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1. Introduction

Let X be a holomorphic vector-field on the compact complex analytic
manifold M. In an earlier note [3], the behavior of X near its zeros was re-
lated to the characteristic numbers of the tangent bundle to M, and the ex-
plicit form of this relation was computed in the most nondegenerate situation,
that is, in the case of X vanishing at isolated points to the first order. Our
aim here is to extend this result in two directions. On the one hand we con-
sider the characteristic numbers of more general bundles E over M on which
X "acts", and on the other hand we allow X to vanish along submanifolds of
higher dimension but still only to the first order.

Both extensions are therefore essentially technical in nature. The first ex-
tension, to more general bundles, is especially direct and is worthwhile only
in so far as it helps to clarify the arguments of [3], The extension to higher
dimensional zero-sets is less immediate and also seems to me of some interest
for the following reason:

When X has isolated singularities the formulas in question may be derived
from the generalized Lefschetz formula for transversal maps (see [2]). In the
present more general case this is not so one would first of all need a suitable
generalization of the Lefschetz formula, and such an extension is available
now only if X satisfies some additional restrictions, such as leaving a Rieman-
nian structure invariant.1 A Lefschetz formula for non-transversal maps is of
course closely related to the Riemannian-Roch question, so that our ultimate
motivation for this note is the hope that our results might be useful in an
eventual purely geometric understanding of Riemann-Roch and its generali-
zations.

To describe our results we need to define two notions. First of all, by an

Communicated September 30, 1967. This research was partially supported by the Na-
tional Science Foundation under grant GP-6585.

1 In recently completed forthcoming papers by M. Atiyah & I. Singer [1], on the one
hand and Illusie [4] on the other, our formula is derived by quite different methods for
vector fields of this type. Illusie also derives a mod p version of our theorems for trans-
formations of order p.
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"action" of the vector-field X on the vector bundle E, we will mean a differ-
ential operator

(1.1) Λ:Γ(E)-*Γ(E)

on the C°° sections of E which relative to C°°-functions / satisfies the derivation

identity:

(1.2) Λ(fs) = (Xf).s + f.A(s) .

When M, X and E are holomorphic such an action will be called holo-
morphic, if in addition A commutes with dπ- the d/dz part of the exterior
derivative d:

d" .Λ = Λ-d" .

Thus the prototype for an action of this sort is the action of X on vector
fields given by the bracket operation

Θ(X):Y-+[X,Y]9

and it was only this action which was considered in [1].
Secondly we need a convenient formalism for describing characteristic

numbers etc. For this purpose we make the following conventions.
Let φ(xu , xq) be a symmetric homogeneous polynomial in q variables

with complex coefficients. We then define the value of φ on an endomorphism
A:V—>V,ot2i complex ^-dimensional vector space by the formula:

(1.3) φ(A) = φ(λi9λt, . . , ^ )

where λt are the eigenvalues of A.
On the other hand we may define the value φ(E) of φ on a complex vector

bundle E over M to be the cohomology class of M which is representative
by φ(x) when the xt are interpreted as the formal roots of the Chern class of
E, that is, when the identity

(1.4) Π (1 + txt) = 1 + tcλ(E) + • + ί«cQ(£)
i = l

is assumed valid and is used to express the xt's in terms of the Chern classes
CiiE) of E.

One may finally extend and unify these two definitions in the following
manner. Suppose that £ is a ^-dimensional C-bundle over the space M, and
that A: E -+E is an endomorphism of E which is of "constant type" in the
sense that the eigenvalues of A are constant on each component of M. Under
these circumstances one defines a cohomology class φ(A) of M, with complex
coefficients in the following manner:
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It is sufficient to describe <p(Λ) on each component of M, so assume M
connected and let {Xt} denote the eigenvalues of A counted with multiplicities.
Also set E(λ) equal to the largest sub-bundle of E on which (A — X) is nilpo-
tent. Then E decomposes canonically into a direct sum of sub-bundles E(?,):

With this understood define <p(A) as the cohomology class determined by

the expression

(1.5) φ{Xλ + x19 X2 + x2, , λq + xq)

when xt is interpreted as a formal root of the Chern class of E(Xi). Because
the expression (1.5) will be symmetric in all the xt's which are associated to
equal eigenvalues this concept makes sense and determines a class on M
depending on the {Xt} and the Chern classes of the sub-bundles E(Xt) of E.

