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VECTOR FORMS AND INTEGRAL FORMULAS
FOR HYPERSURFACES IN EUCLIDEAN SPACE

KRISHNA AMUR

Introduction

Let J be a smooth oriented m-dimensional hypersurface immersed in
(m + l)-dimensional Euclidean space Em+ι. In §2, we consider some vector
form invariants for Σ and their expansions in terms of elementary symmetric
functions of pricipal curvatures and certain intrinsic tangent vectors. We use
these results in § 3 to obtain integral formulas for Σ assuming that Σ has closed
regular boundary. For a compact Σ we have integral formulas of particular
interest in Corollary 2 of Theorem 3.1; these are similar to Minkowski
formulas and involve gradients of elementary symmetric functions of principal
curvatures. Some consequences of these formulas are studied in §4. In
Theorem 3.3 we prove that for a compact hypersurface of constant mean
curvature, the surface integral of the gradient of any elementary symmetric
function of principal curvatures is identically zero.

1. Preliminaries

Let Λί be an oriented smooth differentiable manifold of dimension m. Our
hypersurface Σ is a mapping X: M —> Em+ι where the Jacobian matrix has
rank m everywhere. Let n(x), xeM, be a unit normal to Σ at X(x). Then
choosing an orthonormal frame e19 , em in the tangent space of Σ at X(x)
such that the det (e19 , em, ή) = 1, we have

(1.1) dX = Σ Wi > dn=Σ
i ί
Σ
i

where σt and ω{ are differential 1-forms. We express ωt in terms of the linearly
independent σt:

(1.2) cot = Σ ai&3 >
j

where H^J is symmetric.
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Let k19 , km denote the principal curvatures at X(x), and K19 , Km

the elementary symmetric functions of the principal curvatures, that is,

(1.3) ( ™ ) K r = Σ * i * r , 1 < r < m .

As usual we assume Ko = 1.
We list below a few formulas for easy reference. For other relevant details

we refer to Flanders [2], [3] and Chern [1].

(1.4) [e19 ••, e m ] = n ,

(1-5) [π, , ej9 , em] = (— 1 ) ^ ,

where the roof indicates the missing term.

(1.6) [n, dX, • • , ΛAT] = - ( m -

m - 1

(1.7) dn-*dX = mKxa , d * . * ^ = mσ ,

where σ = σλ A Λ σm is the volume element.

(1.8) [Λ, , dn, dX, , dX] = r!(m - r)!

r m — r

By exterior differentiation of (1.6) we have

[Λι, dX9 .-'9dX] = - ( m - l)!d*dX .

^ m ^ - 1

But from (1.8) we see that the left hand member is (m — tylmK&n. Hence
we get

(1.9) d*dX= -mKλan .

An immediate consequence of (1.8) is that for a compact hypersurface 2
we have

(1.10) Cκrσn = 0, r = l , . . . , m ,

Σ

that is, the vector surface integral of any elementary symmetric function of
principal curvatures is identically zero. The proof of (1.10) is obvious from
the fact that
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[dn, -- ,dn,dX, -.',dX] = d[n, dn, - - -, dn, dX, . . , dX] ,

r m — r r — 1 m — r

where d stands for exterior differentiation.
Let / be a smooth function defined on £ . By grad/ or Vf we mean
f7/ = Σ feu where /4 are given by <// = £ / ^ . We have

i i

(1.11) dfΛ*dX= (Ff)σ .

We consider a formula for the divergence of a tangent vector α in the tangent
space of 2 a t -XX*) •

Let α = Σ αΛ> where ^ are smooth functions. Then

da = Σ [daj + Σ <*tθ>tή eJ-[Σ aiωή n ,

where ω{j and ωt are 1-forms. (For details see Flanders [2].) We write

&ij = Σ ΛV* . d ^ = Σ (aj

Then

Σ !Σ
i l l

= (div a)σ .

Thus

(1.12) dα *dX

Since

d(a-*dX) = da-*dX —

— (div α)σ ,

it follows that for a compact hypersurface 2 and tangent vector field a

(1.13) J(divα)σ = 0 .
Σ

Finally we consider an algebraic identity for the elementary symmetric
functions of the principal curvatures.

Definition l . l Let Cr denote the rth elementary symmetric function of
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(Wϊ\

r)Kr. For a fixed integer i, 1 < i

< m, and any integer / such that 1 < / < m9 we define

cj = Σ *i *,

where in each product, the / curvatures are chosen from the m — 1 curvatures
ku , Λ<_i, Λ<+i, * * > ΛTO. It is convenient to define CJ = 1.

