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A CUT POINT THEOREM FOR CAT(O) GROUPS

ERIC L. SWENSON

Abstract
Let G be a group acting geometrically on a CAT(O) space X. We show that
if c E ax is a cut point, then there is an infinite torsion subgroup of G
which fixes c. In particular if G is virtually torsion free, if X is a Euclidean
cube complex, or if X is 2-dimensional, then ax has no cut point.
We also show that if G is a group acting geometrically on a CAT(O) space
X, then G has an element of infinite order.

Introduction

The purpose of this note is two-fold. First we will provide a proof of
the cut point theorem for CAT(O) groups. (The notion of the boundary
of a CAT(O) space will be defined in Section 2.)

Main Theorem. Let G be a one-ended group acting properly dis­
continuously and cocompactly by isometries on a CAT(O) space X. If
c E ax is a cut point, then there is an infinite torsion subgroup of G
which fixes c.

Secondly we will give a much shorter, largely self contained proof of
the cut point theorem for word hyperbolic groups. The pieces of the
original proof appear in [6], [7], [8], [9], [17], and [21].

Summary of Proof for both word hyperbolic and CAT(O)

We start with G, a group. In the case where G is word hyperbolic,
let X be the Rips complex for G. In the CAT(O) setting, X will be a
CAT(O) space admitting a geometric G-action. In either case G acts by

Received September 22, 1999.
1991 Mathematics Subject Classification. Primary: 20F32; Secondary: 57N10.

327



328 ERIC L. SWENSON

homeomorphisms on the metric continuum ax. Also G is one-ended if
and only if X is one-ended, if and only if ax is connected. Suppose ax
is connected and has a cut point.

1. Construct from ax an lR-tree T. The action of G on ax gives
rise to G-action on T.

2. We show that the action of G on T is nontrivial, stable, and non­
nesting.

3. Construct from T, an lR-tree S on which G acts by isometries.

4. In the case where S is simplicial, we apply Bass-Serre theory to
obtain a contradiction.

5. In the case where S is not simplicial, we apply the Rips' machine
to this action to obtain a contradiction.

Step (3) is contained in [17]. If the reader is only interested in the word
hyperbolic case he should skip Section 2 entirely and follow the Word
Hyperbolic Case Notes through Sections 3 and 4.

In the· word hyperbolic case, showing that ax has no cut point
implies that ax is locally connected. This is not true in the CAT(O)
setting. The first obvious non-Euclidean example G = F2 X Z is the
counter example. The group G acts on a tree cross lR which has the
suspension of a Cantor set as its boundary Z. Notice that Z has no cut
points, but is locally connected only at the two suspension points.

1. Continua and trees

The tree construction of this section also appears in [23] in the more
general setting of Hausdorff continua, however the key steps in the proof
of the cut point theorem involve analyzing the action of G on the con­
structed tree T and analyzing the structure of T itself. In the interest
of sanity we have included a version of the tree construction for metric
continua.

Definition. A continuum is a compact connected Hausdorff space.
In a continuum Z, c E Z is a cut point if Z = A u B where A and Bare
non-singleton continua and An B = {c}. If in addition, DcA - {c}
and E c B - {c}, we say that c separates D from E.
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Notation. For the remainder of this section, Z will be a metric
continuum, G will be a group (possibly trivial) of homeomorphisms of
Z, and C c Z will be a G-equivariant (GC = C) set of cut points of Z.

Definition. For a, b E Z and c E C, we define c E (a, b) if there
exist non-singleton continua A 3 a and B 3 b with A u B == Z and
A n B == {c}. As one might imagine, (a,b) will be called an interval,
and this relation an interval relation. We define the closed and half-open
intervals in the obvious way. i,e., [a,b] = {a,b} U (a,b), and [a,b) ==
{a} U (a,b) for a =1= b ([a,a) == 0).

Notice that if c E (a, b) then for any subcontinuum Y c Z from a
to b (a, bEY), c E Y.

Definition. For a, b E Z - C we say a is equivalent to b, a rv b, if
(a, b) = 0. For c E C, c is equivalent only to itself. This is clearly an
equivalence relation, so let P be the set of equivalence classes of Z. We
will abuse notation and say that C C P since each element of C is its
own equivalence class.

Observe that for a, b, d E Z, if a rv b then (a, d) = (b, d). We can
therefore translate the interval relation on Z to P, and we also enlarge
it as follows:

Definition. For x, y, z E P, we say Y E (x, z) if either

1. Y E C where y E (a, b) for some a,b E Z with a E x and bE z, or

2. y tt C and if a, b, d E Z with a E x, bEy, and d E z, then
[a, b) n (b,d] == 0.

Since C was chosen to be G-invariant, the action of G on Z gives
an action of G on P which preserves the interval structure (we have not
given P a topology so it doesn't make sense to ask if the action is by
homeomorphisms) .
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The continuum X

The pretree P and the continuum X

The interval structure on P

JV\M.

Figure 1

Example. Consider the I-dimensional continuum Z in Figure 1, a
locally finite tree of circles together with the closure of a topologist's sine
curve. In this case C will be the set of all cut points of Z. An equivalence
class of Z - C will be a circle minus a finite number of points (those in
C) or the limit set of the topologist's sine curve minus the point where it
attaches to the circles. To represent P, take all the points of C together
with a point in the interior of each circle to represent the equivalence
class of that circle minus the points of C, and one point for the limit
set of the sine curve minus the point of C in that limit set. The interval
relation is obtained by "connecting the dots", that is, draw a dotted
line segment from the point representing the equivalence class of each
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circle to the points of tangency (points of C) on that circle, and draw a
dotted line segment from the point representing the equivalence class of
the limit set of the sine curve to the cut point in the limit set of the sine
curve. (See Figure 1.) The interval relation is that which P inherits as
a subset of tree.

The following two Lemmas show that the interval relation on P
satisfies the second and third axioms of a pretree. The first axiom
(namely that [x, y] = [y, x]) is satisfied by the definition in our case.
The fact that the interval relation on Z satisfies these properties is due
to Bowditch [6].

Lemma 1. For any x, y, z E P, [x, z] C [x, y] U [y, z].

Proof. Let U E (x, z). It suffices to show U E [x, y] U [y, z].
First consider the case where u E C. By definition, there exist A, B

non-singleton subcontinua of Z with An B = {u}, Au B = Z, x c A
and z c B. If y = u then we are done, otherwise, y is contained in A
or in B. With no loss of generality yeA. It follows that u E (y, z).

Next consider the case where u f/. C. Suppose that u fJ. [x, y]. Choose
representatives a, b, d, e E Z of u, x, y, z respectively. Since u fJ. [x, y], it
follows that there exists c E [b, a) n (a, d] . Since the case where x = y
is trivial, we may assume that c E C. It can be shown that there
are nonsingleton subcontinua A, B c Z such that a E A, A n B = {c},
AuB = Z, and b, dEB. Since u E (x, z), it follows that [b, a)U(a, e] = 0,
and so c ~ (a,e] implying that e E A - {c}.

Suppose in addition that u f/. [y, z). Arguing exactly as before, we
have c' E C and nonsingleton subcontinua A', B' c Z with A' n B' =
{e'}, A' U B' = Z, a,b E A' - {c'}, and e,d E B' . Since a,b E A'it
follows that c E A' (otherwise c couldn't separate a from b). However
B ' is a continuum from e to d missing c which is impossible since e
separates e from d. Thus if u f/. (x, y] then u E [y, z]. q.e.d.