For instance, when these are all line-bundles, i.e., the {Xi} are all distinct,
one has simply:

φ(A) = φ{λx + Xl9 X2 + X29 - , Xn + Xn) X, = C^Eiλi)}.

Note that when M reduces to a point this clearly agrees with our definition
of φ as an endomorphism of a vector space. Also we recapture the expression
φ(E) if we evaluate φ on the zero-endomorphism of E:

Finally, note that if det denotes the symmetric polynomial xλ x2

and 1 E is the identity endomorphism, then

(1.6) det (1*) = c(E) = 1 + ct(E) + . +cm(E) ,

while

(1.7) d

In general it is easily checked that det (A) will be invertible in H*(M; C) if
and only if A is an automorphism of E.

With these conventions understood we may state our principal results.
Theorem 1. Let A: Γ(E) —>Γ(E) be a holomorphic action of the holo-

morphic vector-field X on the holomorphic bundle E over the compact holo-
morphic manifold M. Also let φ(xx, , xq), q = dimcE, be a homogeneous
symmetric polynomial of degree2 =m, and let N range over the components
of the zero set of X. Then the local behavior of X near N determines certain
complex numbers RQSΨ(N) called the φ residue of A on N, such that

(1.8)

2 Originally I asserted this formula for degree of φ<m, and I am greatful to P. Baum
for pointing out a gap in my argument for the case deg φ<Cjn.
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Here of course the left hand side denotes the evaluation of the cohomology
class φ(E) on the orientation cycle of M, so that for instance, the left hand
side vanishes when dcgφ < m. When deg^? = dim^Mf and E = TM is the
holomorphic tangent bundle of M, then φ(E)[M] becomes a characteristic
number of M, so that we may in general describe the left hand side of (1.8)
as a characteristic number of E on M.

This theorem was implicitly proved in [1] for the special case E = TM and
that proof extends directly to the present situation as will be shown in §2.

Our second theorem deals with the explicit computation of the ^-residues
when X vanishes nondegenerately along N. To describe this formula, observe
first of all, that from the derivation formula (1.2) it follows immediately that
on the zero set of X, A becomes a differential operator of degree zero and
hence induces a bundle endomorphism:

Λ\N:E\N >E\N

on each component of the zero set of X. By compactness this endomorphism
is furthermore seen to be of constant type. Thus in particular, φ{Λ | Λ̂ ) is a
well determined cohomology class of N.

Now suppose in addition that

(1.9) N is a complex submanifold of M ,

and

(1.10) the endomorphism θ \ N, induced by the action of X on the

holomorphic tangent bundle TM, along N has precisely

TN for its kernel; i.e., the sequence

(1.11) 0 >TN • TM\N

is exact.
Under these circumstances we call N a nondegenerate component of

zero (X).
One may also state this requirement in the following manner: Clearly θ \ N

induces a homomorphism

(1.12) βυ I N: TM/TN • TM/TN

on the normal bundle of N in M. Nondegeneracy of N therefore implies
precisely that θv \ N be an automorphism. Hence for a nondegenerate N, the
class det (θv \ N) will be an invertible element of H*(M, C).

Now then, concerning these components we have:
Theorem 2. // N is a nondegenerate component of zero (X), then
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(1.13) Res,(Λ0 = {φ(A | Λtydet (0" | N)} . [N] .

Note that when N reduces to a point P g Λf, then A \ P is simply an endo-
morphism of the fiber EP while 6V\P = Θ\P is an endomorphism of Γ P M .
Thus in that case our formula specializes to :

(1.14) Res,(P) =
d e t ( 0 | P ) vr -vm

with {λt} the eigenvalues of A | P, and {^} the eigenvalues of θ | P. Finally if
we set E = ΓM and A = θ, our formula (1.14) therefore goes over into the
residue formula of [1].