Lemma l l

(1 14) C* - Σ ( r ϋ y

Proof. We have the recursive relations:

Cΐ / ^ l-fi

Hence

The Lemma follows from the fact that C r, Cr_1? , C1 are respectively the
rth, (r — l)th, , 1st elementary symmetric functions of the principal
curvatures.

As a corollary to Lemma 1.1, it is possible to deduce the following identity
of Newton for the elementary symmetric functions:

(1.15)

2. Differential formulas

A self adjoint linear transformation A of the tangent space of Σ a t

into itself is defined by (see Flanders [2])

(2.1) Aet = Σaij^j »
3



HYPERSURFACES IN EUCLIDEAN SPACE 115

where the symmetric matrix ||Λ^|| is given by (1.2). It follows that

(2.2) ΛdX = A Σ °iti = Σ M * t = Σ σ&jtj = Σ <*><*, = dn .
i i ij i

We look for other intrinsic tangent vectors which are obtained as the result
of repeated application of the transformation A to dX. Let A^dX denote the
intrinsic tangent vector obtained from dX by applying A repeatedly j times.
For convenience we write

(2.3) U0 = dX , Uj = A^dX , 1 < / < m .

Definition 2.1. An orthonormal frame e19 , em will be called a principal
frame if each et is tangent to a principal direction.

Since the tangent vectors Uά are intrinsic, we can use any admissible frame
locally to describe their components. If X(x) is a non-umbilic point we have
a well defined principal frame at X(x). With reference to this frame we have

(2.4) ωt = atkt (i not summed), i = 1, , m .

The components of Uj assume a simple form and are given by

(2.5) Ut = Σ (Waft .
j

Lemma 2.1. Let

Δr = [Λ, dii, , d/i, djf, , dX] .

r m — r — 1

Then we have

(2.6) Δr = - r ! ( m - r - 1)! Σ (-!)*(,. ^

where Z7Z ΛΓ̂  //Z^ v^cίor^ defined in (2.3).
Proof. Since we are concerned with proving a local result, we can choose

the principal frame for computational purpose. We do this and use (2.4) to
get

Λ r ^ i JL v~i r, τ~i _ Λ r π "I

^r — LΛ, ZJ *iχθli*iχ9 ' ' * > ZJ Kir

σireir> 2u ^ A i ' ' * * ' 2 J σ i m - r - A « - r - l J

— \™̂  ϊ ? Γm« va ^ Λ 1
— - / i D Λ n % c u * * έ ? , ί • • • » c - « . I .

where 5 7 is a (m — l)th order determinant given by
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kισ1 kj_ισj_1 kj+1σj+1 kmσv

kισ1 kj_ισj_1 kj+ισj+ι kmσv

σι «« θj_λ σJ+1 « σm

In Bj, the first r rows are identical and so are the last m — r — 1 rows. In the
expansion of Bj the multiplication of differential forms is in the sense of
exterior multiplication.

Use of (1.5) yields

(2.7) Δr = Σ (—lyBjβj .
3

In expanding Bj we use Laplace's method of expansion by complimentary
minors. Let H = (hi9 , Λr), L = (/x, , lΊίl_r_ι), where

1 < hλ < < hr<m ,

1 < /i < < /m-r-l < m >

and the range of each A* and each lt is (1, , / — 1, / + 1, m). Let {kσ)H

denote a n r X r minor of Bj9 each row of which is khχσhl khrσhr. Then

(kσ)H = r\(khl Λ l Λ . Λ σhr .

Similarly, if σL denotes (m — r — 1)X (m — r — 1) minor of £ J 5 each row

of which is σh σ l m - r - 1 , then

and

where

Hence

σL = (m — r— l)\σh Λ - Λ ^

B j = Σ εH'L(kσ)H Λ σ L ,

/I . . . / - 1 / + 1 . . . m
e^^ = sgn

y/Zi . . nr . /i /m_ r_i

B^ = r !(m - r - 1 ) ! ^ Λ Λ ^ Λ Λ σmCj

r ,

where C( is a function of the principal curvatures (see Definition 1.1). Substi-
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tuting the expression for C{ from (1.14) we get

Bj = r!(m — r — 1) !^ Λ Λ σό Λ

Hence

(-lVBjej = -r!(/n - r - 1)! Σ (-•

where

*σj = (—iy~ισλ Λ Λ as Λ Λ αm .

