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CRITICAL POINTS OF THE DISPLACEMENT FUNCTION
OF AN ISOMETRY

VILNIS OZOLS

Introduction

Given a Riemannian manifold M and a group of isometries of M it is natural
to study the fixed point set of this group. This problem was considered by S.
Kobayashi in [9], [10], and by R. Bott in [2], in the case where the group is
a 1-parameter group of isometries. In [4], Kobayashi shows that if {g,} is such
a group, then the fixed point set of {g,} is a totally geodesic submanifold of
even codimension. In fact, his proof shows that the fixed point set of any group
of isometries is a totally geodesic submanifold. The fixed point set of the
1-parameter group {g,} is just the set of zeros of the associated Killing vector
field X, and in [7] and [8] R. Hermann considers the more general problem
of the critical points of the function | X|* giving the square of the length of X.
He shows that these critical points are exactly the points lying on geadesic
orbits of {g,}. Moreover, he shows that if M has curvature K < O, then the
set of critical points of | X?] is convex (that is, any geodesic segment between
two critical points lies in the critical set).

We consider the stili more general situation of a single isometry f, and look at
the critical point set Crit (f) of the function ¢%, where  (x} = distance (x, f(x)).
It is evident that Crit (f) contains the fixed points of f.

In Chapter I we let M be any Riemannian manifold and f: M — M an iso-
metry whose displacement &, is small enough so that f takes each point into
the complement of its cut locus. We say such an isometry has “small displace-
ment.” The main theorems are:

(1.2,1) Theorem. Letf: M — M be an isometry of small displacement
and xe M. Then x e Crit (f) if and only if f preserves the unique minimizing
geodesic between x and f(x).

(1.3.4) Theorem. Let M have curvature K < 0, and assume f: M — M
is an isometry of small displacement. Then

(i) Crit(p is a totally geodesic submanifold possibly with boundary,

(ii) 8, takes its absolute minimum on Crit (f).
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(iii) If Fix (f) = O then Crit(f) is connected; if Fix (f) # 0 then Crit(f)
= Fix (f).

(iv) If M is simply connected then Fix (f) is connected.

(v) If K < 0 and Fix (f) = 0, then Crit (f) is either empty or consists of
a single geodesic.

Moreover, we show that if f e I°(M) = identity component of the isometry
group of M, and f = f,, where {f,} is a 1-parameter group of isometries with

associated Killing vector field X, then Crit (X?) = A Crit (fy=), so that our
n=1

results in a sense generalize those of R. Hermann in [8].

In Chapter II we restrict to Riemannian homogeneous spaces and principally
to symmetric spaces. The main theorem is:

(2.7.1) Theorem. Let M be a simply connected Riemannian symmetric
space with M = My X M, X --- M,, where M, is a Euclidean space and the
M;, 1 < i<k, areirreducible. If g e I'(M) = I"(M,) X --- X I(M,), and the
components g, of g which act on the compact M, are sufficiently close to the
identity, then the components of Crit (g) are the orbits Z3,,(8)- X, where x is
any point in the component, and Z3,,,(8) is the identity component of the
centralizer of g in I(M). (Here I(M) = identity component of the isometry
group of M).

If the isometry g is sufficiently near the identity, it lies on a unique 1-parameter
group {g,} of isometries, with associated Killing vector field X. If M is sym-
metric, we show that Crit (| X |) = Crit (g,) for any ¢ ¢ (0, 1]. We then obtain
an explicit formula for the Hessian of the function | X[, and show that
Crit (| X ") is a non-degenerate critical sub-manifold in the sense of R. Bott [1]
if M is either of non-compact type, or if M is of compact type and X is a
regular element of the Lie algebra of the isometry group.

Notation. We adopt the notation used in the book of Kobayashi-Nomizu
[11] for Riemannian manifolds, and refer to the books of S. Helgason [6] and
J. A. Wolf [15] for the basic facts about symmetric spaces and Lie groups.
In a homogeneous space M = G/K we assume we have a fixed direct sum
decomposition G = K + m, where G is the Lie algebra of G, K the Lie algebra
of K, and m a complementary subspace satisfying ad (K)m C m. This is a
reductive homogeneous space. We assume M has an invariant Riemannian
metric B*, and let B be its restriction to m X m, where m is naturally identi-
fied with the tangent space of M at K. Then we say B* is a normal metric if
B(lXx,Z1,,Y) + B(X,[Y,Z],) =0 for X,Y,Z em. A normal metric induces
a Riemannian connection of type (A1) in the notation of Nomizu [12], and
this connection is characterized by the fact that its geodesics are the translates
gx(s), where x(s) = (exp sT)-T and ge G, T e m.
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Chapter I. The general case

(1.1) M will always be a complete connected Riemannian manifold with
metric g and Riemannian connection /. Let p be the distance on M induced
by g and defined by: p(x,y) = ix}f {length p|p is a piecewise smooth path from

x to y}. “Smooth” and “differentiable” will always mean C=, and T(M) denotes
the tangent bundle of M. Because of completeness, exp: T(M) — M is defined,
surjective, and smooth. If f: M — N is a smooth map, f,: T(M) — T(N) is
the induced map on the tangent bundles. For every smooth map f: M — M we
define the displacement function §,: M — R (= real numbers) by 3,(x) =
p(x, f(x)).

(1.1.1) Definition. We say the map f: M — M has small displacement if
for each x ¢ M there is a unique minimizing geodesic from x to f(x). Equiva-
lently, f has small displacement if it takes each point into the complement of
its cut locus. If f: M — M is a diffeomorphism of small displacement we define
its displacement vector field V by: if x e M then V, is the tangent at x to the
minimizing geodesic from x to f(x), with |V | = g(V,, V;)"* = p(x, f(x)).

(1.1.2) Lemma. Let f: M — M be a diffeomorphism of small displace-
ment. Then:

(i) the function &%: M — R is smooth on M,

(ii) d,: M — R is smooth outside the fixed point set of f,

(ili) the displacement vector field V is a smooth vector field on M.

Proof. Fix xe M, and let U = M — (cut locus of x). U is an open cell in
M, and there is a neighborhood U’, C T .(m) such that exp: U, — U is a dif-
feomorphism onto U. There is a neighborhood W, C U containing x such that
f(W) c U; and for each y e W, there is an open set N, C T,(M) such that
exp: N, — U is a diffeomorphism into U. We assume N, = U’, and we may
choose the sets N, so that W = U N, is open in T(M). Then the map h: W

— U x Usending Y e N, to (y, exp Y) is a diffeomorphism into U X U. Since
N, = U, we have {x} X UC h(W). The map U X U — R given by (3, 2)
— p(¥,2) coincides with ||Y||if z=expY and Y eN,. Now || Y|} is differ-
entiable on W, so p*(y, z) is differentiable on A(W).

Now by the assumption on f, f(x) e U so (x, f(x)) e h(W). Since the above
argument holds for any x e M, we see that & is differentiable everywhere on
M because it is the composition of differentiable functions. This proves (i),
and (ii) follows trivially since , vanishes exactly on the fixed point set of f.