In short our result may also be remembered this way: to pass from a point
P to N one must construct the class

in which the xi are formal Chern classes of the eigenbundle of λt in E, and
the yt the corresponding objects for the normal bundle to N, - and integrate
the result over N. Thus eigenvalues λ must be replaced by the sum λ + x
where x is the formal Chern class associated to the eigenbundle of λ. This
theorem I have found more difficult and technical than Theorem 1, and the
bulk of this paper is devoted to its proof. However, the basic fact on which
it hinges is closely related to the following result which might be of inde-
pendent interest:

Theorem 3. Let N be a nondegenerate component of zero (AT) and let
TM be equipped with a Hermitian structure ( , ) which makes the decomposition

TM\N = TN® Imaged |N

orthogonal. Also let S£N) be the normal ε-sphere bundle over JV, and denote
by σ% the integration over the fiber in S£N). Now consider the function
\X\2 = (X, X), and set

7r = - ^ l o g I AT |2, ω = d"π .

Finally write

ϊ = π{\ + tω + tW + .} .
1 — tω

Then

l i m (7e*
1 — tω
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exists as a form on N and is given by

(1.15) lim σi l—Ξ ) = (2*0
-tωl v ' det(l +tk)

where k is the curvature form of the normal bundle to N in the induced
Hermitian structure.

This result should be thought of as a geometric generalization of a well-
known formula in the cohomology of a projective bundle. Indeed let E be a
holomorphic vector bundle over N, and let P(E) be the associated projective
bundle. Then if £ is endowed with a Hermitian structure we may consider
the function f on E which measures the square of the height of point of E
from the zero section, and it is well known that the form:

(1.16) [ω] = J—d"d'logf
2πi

as interpreted on P(£), generates H*{P(E)} over H*(N). Infact l,[ω], ,[ω]n-λ

turn out to be generators of H*(P(E)) as an H*(N) module, and the Chern
classes of E turn out to be characterized by the equation

(1.17) [ω]n + [ωr-%(E) + • + cn(E) = 0 .

Let σ* be the integration over the fiber in this fibering. Then one finds
that

(1.18) σ*[a>r-ι= 1 ,

from which it follows easily that qua power series in t,

(1.19) **{1/(1 - ί [ ω ] ) } = l / c ί ( £ ) .

Now, recalling that the curvature kE of E represents the Chern class by
the formula

ct(E) = det(l + ti/2π kE)

the analogy of (1.15) and (1.19) is apparent. In fact, Theorem 3 can be
thought of as the geometric proof of (1.19). Indeed if X denotes the radial
vector field on E which generates the action of R on E given by multiplication,
then the / of (1.16) may easily be identified with | X j2 = (X, X) computed in
a Hermitian structure on TE which is constructed out of the given structure
on E and the pull back of some structure on M. The conditions (1.9), (1.10)
then become valid and so (1.15) may be used to prove (1.19).

The formula (1.15) is of course more general than (1.19). First of all iV
need not have normal neighborhoods which are holomorphically isomorphic
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to the normal bundle of N, and secondly (1.15) remains meaningful in certain
noncompact situations where (1.19) is not.

2. The proof of Theorem 1 reviewed

Here we will briefly review the constructions of [3] but in the slightly ex-
tended form which is appropriate for the proof of Theorem 1.

First of all recall that φ(E) can be represented by a differential form in the
following manner. Let E be endowed with a Hermitian structure (, ). This
structure then defines a canonical connection V on E which is of type (1, 0)
on holomorphic sections and preserves this inner product. The curvature
K — K(P) of this connection is then a 2-form on M with values in the bundle
of endomorphisms of £, End (£), which is characterized by the equation

d"V . s = K(V) s

for a local holomorphic section of E. Here d" denotes the d/dz-part of the
operator d and is therefore well defined on Γ(E).

Now our much extended φ extends yet again naturally to a function, also
denoted by φ, from forms on W with values in End is, to ordinary forms.
Thus φ(K) is a well determined differential form on M and it is a fundamental
fact that the theory of characteristic classes of the form φ(K) represents the
class (2π/i)desφφ(E).