Thus finally using (2.5) we have, from (2.7),

Jr = _ ri(m - r - 1)! Σ (-D'fr ϋί /)κr-i JΣ (*i)4*^

= _ r ! ( m - r - 1)! Σ ( - D *

Remark. From (2.2) we have /4dX = dn, and from (2.3) it follows that
Ali)*dX = * t/ί Hence (2.6) may also be expressed in the form

Δ r = [n, AdX, • •., Λ d i T , dX,..., dX]

(2.8) r m - r - 1

Corollaries.
1. Let r = 0. Then from (2.6) we get the known formula (1.6).
2. Let r = m — 1. Then

m - 1

where ^ is the star operator on the m-sphere which is the Gauss map of
From (2.6) we get

(2.9) S

3. In Chern's notations [1],
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Lemma 2.2. Let X — v + pn, where v — Σ Pie% is ^ component of X
tangential to the hypersurface Σ> and P is the support function. Then

(2.10) [X, dX, ...,dX] = (m- l)l(iv*dX)n - p*dX) ,

(2.11) div i? = m(l - pKJ , Vp = Σ PiK*i

i

Proof. By the linearity of the vector form we have

[X, dX9 .-.9dX] = [v, dX, ...,dX} + p[n, dX, . . . , dX] .

It follows from (1.6) that the last term on the right side is — (m — \)\p*dX.
Let Δ = [v, dX, . , dX\. Then

Δ = t Σ Piieii> Σ σuew 9 Σ ^ T O ^ m ί

Pi Pl ' Pm

σ2

where the last m — 1 rows of the determinant are identical. Using (1.4) and
observing that the cof actor of pt is (m — 1) !*^ we get

Δ = (m - 1)!(Σ P**<7> = (m -

Now exterior differentiation of (2.10) and use of (1.8) give

m\σn = (m - l)![(rfi7.*rfX + v d*dX)n + dn Λ (v*dX)

- dp A *dX - pd*dX] .

Using (1.9) and (1.12) and observing that v is a tangent vector we have

(2.12) man — (div v)σn + Σ ViK^ — Pp<* + mpKxan .

Equating the tangential and normal components in (2.12) we get (2.11).
Corollary 1. From (2.11) we get the known result [3]:

dp =(2.13)

Proof, dp = Fp dX = Σ *i*Λ = Σ
Corollary 2. // Σ ^ α minimal hypersurface, then Kx = 0, and (2.11)

shows that div v = constant at each point of Σ
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3. Integral formulas

Theorem 3.1. For a smooth and oriented m-dimensional hypersurface 2
with closed regular boundary,

() U'vκ'σ -m

(3.1) = Σ

= r^j(Kr+ιp - Kr)σ - Σ (-!)'(,.ϋ /
Σ * aΣ

r = 0 , 1, . • - , m — 1 ,

where p = X-n is the support function, and the vectors Vi are given by (2.3).
Proof. We have, from (2.6),

Δγ = _ r ! ( m _ Γ _

By exterior differentiation and using (1.8), (1.9) and (1.11) we obtain

(r + l ) ( r »

Taking scalar product with X we have

-Σ(-!)*(,.™

Since

3

using (2.5), we have

/„ i i\ / rn \ Y (fyι\ {v T7Y *. IΛΛV v ψ*~\

v T* *) I i 1 l ^r + lP^ = — ( MA r Ar<7 — raA^j-PtfJ-(3 2) - / « 7
- Σ (-1)' L f H ^ . ^ *^) - Kr_i Σ

But
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by Newton's formula for symmetric functions (see (L15)). Substituting this
value in (3.2) and integrating we get, by Stokes' theorem,

- r
Σ

A = (m — r)ί ] and rearranging we get (3.1).

Corollary 1. For a hypersurface Σ with the same properties as in Theorem
3.1 we have

(3.3) (m - r) (^) J(^ r + 1 p - Kr)σ = - g ( - D* (r ^ f) /
Σ %~ 9Σ

if 2 ^ compact, then we have the Minkowski equations

(3.4) jκr+ιpσ = J κ r σ , r = 0, 1, - •, m - 1 .
Σ Σ

Proof. We have

d{Kr*dX) = F * > - mKxKran .

Scalar product with A' gives

X d(ί: r*dX) = XFKrσ - mKγKrσp .

But

d(KrX *dX) = KrdX**dX + X d(Kr*dX)

= mKrσ + XVKra - mKxKrap .

