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CLOSED CONFORMAL VECTOR FIELDS

SHUKICHI TANNO & WALDEMAR C. WEBER

1. Introduction

Let M be a connected m-dimensional Riemannian manifold with metric g.
A vector field X on M is conformal if and only if

(1.1) Lxg= -(2/m)δξ g,

where L γ denotes the Lie derivation with respect to X, ξ — g(X, •) is the co-
variant form of X with respect to g, and δξ is the corresponding codifferential
form of ξ. Let d be the exterior differential operator, and Q the Ricci operator
which is defined on the 1-form ξ by Qξ = RX(X, ), Rx being the Ricci tensor.

If M is a connected 2-dimensional Riemannian manifold with constant
scalar curvature S > 0, and M admits a conformal non-Killing vector field,
then M is globally isometric with a sphere (cf. [1]).

Next let M be a connected, compact Riemannian manifold of dimension
m > 2 with constant scalar curvature 5 > 0. Then M is globally isometric
with a sphere, if M admits a conformal non-Killing vector field X and any
one of the following conditions is satisfied:

(a) M is an Einstein space [6], [8],
(b) the Ricci tensor is parallel [5],
(c) trace Q2 is constant [4],
(d) Qdδξ = kdδξ for some constant k [9],
(e) QdδC*(M) c dδC*(M), where C0*(M) denotes the space of covariant

forms of all conformal vector fields on M [1],
(f) ξ is an exact form [4].
(a) and (e) have been proved independently. Conditions (d) and (e) are

related to (f). If ξ is exact, then ζ vanishes at some point of M. The first
theorem of this note is a generalization of (f).

Theorem 1. Let M be a connected compact Riemannian manifold with
the constant scalar curvature S > 0. Then M is globally isometric with a
sphere if M admits a closed conformal vector field X which satisfies one of
the conditions:

(i) the harmonic part h of ξ vanishes at some point of M,
(ii) X vanishes at some point of M,

Communicated by K. Yano, June, 24, 1968.



362 SHUKICHI TANNO & WALDEMAR C. WEBER

(iii) Rλ(Xy X) = (S/m)g(X, X) holds at some point of M,
(iv) RάX, X) is non-negative.
Corollary 1. Let M be connected, compact and orientable Riemannian

manifold with positive constant scalar curvature. Assume that the Euler
number is not equal to zero (m: even) and that M admits a closed conformal
vector field. Then M is globally isometric with a sphere.

Remark. In Theorem 1, any closed conformal vector field satisfies (i), if
M has one of the properties:

(v) Q is non-singular at each point of M,
(vi) for any function /, we have C0(M, g) ψ 1O(M, efg), where C0(M, •) or

/0(M, ) denotes the identity component of the group of conformal transforma-
tions or isometries, respectively.

In § 4 we consider sufficient conditions for M to admit a closed or exact
conformal vector field. We denote by Λr(M) the space of all r-forms on M
and by H\M) the space of all harmonic 1-forms on hi.

Theorem 2 Suppose that a compact orientable Riemannian manifold M
admits a conformal non-Killing vector field. Then M admits closed conformal
vector field if any one of the following conditions is satisfied:

(a) QδΛKM) c δΛ\M)9

(b) for any w e Λ\M) such that dw = 0, we have dQw = 0,
(c) dQdAXM) = (0) and dQW(M) = (0),
(d) δQδΛ\M) = (0) and dQHx(M) = (0),
(e) dQdδC*(M) = (0), dQHι(M) = (0) and S is constant.
Theorem 3. Suppose that a compact orientable Riemannian manifold M

admits a conformal non-Killing vector field. Then M admits a conformal vec-
tor field whose covariant form is exact if any one of the following conditions
is satisfied:

(f) QdA\M) c dΛ\M),
(g) for any w e Λ\M) such that δw — 0, we have dQw = 0,
(h) dQdΛXM) = (0) and dQH\M) = (0),
(i) δQδΛ\M) = (0) and δQHx{M) = (0),
(j) dQdδC*(M) = (0), δQH\M) = (0) and S is constant.
Authors would like to thank Professor S. I. Goldberg who suggested this

problem.

2. Preliminaries

Let M be a compact orientable Riemannian manifold. By Yano's theorem
[7] a vector field X with the covariant form ξ is a Killing vector field if and
only if

(2.D δξ = O,

where Δ = dδ + δd is the Laplace-Beltrami operator, and < , > denotes
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the global inner product. Subsequently Lichnerowicz [3] has shown that a
necessary and sufficient condition for X to be a conformal vector field is

(2.2) J£ + (1 - 2/m)dδζ - 2Qξ = 0 ,

or

(2.2)' (Δξ + (2 - 2/m)dδξ - 2Qξ, £> = 0 .

Now we assume that the scalar curvature 5 is constant. We can assume also
that 5 is positive (cf. [3]). The relation LXS — 0 for a conformal vector field
X is equivalent to

(2.3) Δδξ = (m - l)-ιSδξ .

Let h be the harmonic part of the covariant form ζ of X. Then by the
Hodge-de Rham decomposition theorem we have

(2.4) ξ = dδη + δdη + A

for some 1-form η, and substitution of δξ = &% into (2.3) gives δ(dΔδη
_ ( m _ i)-i Sddjy) = 0. Therefore we get J<% = (m - \)-χSdδη. By
= d<5f, we have

(2.5) <tt? = (m - l)S'ιdδξ .

3. Proof of Theorem 1

To prove Theorem 1 we can assume that m > 2 and that M is orientable
(cf. [1]). Let X be a closed conformal vector field on M. Then by (2.2) we
have

(3.1) Δξ = dδf = m(m - l ) " ^ ? .