The basic observation in [1] was that with the aid of a holomorphic vector
field X, one may construct a form η on M-zero X such that on the comple-
ment of zero (X),

(2.1) KX'){φ(K) + d"η] = 0 ,

where X/ denotes the (1,0) component of AT in the complexified tangent space
of M, and i(Y) the inner product with a vector field Y.

There, of course, the underlying bundle E was taken to be TM, the holo-
morphic tangent bundle of M. For a more general E this construction still
makes sense provided X admits a definite action A on E.

Indeed under this assumption we may define an operator L: Γ(E) —• Γ(E)
by the formula:

(2.2) L s = A-s — Fχ s9 sz Γ(E)

where Vx — OX) V is the covariant derivative of s relative to our connection
F in the direction X.

The operator L then turns out to be of degree zero and so may be thought
of as a section of the bundle End (£): L e Γ{End (£)}.

Note that in the zero set of X, L clearly agrees with Λ, so that L should be
thought of as the C°° extension of A \ zero (X).
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Applying the operator d" to (2.2) one obtains the identity

(2.3) d"L = i(X') K

on which our construction hinges. Namely, just as in [3], (2.3) is first seen
to imply the identity:

(2.4) td"φ(L + tK) = i(X')φ(L + tK) .

Next choose a 1-form π of type (1, 0) on M-zero (X) such that there,

(2.5) τt(X) = 1 .

Such a "projector" for X is easy to come by and in terms of it we may
construct the power-series of forms:

(2.6) η = φ(L + tK) . τr/(l - tω) , ω = d"π.

An immediate consequence of (2.4) and (2.5) is then the following
Basic Identity:

(2.7) φ(L + tK) + td"η - i(X')η = 0 .

Theorem 1 now follows from (2.7) by an application of Stake's theorem.
Indeed let E, X, M, Λ and φ be as in Theorem 1 and let N run over the
components of zero X. Also let Ne be ε-neighborhoods for N, oriented
coherently with M, and let dNε denote their boundaries. Assume in addition
that deg φ = m = dimcM.

We then define Resp(N) by the formula:

(2.8) Res,(JV) = - L - lim Γ φ(L + tK) . π/(l - tω) \tm

so that

i/iΠ

where ^<nι-1) is the coefficient of t™-1 in η. Consider now the coefficient of tm

in (2.7).
For dimensional and type reasons, one then obtains the relation

(2.9) φ(K) + drf™-» = 0, on M-zero X.

Hence by Stoke's theorem we obtain the equalities:
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7 M^Tΐ? J
M-Nε M-Nc

(2.10) = _(__L_)mlim Γ
2π I «° J

Σ lim (V"1-" = Σ

which establishes Theorem 1.
One may extend Theorem 1 to the case deg ψ < m provided zero (X) con-

sists of nondegenerate components whose dimensions are less than the degree
of φ, in the following manner:

If degree φ = m — /, I > 0 define

Res,(JV) = ί-^—Y~l Urn Γ^(L + *JK) . ̂ f / ( l - tώ) \tmim .

Then a similar argument can be applied to the identity, obtained by multiply-
ing (2.7) by ωι, to obtain the formula

(2.11)

However, d"φ{K) π ωι~ι = p(K) ωι so that the left hand side of (2.11)
vanishes provided dim Λf < degςp, as it should in accordance with (1.8).

3. The proofs of Theorems 2 and 3

It is clear from the preceding section that the proof of (1.13) hinges on an
explicit evaluation of the limit f9Iίtη as ε —> 0. We start therefore with some
general remarks on the existence of limits of this type.

Consider then the following situation. We let M be an oriented Riemannian
manifold and let N c M be an oriented connected compact submanifold of
M. The square of the distance from N is then a well defined C00 function
near Λf which will be denoted by lN and Ne shall denote the ε-neighborhood
of N:

Ne = {p\ lN(p) < ε2} .

For ε small enough say <ε0, M' = NCo will then be fibered into discs by the
geodesic projection

σ:M'->N

and σ will furthermore induce a fibering
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of the boundary dNc, into oriented spheres of dimension v — 1, where v is
the codimension of N in M.