Let Z C U be an open set with f(x) € Z, and let W, = f~'(Z) N U. Then the
map f,: W, — U X U defined by f(y) = (3, f()) is differentiable, and the dis-
placement vector field V restricted to W, is the image of the map A~'f,: W,
— T(m) which is C=, since f, is C* and  is a diffeomorphism. Since the choice
of x is arbitrary, V is C* on all of M.

(1.1.3) Remark. The displacement function d, may fail to be differenti-
able at a fixed point of f as in the following situation: Let M = R", g be the
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ordinary metric, and f be the symmetry about the origin O sending R™ > x
— —x. Then § ,(x) = 2¢/x2 + ... + x, where x = (x,, - - -, x,), and this is
not differentiable at x = 0.

(1.1.4) Definition. (i) For any map f: M — M we let Fix (f) denote the
set of fixed points of f.

(i) If f has small displacement and is a diffeomorphism, we let Crit (f)
denote the set of critical points of &% in M.

(1.1.5) Remark. Cirit (f) = Fix (f) U (critical points of 5, in M — Fix (f)),
since for every X e T,(M), Xé% = 25 ,(x)Xo, whenever §, is differentiable.

(1.2) Suppose now that f: M — M is an isometry of small displacement.
We wish to differentiate 6,. To do this fix x e M — Fix (f), and let X e T (M)
be any non-zero vector, and b(s) a smooth curve through x with tangent X at
x = b(0). Then X5, = ‘% p(b(s), f(b(s))). Let a = p(x, f(x)). By assump-

=0

tion on x, a > 0. The displacement vector field V' is C~, so we have a C* map
Q:[0,a] X [0, o) — M given by Q(s,t) = expm)(t K) Here we may take
a

t and s in slightly larger open intervals to avoid one-sided derivatives. For fixed
s = s, the curve Q(s,, #) is the unique minimizing geodesic from b(s,) to f(b(s,)),
and is parametrized proportional to arc-length.

Let T = Q,0/0t and X = Q,d/0ds; these are C~ vector fields on the image
of Q, and have the two properties: [T, X] = 0 and V',T = 0. The first follows
from [T, X] = [Q,d/0s, Q,d/0t] = Q,[d/dt,3/ds] = O, and the second holds
because T is the tangent field to a family of geodesics. Moreover, if b(s) is a
geodesic then VX = 0 when ¢t =0 or a since f(b(s)) is also a geodesic.
Evidently g(T, T) is independent of ¢, and we let C(s) = +/g(T, T).

(1.2.1) Theorem. Let f: M — M be an isometry of small displacement
and x e M. Then x e Crit (f) if and only if f preserves the minimizing geodesic
from x to f(x).

Proof. Let ¢ be the minimizing geodesic from x to f(x) and assume
x ¢ Fix (f). Then

p(b(s), 1(b(s))) = f " VET,T) (s, 1) dt

SO

Xyl = ‘%p(b(s), f(b(s))) = faa/as VeT,T)dt

1 a . 1 a
= — ’ T em— X, d
o 4 ST, 1) dt = s f 2, X, T) dt
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_ 1 fe
= o5 f a/ot g(X, T) dt
= E,—(—F(S(X » T)(s,a) — g(X, T)(s,0) .

Here we have used V3T — VX =[X,T]1 =0, and V;T = 0. Thus X5, =
2(X, T)(0, a) — g(X, T)0,0), since C(0) = 1. If ¢ is normal to b(s) at x, then
g(X, T)(0, 0) = 0, which shows that x e Crit (f) — Fix (f) implies g(X, T)(0, @)
= 0. Now by definition of X, X ), = f4Xs» S0 x € Crit (f) — Fix (f) implies
that f preserves the normal space to c¢; this is equivalent to f preserving c.

Now suppose f preserves the geodesic c. If X e T,(M) is tangent to ¢, then
Xd, = 0 because d, is measured along c for all points on c¢. Thus, if X is any
vector in T,(M), then X3, = X0, where X, is the component of X normal to
c. But then X6, = g(X,, T)(0, a) = O, since if f preserves c it must also pre-
serve the normal space to ¢. This shows that X4, = O for all X e T,(M), so
x ¢ Crit (f). The theorem holds vacuously at every fixed point of f.

(1.2.2) Remark. By “f preserves the geodesic” we mean that f restricted
to the geodesic is a simple translation along the geodesic. This excludes a re-
flection about some isolated fixed point.

(1.3) We now compute the second derivative of §,. Let xe M — Fix (f),
b(s) be a geodesic with b(0) = x, and X be defined as before. In particular,
X, is the tangent to b(s) and X ., is the tangent to f(b(s)). Then

Xidy =0 do(0), 166N = [* L Vg Tyan
f 8T, T)gW ¥ xT,T) + W T,V sT)) — (W T, TV dt .
8T, T

0
Now [X, T] = O implies that V' yT = VX, and
Vil o X =V, VX + RIX, X,

SO
gV T, T) = g;g(Vxx, T) + ¢RX, D)X, T) .
Moreover, g(R(X, T)X, T) = — K(X, T)(g(T, Dg(X, X) — g(X, T)?), so,

Xiwds = oo f le@.n(2e0:x.7) - kX, D)

X @T,DegX,X) — gX,T)) + gW5T,V xT)) — 84T, TY} dt
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_ ¢9
- f = 872X, ) dt

* e )af (8T, T T, V1) — g0 T, TV} di

— K(X, T)(e(T, T)eg(X, X) — g(X, T)")} .

Since b(s) is a geodesic, F zX = 0 at both 1 = 0 and ¢t = a. Therefore,

[“a10t 87X, T) dt = 62X, T)(5, @) — 87X, T)(5,0) = 0,
and

1 a
lea = e— T,T VT,VT_ VT,T2
(1.3.1) e C(s)s‘or {&( )8V x xT) — gy )

Here K(X, T) is the curvature of the 2-plane spanned by X and 7. This equa-
tion is valid even when x ¢ Crit (f).

Note. A subset S of a Riemannian manifold M is said to be locally convex,
if for every pair of points x, y € S, which are sufficiently close, the minimizing
geodesic from x to y lies is S.

(1.3.2) Lemma. Let M be a complete connected Riemannian manifold,
and § — M a closed, connected and locally convex subset. Then S is a totally
geodesic submanifold of M with possibly non-empty boundary. (Here we do
not assume the boundary is smooth or of codimension one.)