Lemma 2. For any x, YEP, if z E (x, y) then x f/. (y, z).

Proof. Given z E (x, y) it follows that x, y, z are distinct. Take
representatives a, b, d E Z of x, y, z respectively.

If dEC, then we have non-singleton subcontinua A, B c Z with
A n B = {d}, A u B = Z and a E A and b E B. Since a f/. B, it follows
that if a E C, then a fJ. (b, d) implying that x f/. (y, z). Thus we are left
with the case where x f/. C, but since z E [y, x) n (x, z], by definition we
see that x fJ. (y, z).
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If a E C then we can argue as in the previous paragraph, and so we
are left with the case where a, d f/. C. Since a rf d, there is c E C and
non-singleton subcontinua A, B c Z with A u B = {c}, A u B = Z,
a E A and dEB. Since z E (x, y), it follows that c f/. (x, z) n (z, y) and
so c f/. (z, y) imply that b E B. Thus c E (b, a) n (a, d) and by definition
x f/. (y, z). q.e.d.

The following two results are pretree results done first in [6]. We
provide proofs for the sake of completeness.

Corollary. If x, y, z E P with y E [x, z], then [x, y] C [x, z].

Proof. We may assume that x =1= y =1= z. Suppose w E [x, y] - [x, z].
It follows w =1= x, y, z. By Lemma 1, y E (x, w) U (w, z) and w E

(x, z) U (y, z) the latter of which implies that w E (y, z). However this in
turn implies by Lemma 2 that y f/. (w, z) and so by the first containment,
y E (x, w ). This however contradicts w E (x, y) by Lemma 2 and the
proof is complete. q.e.d.

Lemma 3. Let [x, y] be an interval of P. The interval structure
induces two linear orderings on [x, y], one being the opposite of the other,
with the property that if < is one of the orderings, then for any z, w E

[x,y] with z < w, (z,w) = {u E [x,y]: z < U < w}. In other words
the interval structure defined by one of the orderings is the same as our
original interval structure.

Proof. For z,w E [x,y], define z < w if z E [x,w). We will show
that this is a linear order and that the interval structure defined by
it is the same as our original interval structure. The ordering we get
by replacing x with y in the definition, is the opposite of this ordering
because they define the same interval structure.

Dsing Lemma 2 and the fact that [x, x) = 0, we see that z f. z for
any z E [x, y].

We must next show that for any distinct z, w E [x, y] either z < w
or w < z. Suppose then that w f/. [x, z). By Lemma 1, w E (z, y]. By
Lemma 2, z f/. (w,y], and so by Lemma 1, z E [x,w). Hence z < w as
required.

Finally we must show transitivity. Let z, u, w E [x, y] with z < u
and u < w. In the language of intervals, z E [x,u) and u E [x,w). By
the Corollary to Lemma 2, z E [x,w) and so z < w.

Now that we have shown that < is a linear ordering on [x, y] we
will show that for w, z E [x, y] with z < w, U E (z, w) if and only if
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z < U < w.
Let U E (Z, W ) . It follows from the Corollary to Lemma 2 that

U E [x,w), and so u < w. By Lemma 2, z ¢ (u,w) , however z < w, so
by Lemma 1, z E [x, u). Thus z < U < w.

Let U E [x, y] with z < u and u < w (in other words z E [x, u) and
u E [x, w)). By Lemma 1, u E [x, z) U (z, w). By Lemma 2, u f/. [x, z),
and so u E (z, w) as required. q.e.d.

Definition. We say distinct points x, yEP are adjacent if (x, y) ==
0.

Lemma 4. If x, yEP are adjacent, then exactly one of them is
in C, and the other is a nonsingleton equivalence class whose closure
contains the first.

Proof. If neither x nor y is in G, then an element c of G must
separate them (otherwise x == y), and so c E (x, y) and x and yare not
adjacent.

Suppose that both x and yare in G. For each c E G - {x,y}, x and
y will be contained in a single (quasi)component , De, of X - {c}. Let
Y == n Dc· Thus Y is a subcontinuum from x to y and no point

cEC-{x,y}

of C is a cut point of Y. Let G' == C n Y. It suffices to show that C' is
countable, for Y is uncountable, and so Y - C' will be an equivalence
class in (x, y) contradicting the adjacency of x and y.

For each c E C', choose non-singleton subcontinua A c , Be C Z with
Ae U Be == Z, Ae n Be = {c} and x E Ac. Notice that for any other
dEC', Bd CAe, and so {(Be - {c}) : c E G'} is a collection of disjoint
nonempty open sets of Z, and therefore countable, since metric spaces
are Lindeloef. Thus the set C' is countable and the proof is complete.

Hence one of them, say x E C and the other, yEP - C. Repeating
the above construction, we obtain a continua Y so that Y - C c y.

Since the points C' = C n Yare countable, every neighborhood of x
contains points of Y - C. q.e.d.

Definition. We say A C P is colinear if A is contained in some
interval.

Lemma 5. Any set A of three points of P, two of which are adja­
cent, is colinear. Also a union of two adjacent pairs is colinear.

The proof is left to the reader.
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Theorem 6. A nested union of intervals of P is an interval of P.

Proof. We may assume that all the intervals are closed. We first
reduce to the case where each of the intervals shares an endpoint y. If
they don't, then pick y, an element of the interior of one of them, and
restrict to the intervals which contain y. Thus we can write each such
interval [x, z] = [x, y] U [y, z], and we deal with the two resulting nested
unions separately.

Hence it suffices to show that if we have {[y, x a ] : 0: E I} where I
is linearly ordered and [y, xa ] C [y, x,B] for 0: ~ f3, then U[y, xa] is an
interval of P. By taking a subnet, we may assume that all the X a are
distinct. If I has a last point the result is trivial, and otherwise we may
assume that each Xa E C (if not we replace Xa with an element of C
in (xa,x,B] where f3 > a). Since Z is compact, the net (or sequence if
you prefer) {xa } has a convergent subnet. Since the union is nested, it
will not change if we switch to a subnet, and so we may assume that
Xa --+ x E Z. We will abuse notation and use x both for the element
of Z and the corresponding equivalence class of P. Since X a separates
y from {x,Blf3 > a}, it follows that for 'Y < a, x"Y separates y from the
closure {x,Blf3 > a} 3 x. Thus x"Y E (y,x) for all 'Y E I. Put the linear
order on [y, xl with y < x.

Case I. There is no last point of [y, x).

We will show that U[y, xa ] = [y, x). Notice in Z, Xa separates y from
x,B for all f3 > a. Thus since Xa --+ x, it follows that Xa E (y, x) for all
a, and so by the Corollary to Lemma 2 U [y, xa ] C [y, x) .

Now let z E [y, x). Since there is no last point of [y, x), there is
c E C such that c E (z, x). Since c cannot separate {xa } from x, it
follows that c E [y, x a ) for 0: »0. This implies z E [y, x a ).

Case II. The last point of [y, x) is z.

Clearly z ¢ C (otherwise z would separate {xa } from x). Similarly
there can be no last point of [y, z), for it would be in C. Arguing as in
Case I, U[y, xa ] = [y, z). q.e.d.

Corollary. Any internal of P has the supremuum property with
respect to either of the linear orderings derived from the interval struc­
ture.
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Proof. Let [x, y] be the interval in question with the linear order
x ::; y, and let A c [x,y]. Since A is linearly ordered, {[x,a] : a E A}
is a set of nested intervals, and so by Theorem 6 its union will be an
interval with one endpoint x, and the other endpoint sup A. q.e.d.

