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SUBMANIFOLDS OF CODIMENSION 2 WITH
CERTAIN PROPERTIES
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Introduction

H. Liebmann [5] has proved that the only ovaloid with constant mean
curvature in a 3-dimensional Euclidean space is a sphere. Various generali-
zations of this theorem have been obtained recently. Y. Katsurada [1],
[2] and K. Yano [9] have generalized this theorem to a hypersurface of a
Riemannian manifold admitting an infinitesimal conformal or homothetic
transformation. A generalization of the theorem to the case of codimension
greater than 1 was first tried by the present author [8] when the enveloping
Riemannian manifold is an odd dimensional sphere. In [8], the present
author made full use of the natural contact structure on the sphere.

On the other hand Y. Katsurada [3], [4], H. Kόjyo [3], T. Nagai [4] and
K. Yano [10] studied this problem when the enveloping manifold admits an
infinitesimal conformal transformation. They made full use of the existence
of an infinitesimal conformal transformation, and proved that under some
conditions the submanifold in consideration is umbilical only with respect to
the mean curvature normal. In the present paper the author studies the same
problem as that in [3], [4], [10] and proves that under certain conditions the
submanifold in consideration is not only umbilical with respect to the mean
curvature normal but also is totally umbilical.

In § 1 we recall formulas for the submanifolds of codimension 2 in a
Riemannian manifold which will be used in the sequel.

In § 2 we define a certain intrinsic normal vector field and consider some
properties of the normal bundle. In § 3 we derive some integral formulas for a
compact submanifold of codimension 2 in a Riemannian manifold admitting
an infinitesimal conformal transformation. Using these formulas, we estab-
lish, in § 4, a certain generalization to the most general form of Liebmann's
theorem above stated. In the last § 5 we study submanifolds of codimension
2 of a sphere or a Euclidean space.

1. Submanifolds of codimension 2 in a Riemannian manifold

Let Mn be an π-dimensional orientable diίferentiable manifold, and c be an
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immersion of Mn into an (n + 2)-dimensional Riemannian manifold Mn+2.
Then the Riemannian metric g of Mn+2 induces naturally a Riemannian metric
g on Mn by the immersion c in such a way that

g(X, Y) = g(ώ(X), dc(Y)) ,

where we denote by dc the differential map of e, and by X, Y vector fields in
Mn. In order to simplify the presentation we identify, for each point p eMn,
the tangent space TP(M) with dc(Tp(M)) c TC(P)(M) by means of the immersion.

Since Mn is orientable, if we assume that ύn+2 is also orientable, in a certain
neighborhood U of p ς. Mn we can choose two fields of mutually orthogonal
unit normal vectors C and D of Mn at each point of U in such a way that, if
(B19 ,Bn)p is a positively oriented frame of tangent vectors at p then the
frame (dt(Bλ), , dc(Bn), C, D)c(p) is also positively oriented.

Let X, Y be tangent to Mn. Then the covariant derivative of dt(X) in the
direction of dc(Y) is expressed as

(1.1) Pdc{Y)dc{X) = VYX + h{X, Y)C + k(X, Y)D .

Although VYX denotes the tangential components of Fdc{Y)dc(X), it is easily
verified that VYX is identical with the covariant derivative of X in the direc-
tion of Y with respect to the induced Riemannian metric g.

The tensors h and k of type (0.2) over Mn are called the second fundamental
tensors of Mn in Mn+2 with respect to the normal vectors C and D respectively.
Since the Riemannian connections V and V are both torsionless we easily see
that h and k are symmetric.

The normal vectors C and D are unit vectors, and so we can put

(1.2) VXC = - A(X) + l(X)D , VXD = - A'(X) - l(X)C ,

where Λ{X) and A\X) denote the tangential components of VXC and VXD on
Mn respectively, and I is the third fundamental form of Mn in Mn+2.

Let X, Y € TP{M). Then we have the equations of Weingarten:

(1.3) g ( ^ C , Y) = - h(X, Y) , g(FxD, Y) = - * (* , Y) .