Proof. Let xe S, and N, be a convex normal neighborhood of x in M. For
the moment we restrict to N,. Suppose ye S N N, and y # x. Then the geo-
desic segment y from x to y lies in S. Choose any interior point z, of y and a
ball B, (z,) with radius r, = min {d(x, 2,), d(y, z,)} and center z,. Suppose
B, (z)NS & r and z,¢ B, (z,) NS — y. We construct a cone 4, over B, (z)) Ny
with vertex z, and generators the geodesics from z, to the points of B, (z,) Ny.
By the assumption on z,, 4, is a two-dimensional cell with boundary. Again
choose an interior point z, of 4, and let r, = inf {d(z,, w)|w € d4,}. Suppose
Z,e B, (z,) NS — 4,, and construct the cone 4, over 4, N B, (z,) with vertex
Z, and geodesic generators. By choosing a possibly smaller r, we can make sure
that the generators of 4, are always transverse to 4, N B, (z,). Then the cone
4, is a three-dimensional cell with boundary. We continue in this manner, and
must eventually stop since dim M < oo. Say the last cone constructed is 4,.
Choose an interior point z, € 4,; it is clear from the convexity of S that there
is a geodesic segment from z, to each point of 4, which lies in S (in fact, it
lies in 4, C S since otherwise we could have constructed 4,,,). This means
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the interior of 4, is a convex neighborhood in S and therefore a totally geo-
desic submanifold (with boundary) of M. Such a submanifold has the property
that each of its points w is contained in a convex normal neighborhood, which
in this case is the image by the exponential map of a ball in some linear k-
dimensional subspace of T,(M). We make the above construction for all
choices of points in the interior of S, and compare nearby normal neighbor-
hoods in S. We claim they must all have dimension k. This is seen by choosing
a point in one of the neighborhoods U, which does not lie in the other neighbor-
hood U, (we assume dim U, = k). This point is then the vertex of a cone over
a k-dimensional normal coordinate ball in N,, and by maximality of the dimen-
sion of U, we must get back a k-dimensional cell. This implies dim U, = k.
Then by connectedness of S, we see that every ball in S has dimension k. The
intersection of convex balls is a convex neighborhood, so the interior of § is
in fact a & dimensional totally geodesic submanifold.

(1.3.3) Remark. It may happen that g Crit (f) # ¢, as seen by the fol-
lowing example : We consider the Euclidean plane R? with the usual coordinates
(x,y). Let ¢ > 0. Then there is a C~ function ¢(y) on R! with the property
that o(y) = 1/y* if y > ¢, () = 1 if y < 0, and ¢(y) > 0 everywhere. Then
let ds?’=¢(y)(dx?+dy?) be the Riemannian metric. On the set {(x, y) |y >¢}, ds
is the metric of the hyperbolic plane (Poincaré upper half-space); and on
{(x,¥)|y < 0}, ds? is the usual Euclidean metric. If we let a > 0 be a small
number then the map f: R? — R? given by f(x,y) = (x + a,y) is an isometry
of the set R? considered as a Riemannian manifold with metric ds®. f has small
displacement and {(x,y)|y > 0} C Crit (f) since f has constant displacement
on this set. However, {(x,¥)|y > ¢} N Crit (f) = 0 since the displacement in
{Gx, »)y > ¢} is decreasing in y. Therefore a Crit (f) # 0.

(1.3.4) Theorem. Let M have curvature K < 0, and assume f: M — M is
an isometry of small displacement. Then

(i) Crit (f) is a totally geodesic submanifold possibly with boundary,

(ii) 4, takes its absolute minimum on Crit (f).

(iii) If Fix (f) = 0, then Crit (f) is connected; if Fix (f) # 0, then Crit (f)
= Fix (f).

(iv) If M is simply connected, then Fix (f) is connected.

(v) If K <0 and Fix (f) = 0, then Crit (f) is either empty or consists of
a single geodesic.

Proof. Under the curvature assumption, we have X3,d, > 0 for every
geodesic b(s) by the following:

gT, TgWxT,VyT) — gW,T,T)* >0,
gT,NegX,X) —g(X,T)*>0

by the Cauchy-Schwarz inequality. Thus the right side of equation (1.3.1) is
non-negative, and hence X3 ,,d, > 0 whenever b(s) ¢ Fix (f). Suppose now that
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x € Crit (f) — Fix (f), and let b(s) be any geodesic with b(0) = x. Suppose b(s,)
is the first point on b, which lies in Fix (f). Then X, 8, is non-decreasing
along b(s), so that in fact §, is non-decreasing along b(s) because X, = 0.
But this is impossible since d,(x) > 0 and d,(bs,)) = 0. Thus either Crit (f)
— Fix (f) = 0 or Fix (f) = 0. This proves the second part of (iii). Let Fix (f)
= 0. Then the above argument shows that if b(s,) ¢ Crit (f), then X, 6, =0
for all se[0,s,]. This means that §, is constant on Crit (f). The condition
X307 = 0 shows that each point of Crit (f) is a relative minimum of §,, so
that in fact it must be an absolute minimum. If Fix (f) # 0, then Crit (f) =
Fix (f), so that again d, takes its absolute minimum on Crit (f), and hence (i)
is proved.

Now if Fix (f) = 0, then we take x, y € Fix (f), which lie in the same com-
ponent of Fix (f) and are sufficiently close so there is a unique minimizing
geodesic ¢ between them. Thus f(c) is a geodesic of the same length between
them, so in fact ¢ = f(c). Moreover, ¢ C Fix (f), and Fix (f) is totally geo-
desic. If Fix (f) = 0, choose x, y € Crit (f), and let b(s) be any geodesic between
them with b(0) = x and b(s,) = y. Now 4, is constant along b(s), and §, takes
its absolute minimum at x and y, so all points on b(s) between x and y lie in
Crit (f). This proves (i) by Lemma 1.3.2, and also proves the first part of (iii).
(iv) follows froms the fact that in a simply connected manifold with curvature
K < 0 there are no cut points, so every pair of points is connected by a unique
minimizing geodesic, and the above argument for Fix (f) + 0 applies.

Now assume that K < 0 everywhere on M, and x ¢ Crit (f) — Fix (f). If b(s)
is a geodesic transverse to the minimizing geodesic ¢ from x to f(x), then we
have g(T, T)g(X, X) — g(X,T)* >0ats=0and ¢t = 0 or a, since

= g(T, T)g(X, X)(1 — cos’? (angle between X and 7)) .

Thus X},06, > 0 at s = 0 so that X,,6, > O for s near 0. This means 4, is
strictly increasing along b(s), so b(s) cannot lie in Crit (f). Since c is evidently
in Crit (f) the conclusion follows.

(1.3.5) Corollary. If M is simply connected and K < 0, then the results
of the above theorem hold for any isometry.

(1.3.6) Remark. If M is an analytic manifold and has curvature K < 0,
then Crit (f) is a real analytic submanifold, which is totally geodesic and has no
boundary. The fact that Crit (f) has no boundary follows since if an interval
of a geodesic 7 lies in Crit (f), then the whole geodesic y must lie in Crit (f)
because ¢% is then an analytic function y whose derivative is zero in an interval
and hence zero everywhere. If there were a boundary point x, there would
have to be a geodesic starting inside Crit (f) and leaving through x, contradict-
ing the fact that y must lie in Crit (f). Note that if M is analytic, then every
isometry f: M — M is analytic and the displacement function §% for isometries
of small displacement is also analytic.
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(1.3.7) Theorem. Let M be any complete connected Riemannian mani-
fold, and f: M — M an isometry of small displacement. If h: M — M is any
isometry, then Crit (h-f-h~Y) = h(Crit (f)). That is, h(x) e Crit (f) if and only
if xeCrit(h™'o f o h).