We will denote the ring of C°° differential forms on a manifold M by A{M),
and indicate the induced homomorphism of a C°° map by an upper asterisk.
Thus

σf:A(N)-+A(dNε)

is a well defined ring homomorphism.
The integration over the fiber in 3Nε —»N will be denoted by σ%. Hence

is an additive homomorphism only, and decreases dimensions by (v — 1).
These two operations are adjoint in the sense that

(3.1) Γw . o*v = [σ%u v , u e A(βNg), v e A(N) ,

and this formula characterizes σ%.
Suppose now that η is a form defined on M r — N, and let : £ : 3NC —> Λί be

the injection. For ε < ε0 we may then construct the form σ% tfη on N> and
consider the limit

(3.2) σ*(?) = Km σi <*? .
e-0

Clearly if this limit exists as a C°° form on N, then

lίm J5? = Jσ*(?) .
5Λ% A'

Under these circumstances we therefore say that

lim I η
Γ

exists locally on N, and refer to σ*(η) as the principal value of η on iV.
We will need a criterion for the existance of principal value for η when η

is of the type

η = μlfn

with μ 6 A(M') and / a C°°-function on M' which is non-negative and assumes
its nondegenerate minimum on N. Thus / has the properties:

(3.3) / > 0 on M /

? f-\0) = N

and / has no critical values other than 0 on M ; ,
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(3.4) On N the Hessian of / has rank = codim N .

Following Morse we will call functions of this type "neighborhood func-
tions" of M. Note that the function lN of course satisfies these conditions and
is in fact the prototype of a neighborhood function for M.

To state our presumably well known criterion, consider the normal Taylor
expansion for μ e A{Mf) at a point P € N. Such an expansion is constructed
as follows.

Let {xv+1, - , xm} be a coordinate system on N centered at P and valid in
a patch U > P on N. Also let y19 . . . , y , be C°° functions on Ur = a'\U)9

so that

(3.5) (y19 . , yv, σ*xv+ι, , σ*xm)

form a coordinate system over U' with respect to which N is described the
conditions yτ = - = yv = 0.

We may now take the Taylor expansion of μ relative to the coordinates
(3.5), and lump the x terms together to obtain an expansion of the form:

(3.6) μ=Σ yadyβ ' σ*μaβ

with μaβζA(N) while ya and dyβ are short for yp y? and dy}ι dyζv,
the oci being non-negative integers, while the & range over the integers 0 and 1.

Under the substitution yi -»λy t the various terms of (3.6) pick up different
powers of λ, and so break up this series into components μ(k) of normal homo-
geneity k

μ = Σ μW •

Thus if we set I α I = Σ <**>

c*) = Σ ydyfiσ*μmβ .

We now say that μ vanishes to order n modN at P if all the /i(A) with k < n
vanish at p. This condition is seen to be independent of the normal coordinates
chosen-indeed, also independent of the projection σ, and if μ vanishes to
order n at all P e N we say simply that μ vanishes to order n mod N. We
also record this fact by the notation:

μ = 0 mod Nn

Note that "vanishing mod 2Vn" is a purely C°° notion, and as remarked above,
independent of the projection σ: Mf —>N.

With these conventions understood one has the following proposition:
Proposition 3.1. Let σ : Mr —»iV, he as above and let μ be a C°° form in

A(M'). If μ vanishes to order 2n relative to N:
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μ = 0 mod N2n ,

then the limit

exists for every neighborhood function f of N. In fact if near F, μ is given by

μ = Σ y°dyβ - °*μ«β

then

(3.7) ff*(Wf*)p = Σ '

where £ ' denotes the sum over those a, β with

I a I + I fi I = I n ,
(3-8) :

ze integral is taken over the ellipsoid lψ(y) = 1 in R\
The proof of this proposition is quite straightforward. Near P let

μ = ^ ^ + ^«»+D + . . .

be a normal series for μ and let

be the normal series of./ and /. That these start with the second order terms
is of course a direct consequence of the conditions (3.3) and (3.4). They
imply furtheremore, that the quadratic forms in y : jφ and l(β] are positive
definite. Hence by an easy extension of a lemma of Morse, we may find nor-
mal coordinates {y€} for N near P so that there

ι*=Σ y) •

In these coordinates, dNe is given by the equation

(3.9) Σ y) = ? •

Hence ff^ > 0 on dNe so that near P, μ/fn is uniformly and arbitrarily well
approximated by the partial sums of a series of the type:

[/ ( 2 )]"
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the normal degree of Cj exceeding 2(n + j). Thus the terms involving Cj are
homogeneous of order > 0.