Definition. For each pair x, yEP with x adjacent to y, let lRx,y
be a copy of the real line. We will "sew in" lRx,y between x and y so
that one of x, y (say x) is identified with -00 and the other, y, with 00.

The one identified with -00 will the first of the pair written, and so in
IRz,w, z is identified with -00 and w with 00. Define

u
x,yadjacent

lRx,y

We now extend the interval relation to T in the obvious way. ~amely:

1. For x, y, z E P, then z E (x, y) if this was so in P.

2. For x, YEP, then lRw,z C (x, y) if w, z E [x, y].

3. For z E lRx,y, then (x,z) = (-oo,z) C lRx,y and (z,y) = (z,oo).

4. For Z E lRx,y and w E P, by Lemma 5 {x,y,w} is colinear, and so
we may assume x E (y, w) in which case (z, w) = (z, x) U [x, w).

5. For z E lRx,y and v E lRu,w, by Lemma 5 {x,y,u,w} is colinear
and so we may assume y, u E (x, w) in which case (z, v) = (z, y) U

[y,u] U (u,v).

It is easily shown that T satisfies Lemmas 1, 2, 3, Theorem 6,
and also the corresponding Corollaries. Notice also that there are
no adjacent points in T. Also we can extend the action of G on P to
an action of G on T which preserves the interval relation on T.

Definition. For s E T and E c T finite, we define

U(s,E) = {t E TI [s,t] nE = 0}.

Remark. Notice that if t E U(s, E), then by Lemma 1, U(t, E) =
U(s, E). Observe that by definition, U(s, E) n U(s, F) = U(s, E U F).

Definition. A big arc is the homeomorphic image of a connected
nonsingleton linearly ordered space. A separable big arc is an arc. A
big tree is a uniquely big-arcwise connected locally connected Hausdorff
topological space. If the big arcs are all arcs, we say the space is a real
tree. A metrizable real tree is called an lR-tree.
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Theorem 7. The collection {U( s, E)} is a basis for a topology on
T such that G acts by homeomorphism on T, and so that T is a regular
big tree. If every interval of P contains only countable many adjacent
pairs, then T is a real tree.

Proof. First we show that the U(s, E) form a basis. Clearly they
cover, for example U(s,0) = T. Let r E U(s, E) n U(t, F). By the
remark, U(s, E) n U(t, F) = U(r, E) n U(r, F) = U(r, E U F). Thus the
U(s, E) form a basis for a topology on T. Furthermore since the topol­
ogy was defined in terms of the interval structure, which G preserves, it
follows that G acts by homeomorphisms on T. The local connectivity
will follow from the fact that the U(s, E) are big-arcwise connected.

To see that the T is Hausdorff, notice that for any s, t E T, (s, t) f=
0. Thus let F c (s, t) be nonempty and finite. We will show that
U(s, F) n U(t, F) = 0. Suppose that r E U(s, F) n U(t, F). Then
F n [r, s] = 0 = F n [r, t]. However by Lemma 1, [s, t] C [r, s] U [r, t).
This would mean F n [s, t] = 0 contradicting the choice of F. Thus T
is Hausdorff.

For regularity consider U(S,{Xl ... x n }) where s =I Xi. By the Re­
mark, such sets form a basis at the point s. Since no points of Tare
adjacent, we may choose Yi E (s, Xi). By the Corollary to Lemma 2,
U(s, {YI, ... Yn}) U {YI, ... Yn} C U(s, {Xl, ... xn}). The closure

U(s, {YI, ... Yn}) = U(s, {Yl, .. · Yn}) U {YI, ... Yn}

and so the topology is regular.
Consider a closed interval [x, y] (x =I y) of T. Use Lemma 3 to

put a linear order on [x, y]. The subspace topology on [x, y] will be
exactly the order topology on [x, y]. By the Corollary to Theorem 6,
[x, y] has the supremuum property, and since no two points of [x, y) are
adjacent, it follows by standard results in linear topology that [x, y] is
connected and therefore a big arc. For any z E (x, y), as in the proof
of Hausdorff, U(x,{z}) n U(y, {z}) = 0. Also {U(t,{z})lt =I z} is a
collection of nonempty disjoint open sets whose union is T - {z}. Thus
any connected set of T which contains both x and Y will also contain
[x, y], and so any big arc, from x to Y will contain [x, y]. However
a big arc is an irreducible (maybe not metric) continuum between its
endpoints, and therefore 'Y contains no sub-big arc from [x, y]. Thus T
is uniquely big arcwise connected, and T is a big tree.

Now suppose that every interval of P contains only countably many
adjacent pairs. We must show that each closed interval [s, t] of T is
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an arc. By standard results in linear topology, we need only find a
countable dense set in [s, t] (since [s, t] is connected). We can easily
reduce to the case where s, t E P. Since Z is a compact metric space,
it follows that there exists a countable dense subset D C Z. Let D c
P c T be the set of equivalence classes of elements of D. For any point
x E T, since T is uniquely big arcwise connected, there is a unique
point 1r(x) E [s, t] such that [x,7r(x)] n [s, t] = {7r(x)}. This defines a
continuous function 7r : T --t [s, t).

Define
Q = 1r(D) U u ([b,y,

x,yE[s,t],
x, y adjacent in P

where Qx,y is the set of rationals in lRx,y. Since there are only countably
many adjacent pairs in [s, t] n P, Q will be countable. We now will show
that Q is dense in [s,t]. Let u,v E [s,t] with u E [s,v). If (u,v) rt. P,
then by definition of T, (u, v) n lRx,y =1= 0 for some adjacent pair x, y of
[8, t] n P, and so (u, v) n Qx,y =1= 0. Thus we may assume (u, v) C P.
Since there are no adjacent points in T, (u, v) =1= 0 and in fact (u, v)
is infinite since [u, v] is connected. Every two nonsingleton equivalence
class of Z will be separated by at least one element of C, and so it
follows that there are distinct c, c' E (u, v) n C. Let p E (e, e'). With
no loss of generality e E (u,p) C (s,p) and e' E (p,v) C (p,t). This
implies that there are non-singleton subcontinua A, B, A', B' c Z so
that AUB = Z = A'UB', AnB = {e}, A'nB' = {e'}, s,u C A,
t, v c A', and pcB n B'. The set U = (B - {e}) n (B' - {e'}) is open
and non-empty (p E U), and so there exists d E Un (D). Let d E D be
the corresponding equivalence class.

It will suffice to show that 7r(d) E [c, c'] . Since dEB - {e}, using
definition we have e E (s, d), and similarly e' E (d, t). Thus by the
Corollary to Lemma 2, [s, e) C [s, d) and [e', t) C [d, t]. From definition it
follows that 1r(d) ~ [s, e) and 7r(d) ~ (c', t], so that 7r(d) E [e, e'] c (u, v)
as required. Therefore [s, t] is separable, and hence an arc. q.e.d.

Corollary. If C is countable, then T is a real tree.

Proof. Let I be an interval of P. By Lemma 4 each adjacent pair
of I will have exactly one point in C. For any e E C n I, there are at
most two points of I adjacent to c. Thus there is a function from the
adjacent pairs of I to C which is at most 2 to 1, and set of adjacent
pairs of I is countable. q.e.d.
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Conjecture. Every internal of P has only countable many adjacent
pairs and so T is a real tree.