Proof. h(x) e Crit (f) if and only if f preserves the minimizing geodesic ¢
from h(x) to fh(x). Let c(0) = h(x), c(a) = fh(x) with a = d(h(x), fh(x)). Then
f preserves c if and only if f?A(x) = c(2a). Now fh(x) = c(2a) when h~'fh(x)
= h~'c¢(2a). The geodesic h~'c is the minimizing geodesic from x to hA~'fh(x),
so x ¢ Crit (h~'fh) if and only if (h~'fh)’x = h~'c(2a). But (h~'fh)* = h~'f’h, so
the result follows.

(1.3.8.) Theorem. Suppose M has curvature K < 0 and f is an isometry
of small displacement. Let x ¢ Crit (f) — Fix (f), b(s) be any geodesic in Crit (f),
which is transverse to the displacement vector field at x (b(0) = x), V be the
displacement vector field of f along b(s), and a = & (x). Then the surface Q
defined by Q(s, t) = exp,, (t V/a) has curvatuae K = 0, and the vector fields
T = Q,d/0t and X = Q,0/ds are parallel on Q.

Proof. We know Xj 8, = O since g, is constant along b(s), so

f QT DeW 5T,V T) — g T, T))

0

— KX, T)(g(T, TNeg(X, X) — gX,T))}dt = 0.

Since b(s) is transverse to the geodesic ¢ between x and f(x), g(T, T)g(X, X)
— g(X,T)* > 0, so we must have K(X, T) = O for all s and ¢. Furthermore,
the curves Q(s, 1) for either s or ¢ constant are then a Euclidean coordinate
system in Q, so their tangents form parallel vector fields.

(1.3.9) Theorem. Let M be a Riemannian manifold, X a Killing vector
field on M, and g, its 1-parameter group of isometries, and assume g, has

small displacement for te[0,1]. Then Crit((X}) = ﬁ Crit (g,,,1) and
n=1

Crit (8y/(n.1,) C Crit (g foralln=1,2, .. ..
Proof. It is clear that Crit (| X ) C Crit (g,) for all z € (0, 1] since Crit (| X |

= {xeM|g,x is a geodesic}. Suppose x e ﬁ Crit (g,,,). Since Crit (g,,,) C
n=1

Crit (g, for all n, the geodesic preserved by g,,, is the same as that for g,, and
therefore the orbit g,x crosses the geodesic ¢ from x to gx at the points g,,,x
for 1 < m < n!. The set of points {g,mx|1 < m < n!, all n} is dense on c,
so in fact g,x = c¢. The fact that Crit (g,/(s,1,) C Crit (g, is obvious from
Theorem 1.2.1.

(1.3.10) Corollary. Let M be analytic, and suppose its curvature K is
non-positive. Let X be a Killing vector field, and g, its 1-parameter group, and
assume g, has small displacement for all te [0, 1]. Then there is a t,¢ (0, 1]
such that Crit (| X ) = Crit (g,,)-
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Proof. 1f X = 0 at some point, then g, has a fixed point and the corollary
follows from Theorem 1.3.3 (iii). Suppose X # O everywhere. Then each
Crit (g,) is a connected submanifold of M without boundary (Remark 1.3.5).
Let k, = dim Crit (g,/,). Since the critical sets Crit (g,,,,) are nested and con-
verge to Crit (X [), we must have k, — dim Crit (| X /), which means that
for some n, k, = dim Crit (| X ). Then Crit (| X ] is a connected submanifold
of the connected manifold Crit (g,,,,), and they must be equal since they have
the same dimension.

Chapter II. Homogeneous and symmetric spaces

We now assume that M = G/K is a reductive homogeneous space which is
connected and has normal metric in which it is complete. We fix a direct sum
decomposition

G=K+m

of the Lie algebra G of G, where K = Lie algebra of K, and m is a comple-
mentary subspace with the property that ad (K)m C m. We consider only those
isometries of M coming from elements of G.

(2.1) Let g € G be an isometry of small displacement, and let x ¢ M. We
assume x is identified with the identity coset of its isotropy group K. Then
there is a unique shortest T € m such that gx = (exp T)x, and (exp tT)x, 0 < ¢
< 1, is the minimizing geodesic from x to gx. Thus (exp — T)gx = x so that
k = (exp —T)g ¢ K, and we have a unique decomposition g = (exp T)k.

(2.1.1) Theorem. x(=K) is in Crit (g) if and only if ad (k) = T, where
g = (exp T)k in the above decomposition.

Proof. By Theorem 1.2.1, x e Cirit (g) if and only if g preserves the geo-
desic (exp tT)x. This is true exactly when g(exp tT)x = (exp(1 + #)T)x. Now
glexp T)x = (exp (1 + HT)x if and only if (exp —tT)k(exp tT)x = x; that is,
when (exp —tT)k(exp tT) € K for all ¢. This curve has tangent dL,(T) — dR(T)
=T — ad (k)T att = O, where L, (resp. R,) is the left (resp. right) translation
by k. Since ad (K)m e m, we have ad (k)T e m so the tangent lies in m. Since
it must also lie in K, it must vanish; that is, ad (k)T = T.

Conversely, if ad (k)T = T then

glexp tT)x = (exp Tk(exp tT)k'x = (exp T)(exp t ad (k)T)x
= (exp T)(exp tT)x = (exp(1 + O)T)x .

So g preserves the geodesic (exp tT)x from x to gx.
(2.1.2) Corollary.

Crit (g) = {hx|ad (k,)T, = T,, h~'gh = (exp T,)k,, h e G},

where h='gh = (exp T,)k, is the unique decomposition of Theorem 2.1.1.



CRITICAL POINTS 421

Proof. Clearly h~'gh has small displacement if g does, so the proof follows
from Theorems 1.3.7 and 2.1.1.

(2.2) Let M = G/K be a compact connected Riemannian homogeneous
space with normal metric. Assume G is compact and semi-simple, so that the
Killing form B is negative definite on G and is invariant under the adjoint
action of G. Let G = K + m as usual, with K and m orthogonal by —B.

(2.2.1) Lemma. There is a number r > O such that if geexp B, B, =
{Y e G| (—B(Y, Y))V* < r}, then g = (exp T)(exp S) for unique shortest T ¢ m,
Se K; and (exp S)(exp T) = (exp T)(exp S) if and only if [T, S] = O.

Proof. Define a map K X m 2.6 by ¢(S,T) = (exp T)(exp ). ¢ is
clearly regular at (0, 0) and is differentiable everywhere. Then by the inverse
function theorem there is a neighborhood of (0, 0) in K X m on which ¢ is a
diffeomorphism. Let r, > 0 be maximal for the property that exp: G— G is
a diffeomorphism on B, = {YeG|—B(Y,Y)<r}. Let V,=KNB,, V,
=mNB,, and VC V, X V, be the maximal neighborhood of the form
V = ¢! (exp (B,)) on which ¢ is a diffeomorphism. It is clear that r > 0.