Now the operation σ% consists of integrating "relative to the y coordinates"
over the sphere (3.9). Hence all these terms disappear as ε—»0, while the
leading term which is homogeneous of degree zero stays constant and has a
finite value given by integrating over the unit sphere say, in the y/s. The
formula (3.7) follows directly.

With this material out of the way let us return to our problem of computing
the ^-weight of a nondegenerate manifold N in the zero set of a holomorphic
vector field X. We will therefore assume the conditions and the terminology
of the preceding sections.

Note first that our form η = φ(L + tK) τr/(l — tω) is the product of the
smooth form <p(L + tK), defined on all of M, and the form π/(l — tω) which
becomes singular on N.

Our plan is therefore to construct a projector π for X such that π/(l — tω)
will satisfy the conditions of our lemma and hence have a principal value on
N. Thereafter it follows directly from the permanence law (3.1) that

(3.10) σ*{η) = c*φ(L + tK) . σ^πlil - tω))

where c* denotes the restriction to N. Hence under this assumption one
obtains the expression

(3.11) Res,(iV) = - J - (c*φ(L + tK) . σ*{τr/(l - tω)} | ί = i / 2 j f .

It should be stressed here that σ*(τr/(l — tω)) need not exist for a general
projector π, although the limit of $wJ){w"l) will of course still exist.

To construct such a good "projector" π for X one proceeds in the following
manner. Recall that the action Θ(X) of X on TM induces a splitting

(3.12) TM\N =TN® image θ \ N

along N. First we choose a Hermitian structure on TM which makes this
decomposition orthogonal, and denote by δ the connection which it induces
on TM. Next we construct the analogue of L, that is, an endomorphism

A : TM -> TM

defined by

A s = Θ(X) - s - δx s se Γ(TM).

One then has the following analogue of Theorem 3.
Theorem 4. Let π denote the form of type (1,0) given by
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(3.13) π = -(δ'X\ AX')I \ AX' |2

where A and δ are as above, and the prime denotes the type (1,0) part of 3
and X. Then π is a projector for X in a suitable neighborhood M of N, and
the form π / (1 — tω), ω = d"π has a principal value on N which is given by

(3.14) σ*(π/(l - tω)) = (-Iπi)'?-1 /dεt(θ* + tk») .

Here θv is the endomorphism induced by Θ(X) on the normal bundle of N in
M, and ku denotes the curvature of the normal bundle to N relative to the
connection induced on it by δ.

Before we give a proof of this theorem we will show that Theorem 2 follows
from it directly. For this purpose we first extend the π given by (3.13) to a
projector for X on all of M-zero X, Thereafter combining (3.10) with (3.14)
we obtain the expression

(3.15) Res9(Λ0 = Jc*φ(L + tK)/άtt (β* + tfr) \tmi/u

N

whose right hand side clearly represents

and so establishes the
Corollary. Theorem 2 is valid.
We come now to the proof of Theorem 4. First it therefore has to be

checked that π is a projector for X in some vicinity of N. Now A extends
the endomorphism θ | JV and hence, because of our nondegeneracy assump-
tion, is nonsingular in the normal direction to N. Thus in a suitable Ne, \ AX |2

will vanish only on N and in fact will be a neighborhood function for N.
Thus π is well defined near but away from N. Clearly in this region

π(X)= -{δx{X%AX')l\AX>\> .

Hence (3.12) and the fact that Θ(X) X' = 0 imply that π(X) = 1. Thus π
is a projector for X.