Definition. The group G is called a convergence group if for each
sequence of distinct elements of G, there exists a subsequence (9i) and
points N, P E Z such that for any neighborhood U of P and any com­
pact K ~ N, 9i(K) C U for all i »0.

We will not discuss the properties of convergence groups here, but
will refer one to [25].

Definition. A point of a big tree is terminal if it is not contained
in the interior of any big arc.

Notation. Let T = T - {terminal points of T}. Since the set of
terminal points of T is invariant under homeomorphism, T is invariant
under the action of G.

Lemma 7. Let H be a convergence group acting on the metric
continuum Z with AH = {a, b}. If a and b are separated by an element
ofG, then the corresponding equivalence classes [a], [b] C T are terminal
in T, and no point of T is fixed by H. If on the other hand a and bare
not separated by any element of G, then I([a], [b]) n PI ~ 1.

Proof. First consider the case when a and b are separated by some
c E G. Thus we have a E A - {c}, b E B - {c} where A and B
are nonsingleton subcontinua with A u B = Z and A n B = {c}. By
[25, Lemmas 2Q and 21] we may choose a h E H non-torsion so that
hn(B) --t b as n --t 00 and hn(A) --t a as n --t -00. Replacing h with a
power, we may assume that h(B) ~ Band h-1(A) ~ A.

We now show that [b] is terminal in P and therefore in T; the ar­
gument for [a] will be identical. Suppose not, then using Lemmas 1
and 2 there is d E Z such that [b] E ([a], [d)). Since h fixes a and b, it
follows that hn(c) E ([a], [b]) and so by Lemma 3 applied to ([a], [d]),
hn(c) fJ: ([b], [d]) for all n. This implies that d E hn(B) for all n, but
nhn(B) = {b}. Thus b = d contradicting [b] E ([a], [d]). This completes
the proof that b is terminal in T.

To see that only [a] and [b] are fixed by the action of H on T, notice
that for any x E P - {[a], [b]} either x C A or x C B. Without loss of
generality x c B. Since the nested intersection nhn(B) = {b}, it follows
that hn(x) --t [b] as n --t 00. Thus h does not fix x, and no element of
T is fixed by H.
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In the case where no element of C separates a from b, it follows that
([a], [b]) n P c (P - C). Furthermore no two points of ([a], [b]) n Pare
separated by an element of C, and so ([a], [b]) n P is at most a single
point of P - C. q.e.d.

2. CAT(O)

Recall that a CAT(O) space is a proper geodesic metric space with
the property that every geodesic triangle is at least as thin as the corre­
sponding Euclidean triangle (see [10]). For the remainder of this section,
X will be a CAT(O) space and G will be a group which acts geomet­
rically on X, that is G acts properly discontinuously, cocompactly by
isometries on X. We review some properties of the action of G on X
proven in [10]. It is assumed that the reader has a copy of [10] at hand.
(Geodesic) arcs, rays, and lines are isometrically embedded connected
subsets of JR. Unless otherwise stated, all rays will be parameterized by
[0,00).

Every element of G is either hyperbolic, or elliptic. The elliptic
elements fix a point of X, and are therefore torsion. The hyperbolic
elements act by translation on at least one line of X called an axis of
the hyperbolic element, and all axes of a given hyperbolic element will
be parallel.

The visual boundary, ax, is the set of equivalence classes of rays,
where rays are equivalent if they fellow travel. Given a ray R and a
point x E X there is a ray S emanating from x with R ~ S. Fixing
a base point 0 E X, we define a topology on X = X u ax by taking
the basic open sets of x E X to be the open metric balls about x. For
y E aX and R a ray emanating from 0 representing y, we construct
basic open sets U(R, n, f) where R is a ray from 0 and n, € > o. We
say z E U(R, n, f) if the geodesic S parameterized by arc length and by
[0, d(O, z)] from 0 to z has the property that d(R(n), S(n)) < E. These
sets form a basis for a topology under which X and ax are compact
metrizable.

Definition. For 9 E G we define r(g) = mind(x,g(x)). This
zEX

minimum is realized and the set Min(g) = {x E Xld(x,g(x)) = r(g)}
is nonempty.

We now need an easy result about geometric group actions, which
nonetheless appeared in the authors thesis in a slightly different form.
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The Zipper Lemma [22]. Let H act geometrically on the proper
geodesic metric space Y. For every f > 0 there is Nf. with the property
that for any g, h E G and any x, y E Y, if I{gn(x)} n Nbh( {hn(y)}, f)1 >
Nf. then gn = hm for some n, m =I O.

Corollary. If 9 EGis a hyperbolic element with axis L, then any
element of G which fixes one endpoint of L fixes both endpoints of L.

Proof. If h is an element which fixes one endpoint of L, then for some
f, there are subrays of Land h(L) which fellow travel(f). The lines L
and h(L) are axes of 9 and hgh-1 respectively, and we may apply the
Zipper Lemma. q.e.d.

Definition. If 9 E G hyperbolic, then let L be an axis for g. We
define gOO E ax to be the endpoint of L in the direction of g-translation,
and g-oo to be the other endpoint of L. Since all axes of 9 are parallel,
this is independent of the choice of L.

Theorem 8. If for some hyperbolic element 9 E G, h(goo) = gOO
for some h E G, then for some n =I 0, gn and h commute. Thus
Stab(goo) = U Zgn.

n>O

Proof. By the Corollary to the Zipper Lemma, there is an axis L of
9 which is parallel to an axis h(L) of hgh-1. Let x ELand Y E h(L).
We see that for some f > 0, {hgnh-1(y)} c h(L) C Nbh({gn(x)},f).
Thus by the Zipper Lemma hgmh-1 = gn for some n, m =I 0. Since the
translation length T(g) =I 0, n = ±m and since h fixes both endpoints
of L, it follows that n = m. q.e.d.

The following is due to Bridson and Haeflinger [10].

Theorem 9. If 9 EGis hyperbolic, then Min(g) = Y x IR where
{y} x lR is an axis of 9 for each y E Y.

Definition. For A eX, define AA to be the set of limit points of
A in ax. For S C G we define AS = A(Sx) for some x E X. Observe
that the definition of AS is independent of the choice of the point x.

The following can be viewed as a corollary to Theorem 9, but we
provide an independent proof.

Lemma 10. If 9 EGis hyperbolic then Fix(g), the fixed point set
of 9 acting on ax, is either equal to {g±oo} or Fix(g) is path connected.
Moreover for each x E Fix(g), and any axis L of g, there is a half-fiat
P bounded by L with x a limit point of P.
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Proof. Let L be an axis for g, and suppose that Fix(g) =F {g±oo}.
Let PEL, and R be a ray representing a point of Fix(g) - {g±OO} which
emanates from p. It follows that g(R) ~ R.

Let P be the convex hull of Ugn(R). We first show that P is a
Euclidean half-plane. We then show that every point of AP is in Fix(g).
Since the points of ax represented by rays in a Euclidean half-plane
form an arc, it follows every point of point of Fix(g) lies on an arc of
Fix(g) joining g-OO to goo.