Suppose now that g ¢ exp B, ; then g is written uniquely as g = (exp T)(exp $)
for Tem, SeK. Assume (exp T)(expS) = (exp S)(exp T), which means
exp ad(exp S)T = exp T. But since B, is ad(G)-invariant, we have ad(exp S)T,
TeB, so that ad(expS)T = T as exp is a diffecomorphism on B, C B,..
Similarly, ad(exp T)S = S, which means (exp S)(exp tT) = (exp tT)(exp S) for
all ¢, Applying the above argument to tT and S, for any ¢¢[0, 1], we get
(exp tS)(exp tT) = (exp tT)(exp tS), which is equivalent to [T,S] = 0. It is
obvious that [T, S] = 0 implies (exp T)(exp S) = (exp S)(exp T).

(2.2.2) Theorem.. Let M = G/K be a compact homogeneous space with
normal metric, and assume G is compact semisimple. Let X ¢ B,, g = exp X
be the associated isometry, and x = K. Then hx e Crit (g) for h € G if and only
if h™'gh = (expT)(exp S) with [T,S] = 0, where S = (ad(h")X),, T =
(ad(h~)X),,, and g = exp X.

Proof. We know that hxeCrit(g) if and only if A-'gh = (expT)k for Tem,
k € K where ad(k)T = T. Here there is no question of uniqueness of 7 since B,
is ad(G)-invariant and ¢ is a diffecomorphism on exp B,. Thus h-'gh e exp B, ;
if ad(k)T = T then (exp T)k = k (exp T), and since k = exp S Lemma 2.2.1
shows that [S, T] = 0. In this case (exp T) (expS) = exp(S+T) = h~'(expX)h,
so that S = (ad(h~')Xg and T = (ad(h~')X,,. Conversely, if [S,T] = O then
obviously ad(k) = T. 4

(2.2.3) Corollary. Let M = G/K be a connected symmetric space of com-
pact type, with ¢ the symmetry in both G and G, and let x = K. If ge exp B,
as in Theorem 2.2.2, then Crit (g) = {h~'x|h e G and [ad(h)X, o ad(h)X] = 0};
g=-expX.

Proof. For any YeG,[Y,oY]=[Ygx+ Y, Yx—Y,]=2[Y,,Y,] so
the result follows from Theorem 2.2.2.
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(2.2.4) Corollary. Under the assumptions in Theorem 2.2.2, Crit (| X|») =
Crit (g,) where g, = exptX and t e (0, 1].

Proof. Clearly Crit (X ) c Crit (g,) for each t ¢ (0, 1]. Conversely, if for
any te (0, 1], [(tX)g, (¢X),] = O, then this is true for all ¢ ¢ (0, 1]. This does
not depend on the choice of decomposition G = K + m; therefore, x e Crit(g,,)
if and only if x e Crit (g,,). Since Kﬂ 1Cri’t (g,) = Crit (| X) the result follows.

t<

(2.3) In this section we assume M = G/K is a connected Riemannian
symmetric space of compact type, and g ¢ exp B, an isometry having x = K in
Crit (g) with g = exp X.

(2.3.1) Lemma. If X € G is such that [X,6X] = O, then there is a Cartan
subalgebra Y) of G such that X ¢y and o) = ).

Proof. Let X,, = (X —0X) and X = }(X +0X) so that X,, e m, Xx ¢ K.
Let Zo(X ) = centralizer of X, in G. ¢ is the identity on K, soif Y € Zg(Xy)
then [6Y, X, ] = [6Y,0X ] = oY, X;] = 0. Therefore 6Zo(Xy) = Zg(Xg),
and Zo(Xg) = Zg(Xg) + Z,(Xg). Since [X, 0X] = 0,[X,,X,] = 0, so
XneZy(Xy). Choose A C Z,(X,) a maximal abelian subspace containing
X, and let B C (centralizer of 4 in Z,(X,)) be a maximal abelian subspace
necessarily containing X,. It is clear that 4 and B are non-empty since
X, €A and X e B. The subspace A + B of G is an abelian subalgebra which
is invariant under ¢. Suppose Y ¢ G commutes with every element of A + B.
If welet Y=Y,+Y, with YeeK,Y, em, then [Y,A4] =0=[Y,B]
implies [Y,,A] = 0= [Yg,B], and [Y,,A]=0=1[Y,,B]. Since 4 is
maximal abelian in Z,,(Xy), Y, € A. Y centralizes A and also B, so by maxi-
mality of B,Yy,eB,and Y = Yy + Y, e A + B. Thus 4 + B is a maximal
abelian subalgebra of G, and is a Cartan subalgebra, since G is compact.

(2.3.2) Theorem. Let M = G/K be a connected symmetric space of com-
pact type, and g e exp B, an isometry. If xeCrit(g), then the component of
Crit (g) containing x is Z%(g)-x. Here Z%(g) is the identity component of the
centralizer Z;(g) of g in G.

Proof. By Corollary 2.2.3, h~'x ¢ Crit (g) if and only if [ad(h) X, g ad(h)X]
= 0. It suffices to consider only those & € exp m since M is complete.

Let 5, be the distinct Cartan subalgebras of G which contain X, and choose
regular elements X, ¢j; which lie in B,. This is possible since tX is regular
when X, is regular and ¢t = 0. Now for any he G, ad(h))); are the distinct
Cartan subalgebras containing ad(h)X, so if A~'x e Crit(g) then by Lemma
2.3.1 there is an index i such that g ad(h)}; = ad(h)});. In particular, this means
that [ad(h)X;,cad(h)X,;] = 0, so h~'x e Crit (exp X,;). Conversely, if h-'xe
Crit (exp X,) then [ad(h)X,, g ad(h)X,;]=0. Now ad(h)X; and sad(h)X; are
regular elements which commute, so we must have oad(h)}; = ad(h));. This
means [ad(h)X, cad(h)X] =0, so h~'x e Crit(g). Thus we have Crit(g) =
U Cit (exp X)).

i
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We assume now that g = exp X with X a regular element of G, and x = K
is in Crit (g).

If § is the Cartan algebra of G containing X, then the assumption that x is
a critical point implies [X, ¢X] = O which means ¢f) = §). Suppose ke expm
is such that A~'x e Crit (g). Then [ad(h)X, ¢ ad(h)X]=0, or equivalently, ad(h)}
= ¢ ad(h)}. But this just means ad(h)} = ¢f) = §), so h? e normalizer of § in G.
If h is sufficiently close to the identity e, then this condition implies heT,
where T is the identity component of the normalizer. T is the maximal torus
of G corresponding to §j, and equals Z}(g) = identity component of the central-
izerof g in G. If y is in the same component of Crit (g) as x, then we cover a
curve c¢ in Crit (g) from x to y by neighborhoods U; where U, = Vx, for a
neighborhood ¥V C T of e, and a finite number of points x; € ¢ such that x,=x,
x, =Y, and x; € Vx,_, for all 1 <j< n. Since c is compact this is possible for
some n. We choose n large enough and V so small that the transvection
he(expm) NV always satisfies the property that if A’e normalizer of T then
heT. Note that the set m of transvections may change with j, but this does
not affect the above construction. Then x; = g,x,_, for g;e V, s0 y = g,8,.
... g,x, which means y e Tx. This shows that the component of Crit (g) which
contains x is contained in Tx. The other inclusion is obvious since T is in the
centralizer of g. Thus Crit (g) = U Tx,, for a set {x,,} of representative elements

of the components of Crit (g).
If g is not regular then Z%(g) = U T, where the T are the distinct maximal

tori containing g. Therefore

Crit (g) = U Crit(exp X;) = U U Tixy,,

i m§

< (ym)-(yx) = y 2@,

where {x,} is a set of representatives of the components of Crit(g). Since
U Z%(g)x,, < Crit(g), the result follows.