Let {**}, / = 1, , n, be local coordinates in an open neighborhood U' of
p eMn. The set of vector fields (d/dx\ , d/dxn) is called the natural frame
of Mn, and spans the tangent plane of Mn at each point of U'. We choose a
positively oriented frame (B19 ,Bn, C, D), where Z^ = dcidjdx1), i =
1, , n, at each point of the neighborhood £/ Π ί(C/0 of c(p) e Mn+2. Then
A(X) and ̂ U Q are represented as linear combinations of Bu i = 1, , n,
and consequently we get, by (1.2),

(1.4) FBjC = - Σ Hj'Bt + LjD , VBjD = - £ K/B, - LjC ,Σ
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where Lj denotes 1{B3). Thus by virtue of (1.3) we have

Hn = h(d/dχJ, d/dx') = -g(FBjC, Bt)
d 5)

(1-6)

where gjt denotes g(d/dxj, djdx1), and we use Einstein's summation conven-
tion for simplicity.

Let R and R be curvature tensors of Mn+2 and M respectively. Then the
equations of Gauss, Mainardi-Codazzi and Ricci-Kuhne are respectively given
by

_. g(R(Bk> Bj)Bί9 Eh) = Rkjίh — HkίHkh + HkiHjh

g(A(Bk9Bj)Bi9C) = VkHjt - FjHki - LkKjt + LjKkί ,

g(&(Bk9Bj)Bi9D) = VkKjt - FjKkί + LkHόί - Lβki ,

and

(1.9) g(R(Bk,Bj)C,D) = FkLj - FjLk - KkiH/ + KμHj ,

where

Rum = g{R(dldx\dldχi)dldx\dldxh) ,

and Vj denotes the operation of covariant differentiation in classical tensor
calculus.

2. Submanifolds and some vector fields

Let gji be the inverse matrix of gJt9 and put H/ = gjΉrj, Kr

r = gjrKrj.
Then the vector H defined by

(2.1) H = λ(H/C + K/D)
n

is independent of the choice of mutually orthogonal unit normal vectors of
Mn, and so defines a vector field along Mn. We call this vector field the mean
curvature vector field along Mn with respect to Mn+2. Next putting Hjί =
gjΉr\Kjί = gjrKr\ we consider a vector
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(2.2) W = (K/HjtK^ - H/KjtK^C + (H/H^K* - K/H

It can be easily verified that W is also independent of the choice of mutually
orthogonal unit normal vectors of Mn, and so defines a vector field along Mn.

When at each point of Mn there exist functions h! and V such that h(X, Y)
= h'g(X, Y), Λ(X, Y) = Wg(X9 Y) or equivalently

(2.3) HH = ft'*,, , £,< = * ' g i i ,

we call Mn a totally umbilical submanifold. From this definition, if Mn is
totally umbilical we have

(2.4) λ' = lfl/, * ' = ! * / .

Proposition 2.1. 4̂ necessary and sufficient condition for a submanifold of
codimension 2 to be umbilical is that the following equations are satisfied:

Proof. This follows from the identities

j

n

κμκ» -- {Kff ,
n

and the positive definiteness of the Riemannian metric gjt.
Proposition 2.2. The vector field W vanishes identically if the submani-

fold is totally umbilical.
Proof. Substituting (2.3) and (2.4) into (2.2), we get W = 0. This com-

pletes the proof.
Next we consider the normal bundle N(Mn) of Mn. For X e T(Mn),

N e N(Mn), a connection V on N(Mn) is defined by

(2.6) 'VXN = {VXN)N ,

where (FXN)N denotes the normal part of FXN. When ΎXN vanishes identi-
cally along Mn we say that N is parallel with respect to the connection of the
normal bundle N{Mn).

Proposition 2.3. The mean curvature vector field H is parallel with respect
to the connection of the normal bundle if and only if the following two equa-
tions are both valid.

(2.7) FjH/ = K/Lj , FjK/ = -H/Lj .
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Proof. Since

VBH = —WjH/C + H/VBjC + FjK/D + K/VB.D) ,

we have

VBH = SzL{(HSHj* + K/KJ*)Bi - (FjH/ - K/Lj)C

because of (1.4). Thus we get

(2.8) (Vd/dxOH = —{(FjHS - K/Lj)C + (FjK/ + H/L0)D} ,

from which we have Proposition 2.3.
Proposition 2.4. // the mean curvature vector field is parallel with respect

to the induced connection of the normal bundle, then (Hf)2 + (K^)2 is
constant.