The function f (t) = d(g(R(t)), R(t)) is a convex function from [0, 00)
-t [0,00). Furthermore, since (R(O),g(R(O» E L C Min(g), it follows
that f(O) is the minimum for I. Since R '" g(R), I is bounded and it
follows that I is constant. For each t E [0,00) consider the piecewise
geodesic

L t = U[gn(R(t)),gn+I(R(t))].
nEN

If
L gn(R(t»(gn-l(R(t)), gn+l(R(t»)) < 1r,

then there would be a point x E [gn-l(R(t),gn(R(t))] with the property
that d(x, g(x)) < d(gn-l(R(t)), gn(R(t))) = T(g) which is absurd. Thus
by [10] L t is a geodesic line, and since 9 acts on it by translation, it
follows that L t is an axis. By the Flat Strip Theorem of [10], the convex
hull of L u Lt is a flat strip (isometric to lR x [0, b] C ]E2). Letting t ~ 00

we deduce that P is isometric to a half-plane of ]E2. Notice since P is
a union of axes of g, it follows that g(P) = P. For any ray PCP,
g(p) ~ p, and thus ap C Fix(g). This completes the proof.

q.e.d.

Corollary. For any hyperbolic element 9 E G, Fix(g) = AMin(g)
is a suspension.

Proof. By Theorem 9, any point of AMin(g) lies in the limit set
of a half-flat which is the union of axis of g. Thus AMin(g) C Fix(g).
The other inclusion follows from Lemma 10. Since Min(g) is a product,
IR x Y, its limit set is a suspension (perhaps of the empty set). q.e.d.

We now give proofs of two very elementary results. The first is
apparently new, and the second has not be explicitly stated before but
likely follows from work of Geoghegan [14].

Theorem 11. JIG acts geometrically on the CAT(O) space X, then
G has an element of infinite order.
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Proof. Choose a geodesic ray ReX. Using cocompactness we
find a sequence (9i) c G and an increasing sequence ri E R having the
following properties:

• ri ~ R(oo).

• 9i (ri) ~ x EX.

• The rays 9i(R) converge uniformly on compact subsets to a line
L preserving the orientation.

For any M > 0 we can find j > i so that d(9i(ri),Yj(rj)) < k and
9j(R) n B(9i(ri), M) c Nbh (9i(R), k).

Let h = 9;19j . Now consider the angle 8 = Lh(ri) (ri' h2 (ri)). Con­
struct the picture of R, h(R) and h2 (R), and notice that 8 ~ 1r as
M ~ 00. If h were torsion, the polygon with vertices hn(ri) would be
a regular polygon with interior angles all equal to 8. By [10, II 2.12(1)]
8 would be no larger that the interior angle of the corresponding Eu­
clidean polygon. Then the order of h is at least 1r2~(J. There are only
a finite number of conjugacy classes of torsion elements [10], so for M
sufficiently large h is hyperbolic. q.e.d.

The following proof also works in the d-hyperbolic setting if we
choose f > 2d, and so gives an easier proof of a result in [24].

Theorem 12. If X is a CAT(O) space which admits a cocompact
action by isometries, then ax is finite dimensional.

Proof. We first construct a sequence of covers of ax with mesh
going to zero. Let 0 EX. Choose any f > o. Let SN be the set of
points on the sphere of radius N about 0, through which rays from 0
pass. That is

SN = {R(N) : R is a geodesic ray emanating from O}.

Since X is proper and SN is closed and bounded, it follows that SN is
compact. Let EN be a maximal f-thin subset of SN. In other words EN
is maximal with the property that if x, y E EN, then d(x, y) ~ f. The
compactness of SN forces EN to be finite. Let gN = {U(R, N, f) : R is
a ray from 0 with R(N) E EN}. Thus the elements of gN are centered
on rays going through the points of EN.

Clearly gN is an open covering of ax, for if S is any ray from 0
then, by the maximality of EN, d(S(N), EN) < f. For fixed m, jj > 0,
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if N» m, then U(S,N,€) C U(S,m,tt) for any ray S. It follows that
mesh QN ---t O.

The dimension of the nerve of gN, dim QN, is by definition one less
than the maximal number of elements of QN meeting in a single point.
It suffices to show that {dim QN : N E N} is bounded.

Suppose to the contrary that for each m there exists Nm with
dim QNm ~ m. Thus for each m there exist distinct points Xo ,xl ... X: E

ENm with d(xi,xj) < 2f. Since X admits a cocompact action, there
is a compact K C X such that any point of X can be moved into K by
an isometry. For each m choose an isometry 9m so that gm (xo) E K.
Passing to a subsequence we may assume that 9m(Xo) --+ XQ where XQ is
some point of K. Passing to a smaller subsequence, we may assume that
9m(x1) ---t Xl. Continuing we get a sequence of distinct points (Xi) such
that f ~ d(Xi,Xj) ~ 2f when i =F j. It follows that (Xi) is a bounded
sequence with no convergent subsequence. This is a contradiction as X
is a proper metric space. q.e.d.

The following is due to Ruane [20]. It was stated only for hyperbolic
elements but the proof doesn't use that hypothesis.

Theorem 13. For any 9 E G, Zg acts geometrically on Min(g).

The proof of the following is exactly the same as the proof that a
normal subgroup of the fundamental group corresponds to a regular
covering space.

Lemma 14. If a group G acts geometrically on X and N <l G,
then G / N acts geometrically on X / N .

Definition. For A eX, a closed convex set, and X E X we define
7fA (x) to be the unique point of A closest to x.

Definition. A subgroup H < G is called convex if there is a
nonempty closed convex A c X with H A = A, and so H acts co­
compactly on the CAT(O) space A. Notice that every finite subgroup is
convex.

The following is a special case of [10, II 2.5 (1)].

Lemma 15. If A c X is closed and convex, then so is Nbh(A, f) =
{x EX: d(x, A) ~ f} for any f > O.

Theorem 16. If H, K < G are convex, then

1. HnK is convex,
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2. AHnAK = A(Hn K).

Proof. We first show (1). Let A and B be nonempty closed convex
subsets of X on which Hand K respectively act cocompactly. Fix some
f > 0 with Df. = Nbh(A, f) n Nbh(B, f) =I 0. The intersection of closed
convex sets is a closed and convex set, and so Df. is closed and convex.
Any element 9 E H n K leaves A and B invariant, and so leaves D t

invariant.
We must now show that H n K acts cocompactly on D t . Let CA

and CB be compact sets whose translates by Hand K respectively
cover A and B respectively. Let f : X ~ X/(H n K) be the projection
map. Suppose f(Df.) is not compact. Then there is a sequence of points
di E Df. with f(di) having no convergent subsequence. Let ai = 1rA(di )
and bi = 1rB(di ).

Choose a E A and b E B with d(a, b) ~ 2f. For some J-L > 0, every
point of A has an H-translate inside the ball B(a, J-L), and similarly every
point of B has a K-translate inside the ball B(b, J-L). For each i choose
hi E Hand ki E K with hi(ai) E B(a,J-L) and ki(bi ) E B(b,J-L). Thus
letting E = Nbh(B(b, p,) U B(a, p,), 2f) we see that ki l (E) n hi l (E) -I
0, so hikil(E) n E =I 0. Since E is compact and G acts properly
discontinuously, hik:;l = hjkjl for infinitely many i,j, and so taking a

subsequence we may assume that hjlhi = kjl ki for all i, j. In particular

hj1hl E H n K for all j. Notice that d(dj ,hj1hl (h1
1(a))) < J-L + f. It

follows that in X/(HnK), d(f(dj),f(h11(a))) ~ J-L+f for j. Thus the
sequence f(dj) is bounded and must have a convergent subsequence.
We have a contradiction which completes the proof of (1).