(2.3.3) Remark. In the case where X is a regular element we see from the
proof of the above theorem that in fact the orbit of x by the normalizer of |
in G is contained in Crit (exp X). It would be interesting to know if this is an
equality.

(2.3.4) Corollary. If g = exp X for a regular element X of G, then Crit (g)
is a flat totally geodesic submanifold of M.

Proof. Since the components of Crit (g) are orbits by an abelian subgroup,
they must be flat, and are totally geodesic because this subgroup is invariant
by the symmetry ¢ of G corresponding to the geodesic symmetry at each point
of Crit (g).

(2.3.5) Example. In the proof Corollary 2.3.4 we use regularity of X to
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get that Z} (exp X) is invariant by ¢. This in turn requires Z(X) to be g-in-
variant. The assumption of regularity cannot be dropped, as seen from the
following example of J.A. Wolf: Let M = SU(6)/SO(6), and let e, - - -, e, be
a basis of Su(6). Let X and X, have eigenvalues v —1, —v/—1,2¢/—1,
—2V/=1,10"/ =1, —10°/ =1 and v —1,v/—1,2¢/—1,2/—1, =3/ =1,
—34/ 1, respectively, corresponding to the vectors e,, - - -, €,. Then [X x> Xml
=0. X + X, has eigenvalues 0, 2¢/ —1, 4¢/—1, —34/ =1 + 102/ T,
—34/ =1 — 10®/ =T corresponding to the eigenspaces spanned by {e,r e},
{e.}, {es}, {e;}, {es} respectively, and X, — X, has eigenvalues 0, —2y/—1,
—4V/ =1, 3/ =1 4+ 102/ =1, 3/=1 — 10/—=1, corresponding to the
eigenspaces spanned by {e,, e}, {¢,}, {e}, {e,}, {e;} respectively. The centralizers
of Xx + X, and X, — X,, consist of matrices which are scalar multiples of
the identity in each of their eigenspaces; but as the eigenspaces do not corres-
pond, the centralizers are not equal. If X = X, + X, then X = X, — X,,;
and clearly Z;(0X) = 0Z4(X), so we have ¢Z y(X) # Z4X).

(2.4) In this section we consider symmetric spaces of noncompact type.

(2.4.1) Theorem. Let M = G/K be a connected Riemannian symmetric
space of non-compact type, and assume g ¢ G is any isometry. If x e Crit(g),
then Crit (g) = Z%(g) - x.

Proof. Since M is simply connected with curvature K < O there are no cut
points so every isometry is of small displacement, and every pair of points is
joined by a unique minimizing geodesic.

Suppose y # x is another critical point, and let (exp sS)x, S € m, be the geo-
desic from x to y. We assume S is transverse to the geodesic ¢ from x to gx.
Construct the surface Q as in Chapter I, and let 7 e m be the tangent to c.
Then by Theorem 1.3.6 we have that Q is flat and the vector fields S and T
are parallel on Q, where flatness implies [S, 7] = 0. Now in a symmetric space
dL,.,.s(T) is parallel along (expsS)x, and since T itself is parallel, T =
dL,,,s(T). Therefore the translation L,,, s takes the geodesic (exp tT)x to the
geodesic from (exp sS)x to g(exp sS)x for each s. Thus (exp sS)gx=g(exp sS)x,
or g !(exp-sS)g (exp sS)x = x which means g~' (exp-sS)g (exp sS) ¢ K. Now
g = (exp Tk with Tem, ke K, and [S, T] = 0. Therefore we get k~'(exp-T)
-(exp-sS) (exp T)k(exp sS) € K, which implies (exp-sS)k(exp sS) ¢ K for all s.
Then dR,(S) — dL.(S) e K, or § — ad(k)S ¢ K.

Since Sem and ke K,ad(k)Sem, so ad(k)S = S. Thus g(expsS)g~' =
(exp T)k(exp sS)k~'(exp-T) = (exp T)(exp s ad(k)S)(exp-T) = exp s ad(exp T)S
= exp sS for every s. Thus Crit (g) C Z}(g)x. The other inclusion is obvious,
so Crit (g) = Z%(g)x.

(2.5) In[7]and[8] R. Hermann discussed the critical points of the squared
length function f, of a Killing vector field X. We shall reformulate a part of
Theorem 1 in [7], and then a comparison with our results show that in the case
of a symmetric space, the critical manifold of f, coincides with that of g, =
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exp tX for any small ¢. That Crit (exp ¢t,X) = Crit (exp t,X) for any small ¢, ¢,
is obvious from Theorem 2.2.2 for the case of compact spaces.

We again fix a decomposition G = K + m of the Lie algebra G of G, where
M = G/K is the symmetric space and K(resp. m) the + 1(resp. — 1) eigenspaces
of the symmetry ¢. For each g e G, we let P,: G — ad(g)m be the projection.
Notice that P, depends only on gK.

It is easy to see that ad(g) o P, = P, - ad(g), so P, = ad(g) o P, - ad(g™").
Now for every X e G we have a Killing vector field, which we also denote by
X, on M coming from the 1-parameter group exptX of isometries of M.
Identify the tangent space of M at gK with ad(g)m for each ge G; then we
may view P X as a vector field on M. In fact, P, X is the Killing vector field
of the 1-parameter group exp tX. Let {, ) be the invariant metric on M, so
that

11(8X) = (P,X,P,X) = {ad(g) o P, o ad(g™")X, ad(g)P.ad(g~)X)
= (P, o ad(g )X, P, o ad(g )X .

fyx is evidently differentiable on M. We will use the abbreviation f(gK) =
fx(g). Then fy has a critical point at gK exactly when

d —
| fa(exp tH)®) = 0

for all H e m. Now

fx((exp tH)g) = {P, o ad((exp tH)g)X, P, - ad((exp tH)g) X >
= {(e** o ad(g) X))y, (e'** " o ad(g) X)) -
Here e‘**# = cosh (t ad H) + sinh (¢ ad H), cosh and sinh denoting the usual
power series.
Since Hem, and M is a symmetric space, we have cosh (t ad Hym C m,
cosh (tad H)K C K, sinh (tad H)m C K, and sinh (¢tad H)K C m, so
(el ad H o ad(g)X)m
= {[cosh (t ad H) + sinh (¢ ad H)][(ad(g)X),, + (ad(g)X)k]}..
= cosh (¢t ad H)(ad(g)X),, + sinh (¢t ad H)(ad(g)X) -

Thus

d

k. (et*2¥ ad(g)X), = ad H(ad(g)X)y .

Now
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4| fteexp tHDe)
dt le=o

[ 4
\dt -
= 2(ad H(ad(g)X)x, (ad(®)X)n)
= 2¢H, [(ad(®)X)g, (ad(8)X) 1) .

