgj grad f, B;) + aH; +pK;; ,
from which we have

(5.3) Prf= |- cf + %(aH/ + Kl g,

because of (5.1). On the other hand, using (1.4), (5.1) and (5.2), we get
Vo = B;(df(C)) = By(g(grad f, C))
= &8s, grad £,0) + B(erad 1,71, C) = —H, T f + PL,

P 8= —LKWf—aL,.
n

Thus we have
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VA, 4 BK,) = = (CHF + K7 f
because of Proposition (2.3). This, together with Proposition 2.5, implies that
G4)  aH 4 K+ L{H + KOY = o= const)
Substituting (5.4) into (5.3), we find that
5.5 P = {=ef — <@+ K+ Lafg.

Since (H,")’ 4+ (K,")* and ¢, are both constants, from (4.9) we have

VJVZI:f - 2n2 nc: 2 T 2]
56 we + H,) + (K,
5. __nmé + H) + (K o [)‘ B nc, ]g _
n’ e+ HY + K

and consequently by Obata’s theorem the submanifold is isometric to a sphere ;
this hence completes the proof.

Next let E**% be an (n + 2)-dimensional Euclidean space. Then the so-called
position vector field X satisfies (3.1) with constant coefficient e = 1. Further-
more X satisfies 73X = g(X,Y) for any ¥. Thus we can apply the whole
discussions in this section to the submanifold M™ of E***. So we have

Theorem 5.2. Let M"™ be a compact submanifold of an (n + 2)-dimen
sional Euclidean space. Suppose that the mean curvature vector field of M™ is
parallel with respect to the induced connection in the normal bundle and
8(H, X) is non-vanishing at almost everywhere on M". If, with respect to the
normal part of the position vector in the Euclidean space, the vector field W
is on the same side as the mean curvature vector field in the normal bundle,
M™ is a totally umbilical submanifold and consequently a sphere.
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