Next we turn to the principal value of τr/(l — tω). We must therefore
estimate the forms π ωq~ι, q = 1, 2, . To derive an expression for this
form from (3.13) we use the invariance of the inner product under δ. Also
to simplify life we will drop the prime on X and until further notice write
simply X for X'—the type (1,0) component of X. Now then, it follows that

(3 16 π ^ ( < r *
= (-iy(δ'X, AX) {{kX, AX) + {S'X, δ'AX)}*-1 - I AX |"2<

where k denotes the curvature of δ.
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We claim that the numerator (3.16) is congruent to zero mod N2q. Indeed
we clearly have

(3.17) X = 0 modTV\

if we extend our mod TV notation to forms with values in TM in the natural
way, so that such a form vanishes mod Nn if and only if all its components
relative to a local C°° frame for TM vanish modN71.

The derivation property of δ then implies that

δ'X = 0 modN1,

and in fact also that the other terms kX, b'AX appearing in inner products
of the numerator vanish mod TV1. The individual inner products are therefore
0 mod TV2 and our assertion is immediate.

Applying the criterion of Proposition 3.1 it follows that πωq~x has a principal
value along N so that σ*(π/(l — tω)) is well defined and could be computed
according to (3.7). Up to this point the orthogonality of the decomposition
(3.11) was not used. Hence π/(l — tω) always has a principal value on N,
although the value would be quite difficult to determine in general.

However under our assumptions one also has the following

Lemma. Let N have codimension v in M and set

(3.18) Ω = ( - l ) W AX) (δ'X, VAX-1) .

Then under our hypothesis on π,

In particular, σ*(πωq~ι) = 0 for q < v, and qua power series in t,

(3.20) σ*(π/1 - tω) = r ^ f l / f l AX |2 + t(kX, AX)}"] .

To establish (3.19) all the other terms in the binomial expansion of (3.16)
have to be eliminated. For this purpose consider the nature of X near P € TV
in greater detail.

Because TV is a holomorphic variety we can find a coordinate patch U
centered at P9 with holomorphic coordinates {zx, , zm}, m = dimcM such
that

NΠU={qeU\zι(q)= ' " = Zυ(q) = 0}

v being the codimension of TV in M.
Because X is nondegenerate near TV one can furthermore choose these

coordinates in such a manner that on U
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(3.21) X = -

with a, β ranging over the integers 1 to v, while \\Xaβ\\ is a nonsingular ma-
trix of holomorphic functions.

Note that from (3.21) it follows directly that

(3.22)

Θ(X) : ±- s= 0

mod N1 1 < a < v

mod N1 if / > v .

Hence the matrix J| -X"βJ31| represents A along N:

(3.23) A 4-

whence, finally (a = 1, , v) are in the image of θ \ N while the remain-
dZa

ing restrict to elements in the kernel oίθ\N. Hence
dZ

(3.24) ( J _ ?

\dza

= 0 modN 1,

from which it follows that the connection forms Qi5 of δ relative to our base
9

dz,

(3.25)

satisfy the condition

= 0 mod N1

in the same range of indices: l < α < v < / < m . Indeed the special nature
of δ implies that the whole connection matrix Θ is expressed in terms of the

matrix H of inner product ( , ) by the formula θ = d'H H'1, so
\ dZi dZj I

that (3.25) follows from (3.24) and the fact that d' preserves the order of
vanisning modiV.

Now, then, consider the covariant derivative δX. One has

(3.26) δX = - Σ U(zaXaβ) ®4-
I oZβ

with a, β ranging over 1, , v, while / ranges from 1 to m. Applying (3.25)
we see that the components of δX in the tangential direction to N vanish
mod N2 so that one finally obtains the expression
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(3.27) δX= £ρa

«=i dza

where the pa are certain 1-forms, v in number. It follows that modΛf3 both
(δ'X, δ'AX) and (δ'X, AX) are in the ideal generated by these v 1-forms so
that

(δ'X, δ'AX)(δX, δ'AXy-1*8 = O modiV2<^)+1

whenever s > 0. But then no terms which involve (δ'X, δ'AX) to a power
greater than (v — 1) can contribute to σ^(πωq"1).

On the other hand terms involving this form to a smaller power do not
contain sufficiently many "normal differentials" to enter nontrivially into the
integration. Indeed let

k = &(0) + &(1) 4- . . .

be the normal expansion of k relative to real coordinates {yt}9 i = 1, , 2v,
given by the real and imaginary parts of z19 •••,£„. Then k(0) involves no
dy's. Further we clearly have

(kX, AX) = (k°X, AX) mod Nz .