Since dξ = 0, by (2.4) and (2.5) the harmonic part h of £ is

(3.2) h = £ - (m - l)S-ιd<5? .

Operating L^ to £< = ^i;JT^ gives

(3.3) d(g(X, X)) = L^f = ~2m- ιδ£ . £ .

Since ξ is closed we have dδξΛξ = 0. Now let Λfβ be the set of points where
£ vanishes, and let M* = M - Mo. Then we get a C°°-function ^ * on Aί*
such that

(3.4) dδξ = A*ξ
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on M*. Similarly, we have a C°°-function £ * on Λf* such that

(3.5) dA* = £*?

onΛf*. By (3.1) we have

(3.6) Qξ = (m - \)nrιA*ξ .

Lemma. The junction A* on Λf* is extendable to a continuous function
A on Λf, and

(A-l) if A —(m — \)~λS at a point of M*, then it holds on Λf,
(A-2) if M* has no point where A = (m—\)-χS holds, then A <{m—\YxS

holds on Λf, A takes negative values somewhere on M, and Λf0 is empty.
Proof. First we show that (δξ)r Φ 0 for any point P of Λf0 when Λf Φ Λf *.

In fact, if (δξ)P = 0, then (1.1) shows that (Djξι)r = 0 since ξ is closed,
where D is the Riemannian connection by G. By (3.1) we have (dδξ)r = 0.
Namely, we have ξP = (Df)#» = (βf)y> = (dδξ)r = 0. However, by the differ-
ential equations satisfied by conformal vector fields ξ must vanish on M.
Therefore we have (δξ)P Φ 0 for any point P of Mo. Then by (1.1) we have
(Dyξ)P Φ 0 for any non-zero tangent vector Y at P. This means that P is an
isolated point. By (3.6) and the continuity of eigenvalues of Q we can extend
A* on Λί* to a continuous function A on M. We operate δ to (3.4) and get

(3.7) δJξ = - g(dA*, ξ) + A*δξ

on Λf*. By (2.3) and (3.5) we have

(3.8) (m - ί)-ιSδξ = - fi*^(f, ξ) + A*δξ

on Λf*. We solve (3.8) for B* and substitute into (3.5). Then using (3.3) we
have a differential equation

(3.9) d(A* - (/?t - l)- !5) = - 2~ιm(A* - (m - l)-1S)tf(log*(A\ Jf))

on Λf*. Thus, if A = (m - l)- ! 5 at one point of Λf*, then Λ = (m — l)- 1 ^
on M. It is known that <βΛ, h} <0 holds for any harmonic 1-form, and so
by (3.2) and (3.6) we have

<d - {m - l)5-^) 2βf, O = (m - Dm"1 <(1 - (m - l)5"M)2f, ^f > < 0 .

This shows that if A Φ (m — \)~ιS anywhere on M* then A takes a negative
value at some point on Λf*, and hence (m — 1) - 15 > A on Λf*. Then we can
solve (3.9) for A as follows:

(3.10) A = (m-iy*S-
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on Λ/*, where c is a contant. (3.10) means that A can not be continuous on
M unless Mo is empty.

Proof of Theorem 1. In each case we show that the harmonic part of ξ
vanishes, and this is equivalent to the relation A = (m — \)~λS by (3.2) and
(3.4). (i) follows from the Lemma (A-l). (ii) follows from (A-2) and (A-l) of
the Lemma, since Mo is not empty, (iii) and (iv) follow also from the Lemma.

q.e.d.
Condition (v) of the Remark in the introduction implies that the function

A* does not take value zero. By relations

0 = <JΛ, O = <Λ, Δξ> = <(1 - (m - l)S-ιA)Aξ, ξ> ,

A can not be negative. Then we apply our Lemma.
Let ξ € Cf(M) be closed. If Λf0 is non-empty, then ξ is exact. Assume con-

dition (vi) and that Mo is empty. Set ef — (g(X, X))~\ and define g* by
g* = e'g. Then we have Lxg'= 0. Next define £' by £' = g\X, •)
= (g(X, X))~ιξ. By (3.3) ξ' is also closed. Therefore ξ' must be a parallel
vector field with respect to g', and we have C0(M,g') = I0(M,g') (cf. [2]).
Since C0(M,g') = C0(M,g), this contradicts the assumption.

4. Proofs of Theorems 2 and 3

It may be easily verified that (a), (b), (c) and (d) are equivalent, and (f), (j),
(h) and (i) are equivalent. Assuming (c), we show that M admits a closed
conformal vector field. Let (2.4) be the decomposition of ξ. Then by (2.2) we
have

0 = <J£ + (1 - 2m~ι)dδξ - 2Qξ,δdη}

= ζddSη + (1 - 2m-ι)dδdδη - IQdδη

- 2Qh + Δδdη - IQδdη, δdη) .

By (c) we have

(4.1) (Δδdη - 2Qδdη, δdη) = 0 .

By (2.1) δdη defines a Killing vector field, and so dδη + h is a closed confor-
mal vector field. If 5 is constant, then IQdδrj e QdδC*(M) by (2.5). Thus (e)
implies (4.1). This proves Theorem 2. To prove Theorem 3, assume (i).
Then by (2.2) we have

(Δdδη + (1 - 2m-ι)dδdδη - 2Qdδη - 2Qh

By (i) we get
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(Δclδη + (1 - 2m~ι)dδdδη - IQdδη, dδη) = 0 .

Hence dδη defines a conformal vector field by (2.2)', which is exact. Case (j)

is similar to (e).

Added in proof. Another proof for Theorem 1 appears in W. C. Weber

& S. I. Goldberg, Conformal deformations of Riemannian manifolds, Queen's

Papers in Pure and Applied Mathematics, No. 16, Queen's University,

Kingston, Ontario, Canada, 1969.
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