Proof. From Proposition 2.3 this is easily verified.
Proposition 2.5. Let Mn be a totally umbilical submanifold of Mn+2 such

that at each point of Mn the tangent space is invariant under the curvature
transformation of Mn+2. Then the mean curvature vector field H is parallel
with respect to the induced connection of the normal bundle.

Proof. Since at each point of Mn the tangent space is invariant under the
curvature transformation of Mn+2, equation (1.8) reduces to

,~ QV J7Ίflji — PjHki = LfrKji — LjKki ,

PkKjί — PjKjci = —LkHji + LjHki ,

from which we get equations (2.7), which, together with Proposition 2.3, thus
imply the assertion of Proposition 2.5.

Proposition 2.6. Let Mn be a totally umbilical submanifold of an (n + 2)-
dimensional Rίemannian manifold of constant curvature. Then the mean
curvature vector field H is parallel with respect to the induced connection of
the normal bundle.

Proof. Since the enveloping manifold is of constant curvature, for a con-
stant c, the curvature tensor of the enveloping manifold has the form
R(Bk,Bj)Bί = CigiBjiBJBic — g(Bk,Bί)Bj}. This shows that the tangent
space of Mn is invariant under the curvature transformation of the enveloping
manifold. Thus, by Proposition 2.5, we have Proposition 2.6.
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3. Integral formulas

LetM7 1 be a compact submanifold of Mn+2 in which there exists an infini-
tesimal conformal transformation X, that is, in which X is a field of Mn+2 and
satisfies for any vector fields Ϋ,Z e T(Mn+2),

(3.1) (J?(X)g)(Ϋ, Z) = g(FΫX, Z) + g(F, V-ZZ) = 2 pg(Ϋ, Z) ,

where «2?CY) is the operator of Lie derivative with respect to X and p is a
function on M w + 2 . The vector X being a tangent field of Mn+2, it is represented
as a linear combination of Biy C and D. Hence we put

(3.2) X = X + aC + βD , X = v'B, ,

from which we get

(3.3) a = g(X,C)9 β = g(X,D) .

Since (1.1) and (3.2) yield that

g(FγX, Z) = g(FYX - h(X, Y)C - k(X, Y)D, Z)

= giVYX, Z) = g(Fγ(X -aC- βD), Z)

f ( Γ Z , Z) - tfg(FFC, Z) - βg(FγD, Z)

C,Z) + ah(Y,Z) + βk(Y,Z) ,

we have

(3.5) g(FrX, Z) + g(Y, VZX) = 2 {pg(Y, Z) + ah(Y, Z) + βk(Y, Z)}

because of (3.1). Substituting vιd\dxι, djdx1 and d/dxh for X, Y and Z respec-
tively in (3.5), we get

(3.6) FjVh + FΛVj = 2(pgJh + aHjh + βKjh) ,

which implies that

(3.7) div X = FiV* = np + aHf + βKt* = n{p + g(H, X)} .

Since Mn is compact we have

(3.8) jPdM= -Jg(H,X)dM

because of (3.3).
Now we put F = H/A + K/A'. Then it is easily verified that F is inde-

pendent of the choice of mutually orthogonal normal vectors C and D and
consequently that F defines a linear transformation on T(Mn). Let Y = FX,
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that is,

(3.9) Y = H/A^d/dx*) + K/A'iv^/dx1) .

Putting Y = ujd/dxj, we have

(3.10) uh = g(Y, d/dx*) = H/H^v* + KSKihv* ,

from which

Γjuh = H/iHikPjV* + vΨjHίh) + K;{KihVόv
ι + vΨM

Thus we get

div Y = FjK' = K « r r « j i + KSK'WjVi + ΓiVj

(3.11) + H/FWtjV* + K/FiKijV* +

because of the fact that H is symmetric.
Substituting (3.6) into (3.11) and making use of (2.1) and (2.2), we obtain

div Y = ngiH^XXHj.H^ + KsiK») + p{(HS2 + (^02} + g(W,X)

+ H/PΉijV* + K/PJKijV* + PjH/HitV* + PjK/K^v1 .