=2 | (e ad@X),, (@)X

Now {, > is non-degenerate so the above vanishes for all H e m if and only if
[(ad(g)X)g, (ad(g)X),.] = 0. Since we are in a symmetric space this is equi-
valent to [ad(@)X, ¢ ad(g)X] = 0.

We assume that M is complete and connected so that every point g-K in M
can be represented by a transvection ; that is, an element g € G such that g =
g7'. Every g ¢ G can be expressed as a product g = pk with ke K and op =
p~!, so that ad(g)m = ad(p)m, which shows that P, depends only on the trans-
vective component p of g, so we may assume g is a transvection. Then

[ad(g)X, o ad(g)X] = [ad(g)X, ad(g~)oX]
= ad(g™")[ad(g) X, 0X].

Thus g~'K is a critical point of f» if and only if [ad(g?)X, ¢X] = 0. This is the
first part of Theorem 1 in [7].

Now let M be connected, symmetric and of non-compact type, and consider
the critical set Crit (fy) of fx.

(2.5.1) Theorem.

Crit (fy) = Cirit (exp X) = Z%(exp X)-x

for any x e Crit (exp X) if X is sufficiently small.

Proof. By the remarks of (2.5), we have that for h € exp m, hK is a critical
point of fy if and only if [ad(h~%)X, ¢X] = 0. We will find the tangent space
of the critical set of fy at x = K assuming x is a critical point of f,. Suppose
H(2) is a C=-curve in m with H(0) = 0 such that exp H(#)x ¢ Crit (f,) for small
t. Then [ad(exp-2H(#)) X, ¢X] = O for all ¢ near zero. Assume that

d
— H@) = .
dt li=o @ v
Now ad g X(e 22 H®X) = 0 so
adoX(X — 2ad HH)(X) + 4(ad HO)X — ---) = 0.

Differentiating at r = 0, this shows that 2 ad ¢X ad V(X) = O, that is,
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O0=I[S-T,[V,s+ TN =[S, [V,SI] - [T, [V, S]]
+ [S,[v, 1] — [T, [V, T]]
=@V — (adS¥ + (adTadS —adSad TV .

Here X = S + T with Se K and T ¢ m. Now (ad T)*V and (ad S)*V are in m,
and ad T ad S(V) and ad S ad T(V) are in K, so in particular we get (ad T)*V —
(ad S)*V = 0. The Killing form B is negative definite on K and positive definite
on m, so we can define a new form B, on G by B,(X,Y) = —B(X,0Y). B,
is positive definite on G, but no longer invariant under the adjoint action of G
onG. LetY,ZeG. Then

B,(ad S(Y),Z) = —B(ad S(Y), ¢Z) = B(Y, ad S(¢Z))
= B(Y,s(ad $(2))) = —B,(Y,ad S(2)),

so ad § is skew-symmetric with respect to B,. Similarly,

B.(ad T(Y),Z) = —B(ad T(Y), ¢Z) = B(Y, ad T(¢Z))
= —B(Y,o(ad T(X))) = B,(Y,ad T(2)) ,

so ad T is symmetric on G with respect to B,. Since [X,¢X] = 0, we have
[S,T] = 0 so adS and ad T commute on G. Now ad S has pure imaginary
eigenvalues since it is skew, and ad T has real eigenvalues since it is symmetric.
Therefore (ad S)? is negative-semidefinite, and (ad T)? is positive semi-definite.
This means that if (ad $)*V =(ad T)*V, we must have (ad S)’V =0=(ad T)*V.
0= B,(ad )V, V) = (B,(ad S(V), ad S(V)) and 0 = B, ((ad )V, V) =
B,(adT(V),ad T(V)) so ad S(V) = 0 = ad T(V) since B, is positive definite.
Hence [V, X] = 0. Since [V, X] = 0 implies (exp tV)x ¢ Crit (f,) for all 7, we
see that the tangent space of Crit (f;) at x is Z,(X) = centralizer of X in m.
In Theorem 3.1 (f) of [8] it is shown that Crit (f) is connected and convex so
that every point y e Crit (fy) lies on a geodesic in Crit (f;) which passes through
x; this geodesic has the form (exptH)x for Hem, and the above shows
H e Z (X). Thus Crit (fy) = Z%(exp X)-x. Now fix x ¢ Crit (f5). If we let x =
K, then we have [X,0X]=0so X =S+ T with SeK,Tem and [S-T]=0.
Therefore ad (exp S)T = T and x e Crit (exp tX) for all sufficiently small ¢.
Conversely, suppose x e Crit (exp tX) for ¢ small enough so that exptX =
(exp T)(exp S) for unique stortest T e m, s € K and such that (exp T)(exp S) =
(exp S)(exp T) if and only if [S, T] = 0. It is possible to choose ¢ so small by
an argument used in the proof of Lemma 2.2.1. The choice of how small ¢ has
to be depends on x, and since M is non-compact there may be no value which
works for all x. However, the above shows that this particular x is in Crit (fy).
But since Crit (f5) = Z%(exp tX)-x and Crit (exp tX) = Z%(exp tX) - x, we have
Crit (fx) = Crit (exp tX). q.e.d.
We now compute the Hessian s# of f, at g = e. To do this, let H,, H,e m
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and differentiate the expression fy((exp sH)(exp tH,)e) at t = s = 0.

aZ
BEa_tlo,o f2((exp s H)(exp t Hy)

aZ
asot

L <(es udH,eL ad HgX)m’ (es ad H]et ad 1ng)m>
,0

-2 9
as

<__aat ]o (e“d Hlet ad ”gX)m’ (esud "let“d ”"'X)m>

0

9 \
— 2{ L sad Il tudeX m’Xm
<asat ,0 (e ¢ ) /

n <__3__L (€82 Mgtada)) _@_, (et Migtud 12 ) \} .
37 oo ms s loo m/

Now e‘*¢4 — cosh (¢t ad H) + sinh (¢t ad H), and

il cosh(tadH) =0, —d—’ sinh(tad H) = ad H ;
dt b dt o
also,
(es ad ll;ez ad HzX)m
= {(cosh (s ad H,) + sinh (s ad H)))(cosh (¢ ad H,) + sinh (¢ ad H,))X},,
= cosh (s ad H)) cosh (t ad H,) X ,, + cosh (s ad H,) sinh (¢ ad H,)X
+ sinh (s ad H,) cosh (t ad H,)Xx + sinh (s ad H)) sinh (¢ ad H,)X,, .
So,
O_| (emainenamy), = ad H,ad H(X,,),
050t lo,0
and
i (etrdMigtadlin)X)  — ad H Xy ,
at o0
9 (e Mngteatnyy  — ad H,(Xy) .
os o1
Thus,
aZ
2 L’o f4((exp sH,)(exp tH,)

= 2(¢ad H, ad H(X,,), X, + <{ad H{(X ), ad H,(X,0))) .
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For any Z ¢ G, ad Z is skew-symmetric with respect to {, > so the above be-
comes:

2(<ad Xk(H)), ad XK(H1)> — <ad X ,(H,), ad X.(H))
= 2({(ad X,,)*H,, H1> - <(ad Xy)'H,, H1>)
= 2{((ad X ,)* — (ad X )9H,, H,> .