Hence we may replace (kX, AX) by (k°X, AX) in (3.19) and then our as-
sertion is self evident.

This completes the proof of (3.19). To pass from there to (3.20) is then a
purely formal matter.

At this stage then, the proof of Theorem 4 is reduced to the derivation
of the formula:

(3.28) σ*[Ω {(AX9 AX) + t(kX, AX)}-] = ( - 2πi)
vlάtt(θv + tk»),

and this relation now follows directly from our algorithm (3.7) once we make
the following observations.

Consider Cv with coodinates zl9 ••-,-£„. Also write ( , ) for the usual
Hermitian inner product in C% and write v for the differential form

(3.29) v(z) = ( - iγ(dz, z) {(dz, dz)}-1.

Then the following holds:
Lemma. Let a: Cv -+CV be an endomorphism and define a formal power-

series φ(\ + ta) in t by the formula

+ ta)= Γ «*>
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where the integrand is to be first expanded in t and then integrated over the
unit sphere in Cv. Then φ is given by the formula

(3.30) φ(ί +ta)= " i N l

det(l + ta)

Furthermore

(3.31) 0(l) = (-2*rzy.

Proof. Let H+ denote the positive definite self adjoint transformations of
C\ For p € H+ the integral

(3.32) φ(p)= J v(z)

is well defined. Further the rational form v(z) (pz, z)% which is clearly holo-
morphic in C, — 0 is seen to be closed there:

(3.33) d{v(z).(pz,z)-*} = 0.

If we change variables in (3.32) by setting z — nt', where n is an auto-
morphism of C% then φ is given by

φ(p)= r
J, .

Now v(nz') = det(n «*) v where n* is the adjoint to n, as is easily checked.
Hence

(3.34) 0(p) = det(B./!*) Γ

However the surface | nz! \ — 1 is homotopic to the surface | z \ = 1 in Cn — 0,
whence by (3.33), we may replace this surface | nzr j = 1 by the unit sphere in
the integral (3.34). There results the identity

(3.35) φ(p) = det(n n*)φ(npn*)

valid for all p eH+. To proceed further recall that every p eH+ may be writ-
ten in the form

p = m m*

with m nonsingular and even in H+. Setting n = m~x in (3.35) one therefore
obtains the identity
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(3.35) φ(p) =
αet p

valid on H+.
Next let p εH+ and let h be an arbitrary self adjoint transformation. Then

for small real t

(p + th) € H+ .

Hence (3.35) implies that qua power series in t,

On the other hand the power series ψ(p + th) depends on h in an algebraic
manner. Hence the identity (3.35) is valid also when h is replaced by ih;

Now finally let a be an arbitrary transformation. We may then decompose
it in the form

a — a+ + ia~

where a+ and a~ are Hermitian. Hence for small real t we have the numeri-
cal identity

from which the desired formal identity (3.30) follows.
We leave (3.31) to the reader; the formula follows from

v(z) = (-l) '(p - 1)1 Σ dz.dz, dzaza . - dz.dz.
σ

and the usual formula for the volume of S2""1.
Let us return now to the proof of (3.28) and so complete the proof of

Theorem 2.
Using the coordinates za of (3.21) and the criterion (3.1) it is then easy to

see that the value of σ*[Ω{\AX\2 + t{kX, AX)}"] at P is given by the integral,

J ( - iγ(A dz, A2z)(A dzy A2dz
{(A%A2z) + t(kAz,A2z)Y

over the unit sphere in the z's where A and k stand for the normal com-
ponents of A and k at P. Now replacing z by A2z this integral transforms to
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iy(A~ιdz, z)(A~1dz, dzy-1

j- {(z, z) + t(kA-\ z, z)}

and hence is equal to

_ i _ ψ(l + tkΛ-*) = —J-—φil) .

Recalling that A represents θ \ N along N we therefore obtain the desired for-
mula (3.28).

Theorem 3 can clearly be proved in a quite similar manner.
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