Now for (2). Clearly A(H n K) c AH n AK. Notice that AH = AA
and AK = AB. Let Rand S be rays of A and B respectively with
R rv S. There is an 8 with R c Nbh(S, 8) and S C Nbh(R, 8). For
f > 8, R c Df. and so the point at infinity represented by R will be in
ADf. = A(H n K). Thus AH n AK c A(H n K). q.e.d.

Theorem 17. If H < G is an infinite torsion subgroup which fixes
a point of b E ax, then there is a CAT(O) space Y and a group K
acting geometrically on Y with dim ay < dim ax where K contains an
infinite torsion subgroup.

Proof. By Theorem 12, dimaX < 00. Since there are only finitely
many conjugacy classes of finite subgroups, it follows that there are
elements hI, ... hn E H which generate an infinite subgroup and we
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may assume that H = (hI, ... hn ). Let

where Zhi is the centralizer of hi. By Theorem 13, Zhi acts geometrically
on Min(hi ). Thus b E Fix(hi ) = AZhi for each 1 ~ i ~ n. By Theorem
16, b E AZ and Z is a convex subgroup. In particular Z is infinite. By
Theorem 11, Z has a hyperbolic element g. By [20] Zg acts geometrically
on the Min(g) = Y x JR. Since < 9 ><l Zg it follows from Lemma 14
that Zg/ < 9 > acts geometrically on Y. The torsion subgroup H
commutes with non-torsion element g, and so the quotient map embeds
H into Zg/ < 9 >. The result follows. q.e.d.

Corollary. If H < G then IAHI =I 1.

Proof. If H contains a hyperbolic element, then AH has at least two
points, namely the limit points of the hyperbolic element. Thus we may
assume that H is torsion. If {b} = AH, then H fixes b, and we are in the
setting of the theorem. Following the proof of the theorem we see that
H stabilizes the convex subset Y and so AH cAY. Since dimay <
dimaX, by induction we may reduce to the case where dimaX = o.
However in that case G is virtually free and has no infinite torsion
subgroups. q.e.d.

Definition. For a,b E ax, we define L(a, b) = sup Lx(a,b), where
xEX

Lx(a, b) is the angle between the two rays emanating from x, which
represent a and b. This forms a metric on ax which gives a topology
at least as fine as the visual topology on ax. We define Td to be the
path metric corresponding to the angle metric on ax. The set ax with
the metric Td will be called the Tits boundary TX which is a CAT(I)
space, but need not be connected and can be a discrete.

One of the main differences between negative and positive curvatures
is in the action on the boundary. In negative curvature, if a sequence
(gn) C G with gn(x) -t a E ax for some (any) x E X, then all but
one point of the boundary ax will also be sent to a by (gn). This
is equivalent to saying that G acts as a convergence group on X with
limit set ax. This is not the case in even the simplest example of non­
positive curvature. In the example of 712 acting on the Euclidean plane,
lE2 , the action of 712 fixes the boundary alE2 = 81 . If we take two points
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in d, e E alE2 = 8 1 with L(d, e) = 8, then we can choose a sequence
of gn E Z2 so that gn(O) --t a, where a is the point of alE2 at greatest
distance from {d,e}, that is L(d,a) = L(e,a) = 1r -~. In the next
lemma we see that this is the worst that can happen in any CAT(O)
space.

Lemma 18. Let X be a CAT(O) space with G acting by isometries
on X, and suppose that d,e E ax with L(d,e) = 8. If there is (gn) a
sequence of group elements with gn(x) --t a E ax for some (any) x EX,
gn(d) --t b, and gn(e) --t b, then L(a, b) + L(a, b) ~ 21r - 8.

Proof. Suppose not. Then

L(b, a) + L(b, a) > 21r - 8 + 2e

for some e > 0. Using a ray representing a, and [10, II 9.8 (2)] we can
find a point y E X with

Ly(b, a) + Ly(b, a) > 21r - 8 + 2e.

By definition, we can find x E X with Lx(d, e) > 8 - e. For any n,
consider the two angles of Lgn(x)(y,gn(d)) and Lgn(x)(y,gn(e)). By the
triangle inequality for angles [10, I 1.14],

Since gn (x) --t a, the sequence of segments [y, gn (x )) --t [y, a), the
ray from y to a. Similarly [y,gn(d)) --t [y,b) and [y,gn(e)) --t [y,b).
It follows that Ly(gn(d),gn(x)) --t Ly(b,a) and Ly(gn(e),gn(x)) --t

Ly(b,a) Thus for n » 0, Ly(gn(d),gn(x)) + Ly(gn(e),gn(x)) > 21r ­
8 + 2€.

Consider the semi-ideal triangles III with vertices y, gn(x), and gn(d)
and 112 with vertices y, gn(x), and gn(e). The sum of the angle sums of
III and 112 will be at least (21r - 8+ 2f) + (8 - e) > 21r for n sufficiently
large. Thus one of the semi-ideal triangles Ill, 112 violates [10, II 9.3]
and we have a contradiction. q.e.d.

Lemma 19. If R : [0,00) is a my representing a E ax, b E aX
with L(a,b) < 1r, and the image of R in X/H is bounded for some
H < G, then there is a sequence (gn) C H with:

1. gn(R) -t R, a line;
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2. gn(a) ~ 0,;

3. gn(b) --t b;

4. for any t E JR, Lil(t) (a, b) = L(a,b) = L(a,b)j

5. There is a half-fiat B bounded by R with bE AB.
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Proof. Since the image of R in X / H is bounded, we may find a
sequence (gn) C H with {d(R(O),gn(R(n))) : n E N} bounded. Using
compactness and passing to a subsequence nj we obtain (1), (2), and
(3).

The equality (4) has the same proof as [10, II 9.5 (3)] and we leave
the conversion of notation to the anal retentive reader.

For s, t E lR and i E N, consider now the triangle Ll with, vertices
R(t), R(s) and b. Using [10, I 1.14] we can show that the angle sum
of ~ is at least 1r. Thus by [10, II 9.3] the angle sum is exactly 1r and
the convex hull of [R(s),b) U [R(t), b) is isometric to the convex hull of
a triangle in the Euclidean plane with those angles and one vertex at
infinity. Taking the nested union of such things we obtain the half-flat
B and this completes (5). q.e.d.

3. CAT(O) boundary cut points

Definition. An action on a real tree S is non-nesting if no arc
of S is mapped to a proper subset of itself. A non-nesting action is
stable if for each arc 'Y of S, there is a non-trivial subarc a of 'Y so that
Fix(o) = Fix(,B) for all ,B nonsingleton subarc of o. An action on an
IR-tree is trivial if the action has a global fixed point.

Theorem 20. Suppose that ax = A u B where A and Bare nons­
ingleton subcontinuum with IA n BI = 1. If 9 E G with g(A) ~ A, then
ngn(A) = {gOO}, ngn(B) = {g-OO} and (g) acts as a convergence group
on ax.

Proof. Clearly the two compact sets ngn(A) and ngn(B) are nonempty,
as they are nested intersections of compact sets.