Since Mn is compact it follows that

- jp{(HS2 + (KS2}dM = f{ng(H, X^H^H^ + ί^K") + g(JY, X)
(3.12) Mn MK

+ H/PΉijV1 + K/PJKijV1 + Pβr

rHihv
ι + PjK/K^v^dM .

4. Compact submanifolds with certain properties

In this section we assume that Mn is a compact submanifold of Mn+2 in

which there exists an infinitesimal conformal transformation X of Mn+2 and

that Mn satisfies the following conditions:

1) The tangent space at each point of Mn is invariant under the curvature

transformation of Mn+2.

2) The mean curvature vector of Mn in Mn+2 is parallel with respect to

the connection of the normal bundle and is non-vanishing at almost everywhere.

Then the condition 1), together with (1.8), implies that

, . PkHji PjH
ki
 = L

k
K
jί
 LjK

ki
 ,

PkKji — PjK
kί
 — —L

k
H
jt
 + LjH

kί
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Furthermore, from the condition 2), Proposition 2.3 and (4.1) it follows that

(4.2) VβJ = LjKJ , FjKJ = -LflJ .

Substituting (2.7) and (4.2) into (3.12), we get

jtK") + g(W,X)]dM
(4.3)

Mn

because of Proposition 2.4. Substituting (3.8) into (4.3), we have

J [ ng(H, X) j [HjtH» - 1 (H^y
(4.4) ""

+ (KJΪK^ - 1 (KM + g(W,X)\\dM = 0 .
\ n I J J

Thus, if the vector field W is on the same side as H with respect to the normal
parts of X in the normal bundle, that is, if H and W satisfy the inequality
g(H, X)g(W, X) > 0, then the integrand of (4.4) has a definite sign. In this
case we have H^W1 = (l/n^Hf)2 and KόiK

jί = (l/n)(K^)2. Consequently we
have, from Proposition 2.1,

Theorem 4.1. Let Mn be a compact submanifold of Mn+2 whose tangent
space at each point is invariant under the curvature transformation of Mn+2.
Suppose that Mn+2 admits an infinitesimal conformal transformation X and
that the mean curvature vector field of Mn in Mn+2 is parallel with respect to
the connection of the normal bundle and g(H, X) is non-vanishing at almost
everywhere on Mn. If, with respect to the normal part of X, the vector field
W defined by (2.2) is on the same side as the mean curvature vector field in
the normal bundle, then Mn is a totally umbilical submanifold of Mn+2.

5. Applications

Let Mn be a submanifold of a Riemannian manifold of constant curvature.
As we have seen in the proof of Proposition 2.3, the tangent space of Mn is
invariant under the curvature transformation of the enveloping manifold. Thus
Theorem 4.1 can be applied to submanifolds of a sphere or of a Euclidean
space, and therefore in this section we consider submanifolds of such manifolds.

In order to get further results we use the following theorem due to M. Obata
[6], [7].

Theorem. Let Mn be a complete, connected Riemannian manifold of
dimension n( > 2). In order for Mn to admit a non-constant function f with
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(5.1) g(Fx grad /, Y) = -c2fg(X, Y) ,

/or any X and Y e T(Mn), it is necessary and sufficient that Mn be isometric
to a sphere Sn of radius 1/c.

Let Sn+2 be a sphere of radius 1/c. Then on Sn+2 there exists a function /
satisfying (5.1) [7]. It is easily seen that for such /, grad / is an infinitesimal
conformal transformation.

Theorem 5.1. Let f be the function on a sphere Sn+2 satisfying (5.1), and
Mn a compact submanifold of Sn+2. Suppose that the mean curvature vector
field H of Mn in Sn+2 is parallel with respect to the induced connection in the
normal bundle and g(H, grad f) is non-vanishing at almost everywhere on Mn.
If, with respect to the normal part of grad /, the vector field W is on the same
side as H in the normal bundle, Mn is a totally umbilical submanifold and
consequently a sphere.