Substituting (3.5) in (3.1) we get (3.3).
If 2 is compact the right side member of (3.3) drops out and we get (3.4).
Corollary 2. // £ is compact and oriented, then

(3.6) fx PKrσ = m J ί * ^ - Kr+1)pσ, r = 0, 1, , m - 1 .
Σ Σ

Pro*?/. The result follows from (3.1) and the Minkowski equations (3.4).
Remark 1. For a hypersurface 2 satisfying the conditions of Theorem 3.1,

from (3.5) we have
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(3.7) JκrX*dX = fxFKrσ - m [{KxKrp - Kr)σ ,
3Σ Σ Σ

r = 0, 1, - . . , m - 1 .

And if 2] is compact, using (3.4) we get equations (3.6).
Remark 2. Equations (3.6) can also be expressed in the form

(3.8) [xFKra = m [κxKrpσ - m Cκrσ .
Σ Σ Σ

Remark 3. Formulas similar to (3.6) and (3.8) are known for a closed
curve C in £ 3.

Let C: X = X(s) be a smooth curve in E\ k the curvature and t the unit
tangent vector at X(s). Then

diX-kt) = dX fa + X.(rf*)r + JT Λdf .

But

dX = (ds)t , dΛ: = {ds)kf , dt = Λ/idί ,

where n is the principal normal. Hence

(3.9) £(X-Fk)ds = ίk2pds - ίkds ,

where p = Xn, n is considered along the outward normal, and Vk — k't.
Similarly, by considering d(X τt) where r is the torsion of C at X(s), we

obtain

(3.10) ί(X-Fτ)ds = <f *τp<fc - f τώ .

Remark 4. From (2.11), for a hypersurface 2] with the properties of
Theorem 3.1 we get

(3.11) Γdiv vσ = m Γ(l - pKJσ .
Σ Σ

But

(div v)σ = dv*dX = d(v *dX) = d(X *dX) ,

since i; and *rfJif are tangent vectors, and d*dX= —mKxσn. Hence from (3.11)
we get

fx*dX = m Γ(l - pKx)σ ,
3Σ Σ

which is precisely the equation we get from (3.3) by putting r = 0.
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Theorem 3.2. For a compact smooth oriented hypersurjace Σ of constant
mean curvature,

(3.12) JFKrσ = 0 , r = 1, . . . , m .
Σ

Proof. From Theorem 2 of [3] we have

Cffσ = m Γ/K^/i ,
Σ Σ

where / is a smooth function on Σ Since all the elementary symmetric
functions of the principal curvatures are smooth functions on Σ we have

I FKrσ = m I KrKλσn, r = I, > ,m.
Σ Σ

Since 2] is assumed to be of constant mean curvature we get

ΪVKrσ = mK, jκrσn .
Σ Σ

But from (1.10) it follows that \Krσn = 0, r = 1, - , m. Hence we get
Σ

equations (3.12).

4. Some consequences

For a compact and oriented hypersurface Σ, C. C. Hsiung [4] has shown
that if JSΓ, > 0, i — 1, •, s9 1 < s < n, Ks = constant and p keeps the same
sign at all points of 2 , then Σ is a hypersphere. This result follows as an
immediate consequence of Corollary 2 of Theorem 3.1.

A variation of the above result is obtained, if instead of requiring p to keep
the same sign at all points of J] w e assume that the mean curvature Kx of 2
is constant. To this end we have

Theorem 4.1. Let Σ be a compact and oriented hypersurface. If
Kγ = constant, Kt > 0, i = 1, , s, 2 < s < n, and Ks = constant, then
Σ is a hyper sphere.

Proof. Under the hypothesis of the theorem, we have

(4.1) KΎK^ > Ks .

Since Kx = constant, from (3.6) we have
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Cx PKτσ = mKx Cκrpσ - Jκ
Σ Σ ΣΣ Σ

&_,-Kr)σ

using Minkowski equations.
Further, if Ks = constant, we have

0 = JV^-i - Ks)σ ,

which together with (4.1) implies that the equality K1K$_1 = Ks should hold.
The equality in its turn implies that 2 is a hypersphere.

References

[ 1 ] S. S. Chern, Integral formulas for hypersurfaces in Euclidean space and their
applications to uniqueness theorems, J. Math. Mech. 8 (1959) 947-955.

[ 2 ] H. Flanders, Differential forms, Academic Press, New York, 1963.
[ 3 ] , The Steiner point of a closed hypersurface, Mathematika 13 (1966) 181-188.
[ 4 ] C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Secand. 2

(1954) 286-294.

PURDUE UNIVERSITY