It is clear that (ad X,,)* — (ad Xg)* is symmetric with respect to {, >. Thus
we have
(2.5.2) Theorem.

# y(H,, H,) = (Hessian of fy)(H,H,)
= 2¢((ad X,,)* — (ad Xx))H,, H,> .

(2.5.3) Corollary. If M is of non-compact type, then Crit(fy) is a non-
degenerate critical manifold. If M is of compact type and X is a regular ele-
ment, then Crit (fy) is also non-degenerate.

Proof. The nullity of 5y is the nullity of the form (ad X,,)* — (ad X)*.
The proof of Theorem 2.5.1 shows that this is just Z,(X) = (centralizer of X
in m) = (tangent space of Crit (f,) at x = K), if M is non-compact.

Now assume M is of compact type and X ¢ B,, so that Crit(fy) = Crit (exp X).
We assume X is a regular element of G, so Zgz(X) = Cartan algebra containing
X. Since we assume x = K is in Crit(fy), we have [X,0X] = 0, so Z4X)
= Zs6X). Now Henullity of #, if and only if ad X ad 6X(H) = 0O;
equivalently, ad ¢X(H) e Zy(X) = Zgz6X), or (ad (¢X))*H = 0. Similarly,
(ad X)’'H = 0. Now

(ad 6X)’H = (ad Xx)’H + (ad X, )’H — 2 ad Xy ad X,,(H) ,
and
(ad X)’H = (ad Xx)*H + (ad X,,)’H + 2 ad X ad X,.(H) .

Therefore, (ad X x)°H + (ad X,)*H = 0. Since also (ad X x)*H = (ad X ,,)*H, we
have (ad Xx)*H = 0 and (ad X,,)’H = 0, which implies that ad X ,(H) = 0 and
ad X,,(H) = 0, so He Zy(X). Now every H e Zy(X) is in the nullity of 5,
so Crit (f5), is non-degenerate. _

(2.6) We now treat the Euclidean space R". Let E(n) be the Euclidean
group of isometries of R™; then each g e E(n) is a pair g = (4, v) for 4 e 0(n),
v € R*, and acts on R" as follows: if x € R* then gx = Ax 4+ v. E(n) is a semi-
direct product of 0(n) with R*, so that R = E(n)/0(n) is a Riemannian homo-
geneous space with normal metric. Furthermore, if A € 0(n), v € R* then ad (A)v
= Av. We now choose a particular isometry g = (A4, v) and find Crit (g). Note



430 VILNIS OZOLS

that since R™ has no cut points we can use Corollary 2.1.2 for any g e E(n).
Assume that Crit (g) # 0, and choose x ¢ Crit (g) to be the origin of R*. Then
we must have v = ad (4)v = Av. Now let 4 ¢ R* be any vector. Then

h-g-h'(y) =h+ gly — h)
=h4+v+Ay —h) =h+ v— Ah + Ay,

sothat h-g.-h™' = (A,h + v — Ah). Now —heCrit(g) if and only if & + v
—Ah=A(h+ v— Ah), that is, h— 2Ah + A*h = 0, which means (I — A)’h=0.
Since A eO0(n), 4 = {4,,---,4,,1,---,1, -1, ..., —1} with
v 4
A = ( cosf; siné,

i = . , and @; # nn.
—sinf; cos 0,»)

Then
(A - 1)2: {(Al - 1)23 "',(Alc - 1)2’0, ""0949 "'!4}'
If (4 - D*h=0for h= (h, ---,h,), we must have

A, — I)Z(Zzi-l) =0 fori=1,.--,k,

2i

and Ay, ,,;=0forj=1,---,n—2k— p. Now det (4, — I)* = (det (4, — D))’
= ((cos8; — 1)* + sin?4,)?, and this is zero only when 6; = nr which is im-
possible. Therefore, 4; =0 for j =1, ...,2k, and we have Ah = h. Con-
versely, Ah = h clearly implies A(h + v — Ah) = h + v — Ah, so Crit(g) =
Z..,(g)-x. Hence we have proved

(2.6.1) Theorem. Let M be a Euclidean space and g: M — M any iso-
metry. If x e Crit (g), then Crit(g) = Z,,(8)- x.

(2.7) Suppose M = M’ X M” is the Riemannian product of Rimannian
manifolds M’ and M”, and let g be the product metric on M. Suppose f: M
— M is an isometry of small displacement satisfying f = f' X f”/, where f': M’
— M’ and f": M"” — M" are isometries, and let b(s) be a curve through some

point x = (x’, ") e M. Then §,(b(s)) = f a«/ (T, T)dt, where T is as defined
0

in (1.2).
a

d — a 7] 73 73 '’/
3,6 = f 2 VET Y+ a0 Tt

0
_ [(RUTNT) 4 BT
) V&I, T) ’

where T, X’ and T, X" are the components of Q*d/dot,Q,9/ds in T(M’)
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and T(M") respectively. From this it is clear that the derivative vanishes at x
for all values of X’ + X’ exactly when x’ ¢ Crit (f') and x” ¢ Crit (f).

(2.7.1) Theorem. Let M be a simply connected Riemannian symmetric
space with M =My X M, X --- X M,, where M, is a Euclidean space and the
M, 1 <i <k, are irreducible. Suppose g e I"(M) = I'(M,) X I"(M,) X --- X
I"(M,), and the components g; of g acting on the M; which are compact satisfy
the hypotheses of Theorem 2.3.2. If x ¢ Crit (g), then the component of Crit (g)
containing x is Z%,»,(8)- x.

Proof. From the above remarks we see that Crit (g) = Crit (g,) x Crit(g,)
X «++ X Crit(g,). Then the result follows from Theorems 2.3.2,2.4.1, and
2.5.1.

(2.7.2) Lemma. Let M —"» M be a Riemannian covering of Riemannian
manifolds with simply connected M, and f: M — M an isometry of small dis-
placement. Then there is a unique lift f: M — M of f which is an isometry
covering f, and such that p(x, f(x)) = p(X, f(®) for all % such that (%) = x,
xeM. (Here j is the distance on M.)

Proof. For each x e M and each % e M where n(%) = x, let c, be the mini-
mizing geodesic from x to f(x), and c; the lift of c, to M starting at . Then
define f (%) = endpoint of ¢; over f(x). f obviously covers f so it is an isometry
of M. Moreover, ¢, is a geodesic which minimizes the distance from % to f (69)
and has the same length as ¢, so p(x, f(x)) = g(X, F). q.e.d.

Now if I is the group of deck transformations of M 2. M, it is evident
that I" preserves Crit (f), so that Crit (f) = Crit (f)/I".

(2.7.3) Corollary. Let M be a connected Riemannian symmetric space,
and g an isometry whose lifting g satisfies the hypotheses of Theorem 2.7.1.
If x € Crit (g), then the comyonent of Crit (g) containing x is Z;,(8)-X|I", where
7(%) = x, and G is the isometry group of M.
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