Proof. Applying Theorem 4.1, we know that Mn is totally umbilical. The
last part of Theorem 5.1 is proved in the following way. Let X be the tangen-
tial part of grad ftoM71, and put grad / = X + aC + βD as (3.2). Then

(5.2) a = df{C) , β = dfφ) ,

and, by (3.4),

g{Vd/dχiX,dldx^ = g(FBj grad f,Bt) + aHjt + βKόί .

Since

*(?„„<*, 9/3*0 = (3/3*0 £(grad/,B<) - g(X, V5/Sχj 9/9*9 ,

the above equation can be written as

Γ/,/ = g{VBj grad f,Bt) + aHjt +βKjt ,

from which we have

(5.3) FjFj = j - c2/ + ±- (aH/ + βK/)\ gji

because of (5.1). On the other hand, using (1.4), (5.1) and (5.2), we get

Fμ = Bj(df(O) = Bjigigτad f, C))

= g(FBj grad /, C) + g(grad /, FBf) = -l-H/Pj + βLj ,
n

n

Thus we have
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PjiaH/ + βK/) = --{{H/γ + (K/YWjf
n

because of Proposition (2.3). This, together with Proposition 2.5, implies that

(5.4) aH/ + βK/ + -{(H/y + (K/)2}f = co(= const.) .
n

Substituting (5.4) into (5.3), we find that

(5.5) F/J = |-c2/ - 1((///)2 + (K/)2)f + λco\gjί .
L ft ft J

Since ( # / ) 2 + (K/)2 and c0 are both constants, from (4.9) we have

n2c2 + (H/y + (K/
(5.6)

= — — —2 — X / - -
n 2 L n2i

and consequently by Obata's theorem the submanifold is isometric to a sphere
this hence completes the proof.

Next let En+2 be an (n + 2)-dimensional Euclidean space. Then the so-called
position vector field X satisfies (3.1) with constant coefficient p — 1. Further-
more X satisfies VfX = g(X, Ϋ) for any Ϋ. Thus we can apply the whole
discussions in this section to the submanifold Mn of En+2. So we have

Theorem 5.2. Let Mn be a compact submanifold of an (n + 2)-dimen
sional Euclidean space. Suppose that the mean curvature vector field of Mn is
parallel with respect to the induced connection in the normal bundle and
g(H,X) is non-vanishing at almost everywhere on Mn. If, with respect to the
normal part of the position vector in the Euclidean space, the vector field W
is on the same side as the mean curvature vector field in the normal bundle,
Mn is a totally umbilical submanifold and consequently a sphere.

Bibliography

[ 1 ] Y. Katsurada, Generalized Minkowski formulas for closed hypersurfaces in Riemann
space, Ann. Mat. Pura Appl. 57 (1962) 283-293.

[ 2 ] , On certain property of closed hypersurfaces in an Einstein space, Comment.
Math. Helv. 38 (1964) 165-171.

[ 3 ] Y. Katsurada & T. Nagai, On some properties of a submanifold with constant
mean curvature in a Riemann space, J. Fac. Sci. Hokkaido Univ. Ser. I, 22
(1968) 79-89.

[4] Y. Katsurada & H. Kόjyo, Some integral formulas for closed submanifolds in a
Riemann space, J. Fac. Sci. Hokkaido Univ. Ser. I, 22 (1968) 90-100.

[ 5 ] H. Liebmann, ϋber die Verbiegung der geschlossen Fldchen positiver Krύmmung,
Math. Ann. 53 (1900) 91-112.



SUBMANIFOLDS OF CODIMENSION 2 467

[6] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a
sphere, J. Math. Soc. Japan 14 (1962) 333-340.

[ 7 ] •, Riemannian manifolds admitting a solution of a certain system of differential
equations, Proc. United States-Japan Sem. in Differential Geometry, Kyoto, Japan,
1965, 101-114.

[ 8 ] M. Okumura, Compact orientable submanifold of codimension 2 in an odd dimen-
sional sphere, Tόhoku Math. J. 20 (1968) 8-20.

[ 9 ] K. Yano, Closed hypersurfaces with constant mean curvature in a Riemannian
manifold, J. Math. Soc. Japan 17 (1965) 333-340.

[10] , Integral formulas for submanifolds and their applications, Canad. J. Math.
22 (1970) 376-388.

SAITAMA UNIVERSITY, JAPAN