We first show that given a E ngn(A) and b fI. ngn(A), there is a line
in X with endpoints a and b. By [10, II 9.21 (1)] it suffices to show
that Td(a, b) = 00. Let {c} = A n B. There is N > 0, such that for
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all n ~ N, gn+l(c) separates a from gn(c), and gn(c) separates b from
gn+l(c). Let 'Y be an arc ofTX from a to b (if there is no such arc, then
Td(a, b) = 00). For each n ~ N there is a subarc 'Yn of 'Y irreducible from
gn(c) to gn+l(c). Let € = L(c,g(c)) > O. Since G acts by isometries
on the angle metric of ax, it follows that € = L(gn(c),gn+l(c)) for all
n E Z. Thus the length l('Yn) ~ €. However for n =I m, the set Tn n Tm
has at most one point, and so l('Y) ~ E l('Yn) = 00. Since the length

n~N

l('Y) = 00 for all arcs of ax joining a to b, it follows by definition that
dT(a, b) = 00.

We now show that gOO E ngn(A). By compactness

for some increasing sequence of integers ni. Notice that gni (x) --+ gOO
for any x E X and gni(g-oo) --+ g-oo. Since L(c,g-oo) =I 0, by Lemma
18 L(a, gOO) < 1r. Thus by the previous paragraph, gOO E ngn(A) and
similarly g-oo E ngn(B).

Next we see that ngn(A) = {gOO}. The argument will be similar
to the previous one. Let a E ngn(A). By compactness g-ni(a) --+ ii
for some increasing sequence of integers ni. As ngn(A) is closed and
g-invariant, it follows that a E ngn(A). For any x E X, g-ni(x) --+ g-oo
and g-ni(goo) --+ goo. Since a,goo E ngn(A), and g-oo ~ ngn(A), we
have L(g-oo, a) = 1r = L(g-oo,gOO). By Lemma 18, L(goo,a) = 0, in
other words gOO = a.

To show that the action of (g) on ax is a convergence action, let U
be a neighborhood of gOO in ax, and C be a compact set of ax - {g-oo}.
For some n > 0, C n g-n(B) = 0. Thus C c g-n(A). For some m > 0,
gm(A) C U. Thus gn+m(c) C gm(A) C U, and the action of (g) on ax
is a convergence action. q.e.d.

Word Hyperbolic Case. Theorem 20 is trival in the word hyper­
bolic case (a subgroup of a convergence group is a convergence group).
The proof of the following Corollary is the same in the word hyperbolic
case.

Corollary. Let C be a countable G-invariant set of cut points of
ax. Let T be the real tree (without terminal points) constructed in the
previous section from ax and C. The action of G on T is non-nesting.

Proof. Suppose not, then there exist 9 E G and an arc [c, a] C T with
g([c, a]) ~ [c, a]. Replacing 9 with g2 if need be, we may assume that 9
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preserves the orientation of [c, a]. By applying the Brower fixed point
theorem, we may assume that g(a) = a. Thus g(c) E (c, a). From the
construction ofT, we may assumec E C. BydefinitionofC, ax = AUB
where A and B are non-degenerate continuum and A n B = {c}. The
points of ax corresponding to a will lie in one of these continuum, A. It
follows from the construction of T that g(A) ~ A. By Theorem 20, the
action of (g) on ax is a convergence action. Therefore Lemma 7 shows
that the action of (g) on T is non-nesting (T has no terminal points)
contradicting the choice of g. q.e.d.

Word Hyperbolic Case. In the word hyperbolic case, the fixed
point set in ax of an infinite order element (which can only be hyper­
bolic) is the two points g±oo. Thus the following result is trivial in that
case.

Lemma 21. For any hyperbolic 9 either Fix(g) is not separated in
aX by any point of C, or Fix(g) = {g±OO} and 9 has no fixed points in
it action on T.

Proof. Let Min(g) = IR x Y. First consider the case where Y is
unbounded. By [20] the centralizer Zg acts geometrically on the convex
subspace Min(g). Furthermore (g) < Zg. It follows from Lemma 14
that Zg/(g) acts geometrically on Min(g)/(g). Using [10, II 6.8 (4)] We
see that M in(g) / (g) = 8 1 X Y. Since Zg preserves the product structure,
Zg/ (g) acts geometrically on the CAT(O) space Y. By Theorem 11, Y
contains the axis of some hyperbolic element and so IAYI > 1. The only
suspension which has a cut point is the suspension of a single point, so
in this case Fix(g) is not separated in ax by any point of C.

Now consider the case where Y is bounded and so Fix(g) = {g±OO}.
If Fix(g) is separated by a cut point c E C, then since 9 doesn't fix c,
we may apply Theorem 20 to show that (g) acts as a convergence group
on aX. The result now follows from Lemma 7. q.e.d.

Word Hyperbolic Case. In the word hyperbolic case, if hand 9
are hyperbolic and Fix(h) n Fix(g) =10, then Fix(h) = Fix(g) = {g±OO}
[25,2G].

Theorem 22. If g, h are hyperbolic elements of G with Fix(g) n
Fix( h) =I 0, then either IFix(g) U Fix(h)I = 2 or the subspace Fix(g) u
Fix(h) has no cut point.
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Proof. The first case is where both Fix(g) and Fix(h) are two point
sets. That is, Fix(g) is just the endpoints of an axis L of g, and similarly
Fix(h) is the endpoints of an axis t of h. Since Land t share an
endpoint, we may apply the Zipper Lemma to x ELand yEt to see
that gn = hm for some m, n i= O. Thus Fix(g) = Fix(h).

For the other case, by Lemma 21, we may assume that Fix(g) has no
cut point. By the Corollary to Lemma 10, Fix(g) = AZg and Fix(h) =

AZh . Since Min(g) and Min(h) are convex, it follows from [20] that
Zg and Zh are convex subgroups of G. Thus by Theorem 16, Fix(g) n
Fix(h) = A(Zg n Zh). Since Zg n Zh is an infinite convex subgroup,
Theorem 11 implies that IFix(g) n Fix(h) I > 1. Either Fix(h) C Fix(g)
in which case the result is clear, or IFix(h) I > 2 and so Fix(h) has no
cut point. In this latter case, since IFix(g) nFix(h)1 > 1, Fix(g) UFix(h)
will have no cut point. q.e.d.

Word Hyperbolic Case. In the word hyperbolic case, the only
way a point c E C can be fixed by a hyperbolic element is if c = g±oo.
In fact if pEP and {g±oo} n p = 0, then using the convergence action
of (g) on ax, we see that g(p) i= p. Thus the following result is trivial
in the word hyperbolic case.

Lemma 23. If an interval I of T has points of C in its interior,
then Stab(I) is torsion.

Proof. Suppose there is a hyperbolic 9 E Stab(I), with axis L ori­
ented so that L(00) = goo. If II n CI > 2, then there are Cl, C2, C3 E InC
with C2 separating Cl from C3. However Cl, C2, C3 E Fix(g), and by
Lemma 21 Fix(g) is not separated by any cut points. Thus II n CI :S 2.

If J c I, then Stab(I) < Stab(J). Using the construction of T, we
can reduce to the case where I = [a, b] and [a, b] n P = {a, c, b} for some
C E C. Since 9 fixes a point of T, by Lemma 21, Fix(g) is not separated
by any point of C. Thus there is a nonsingleton equivalence class d E P
with Fix(g) C d.

We may assume that d i= b, and will show that 9 doesn't stabilize b.
Since b, d E P - C, (b, d) n C is nonempty and so there is cE (b, d) n C.
By Lemma 1, cE [b,c]U[c,d]. However (b,c)np = 0 = (c,d)np. Thus
c= c and c separates b from d. There are two cases based on how close
c is to some point of b in the Tit's metric dT of TX.

CASE I. There is b E b with dT(c,b) <~. By Lemma 10,
c is in the limit set of a half-flat containing an axis of g. It follows
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that dT(c,{g±oo}) ~ ~. Thus we may assume (J = dT(b,g-oo)
L.(b, g-oo) < 1r. Since (g) acts cocompactly on L, we may apply Lemma
19 to get a sequence (gn) of (g) with

e gn(c) -+ C (since C E Fix(g)),

egn(b)-+b',

e gn(L) --+ L (since L is an axis of g),

e L bounding a half-flat containing b' in its boundary.

The limit set of this half-flat is an arc 'Y in ax from gOO to g-oo which
passes through b' . Since 9 stabilizes b, b' E b- {c}. This is impossible
as the arc 'Y would have pass through c twice.

CASE II. For some b E b, dT(c,b) = 00. Since Td is a path
metric and c separates d from b, it follows that Td({g±oo}, b) = 00. We
may assume that c =1= g-oo. By [10, II 9.21] there is a line R from g-oo
to b. Let f = d(R, L(O)). Now consider the sequence of lines gn(R)
for n > o. Clearly d(gn(R),gn(L(O))) = f. Since gOO = L(oo) and
R(-oo) = g-oo, by convexity of the metric d(gn(R),L(O)) ~ f. Thus
some subsequence of gni(R) will converge to a line S. Since g-oo is fixed
by g, 8(-00) = g-oo. However for any m > n, d(gm(R),gn(L(O))) ~ f.

It follows that 8 is parallel to L, and so gn i (b) -+ gOO. The isometry 9
stabilizes b 3 b, so gOO is a limit point of the set b, which is absurd since
c separates gOO from b. q.e.d.

4. Cut points in geometric boundaries

Word Hyperbolic Case. The following result follows from [25,
2R] in the word hyperbolic case since the action on ax is a convergence
action with limit set ax.

Theorem 24. The action of G on the tree T has no global fixed
point.

Proof. Suppose that G fixes a point pET. By construction we
may assume that pEP, the set of equivalence classes of ax defined in
Section 1.

If p were a singleton equivalence class of ax, then G would fix the
point p E ax. It follows from Theorem 11 that G has an element of
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infinite order. As all hyperbolic elements would fix p, using Theorem
22 and Theorem 20 it can be shown that there would be PEP, whose
closure contained all fixed point sets of hyperbolic elements. Thus the
non-singleton equivalence class p would also be fixed by G. We may
then assume that p is a non-singleton equivalence class in P.

Choose distinct d, e E p and let (J = L(d, e) > O. For any a E ax,
we can find a sequence (9n) C G and with 9n(X) --+ a for some (any)
x EX. Since Gleaves p invariant, passing to a subsequence, we get
9n (d) --+ b E P and 9n (e) --+ b E p. Applying Lemma 18 we see that
dT(a,p) ~ 'fr - ~. Thus for every a E ax, dT(a,p) < 'fr.

Let e E C with A and B nonsingleton subcontinuum such that
A U B = ax and A n B = {e}. By definition, the equivalence class p
is not separated by any point of C, so with no loss of generality peA.
By [10, II 9.13], the Tit's boundary, TX, is a CAT(l) space (Recall
that TX is the set ax with the usually finer metric Td). Since an arc
in T X is an arc in ax, B is a convex subset of T X, and therefore a
CAT(l) space. Since peA, the Tit's distance from any point of B to
e is less than 'fr. Thus we can find a maximal geodesic segment [e, b]
of the CAT(l) space B. By [10, II 1.4 (1)], for each a E B, there is
a unique segment [e, a] which varies continuously with its endpoints.
We can then geodesically contract B to e. Since [e, b] was a maximal
geodesic segment, it follows that for each a E B - {b}, there is a unique
geodesic segment [c, a], and we can also contract B - {b} geodesically
to c.

Notice that B C B(e, 'fr) where the ball is in the Tit's metric Td.
Since the Tit's metric is proper, B is a compact set of the Tit's boundary
TX. By [10, II 9.7], the obvious map from TX --+ ax is continuous,
however a continuous bijection from a compact space to a Hausdorff
space is a homeomorphism. It follows that the Tit's metric on B gives
rise to the same topology as the subspace topology from ax. Thus B
and B - {b} are both contractable as subspaces of ax.

From the long exact sequence for a pair, we see that Hi (B , B - {b}) =

ofor all i and any coefficients. However B - { e} is an open set containing
b and so by excision, Hi (ax, ax - {b}) = 0 for all i. The action of G
on X need not be free, but we can still use X to compute the rational
cohomology groups H*(G,QG), and in fact the result [3, 1.10] holds
with coefficients in Q even though the action of G on X is not free.
Thus by [3,1.10 (2)] Hi(G,QG) is a finite dimensional vector space for
all i. Now using [3, 1.10 (1)], the dual of H i ( G, QG) is trivial for all i.
It follows that Hi (G, QG) = 0 for all i. Hence cdcJG = 0, and so by [12,
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IV 3.5] G is finite, contradicting the one-endedness of both X and G.
q.e.d.

Word Hyperbolic Case. The proof of the following is the same
in the word hyperbolic case. Word hyperbolic groups have no infinite
torsion subgroups (see [15]) and so there can be no cut points.

Main Theorem. llG acts geometrically on the one-ended CAT(O)
space X, and c E ax is a cut point, then there is an infinite torsion
subgroup H < G fixing c.

Proof. Suppose that ax has a cut point c, and let C = Gc. Let T
be the lR-tree constructed in Section 1 from C. By Theorem 24, G acts
without global fixed points on T. By taking a minimal invariant sub­
tree, we may assume that T is minimal (T contains no proper invariant
subtree).

Apply [17] to the IR-tree T. We obtain an IR-tree S on which G acts
by isometries, and an onto G-function f : T -t S which is continuous
on arcs of T. Furthermore the image of an arc of T will be an arc or a
point of S. Reading [17] we see that there are two possibilities:

1. For any interval I of T, Gc n I is discrete. In this case, I is a
bijection, and the tree S is a simplicial tree. The vertices of S are
the points of P (the set of equivalence classes defined in Section
1), and the edges of S are the adjacent pairs of P.

2. The set Gc c I is not discrete for some interval I of T. In this
case, the image I(C) of C = Gc is dense in every arc of S.

We first consider (1). Every adjacent pair of P consists of one vertex
of C and one of P - C, and so S has a G-invariant bipartite structure.
Thus G acts on T without edge inversion. The cut point c is a vertex
of S, and we choose an edge e of Shaving c as one of its endpoints and
pEP as the other. Since G has one end, all edge stabilizers must be in­
finite. By hypothesis, we may assume that there is a hyperbolic element
9 E Stab(e). Since c E Fix(g) , it follows that there is a nonsingleton
equivalence class p' E P adjacent to c with Fix(g) E p'. By Lemma
23, p = p'. Choose another edge e i= e containing c. Any hyperbolic
element h which fixes c has Fix(h) c p by Theorem 22. From Lemma
23 we know that Stab(e) is torsion, and therefore infinite torsion. This
completes the proof for (1).
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We are left with the case where S is an IR-tree every arc of which
contains infinitely many images of C. Notice that if I is an arc of T,
with f(I) not a point, then the stabilizer Stab(f(I)) < Stab(I). By
Lemma 23 we see that all arc stabilizers of S are torsion. By hypothesis
we may assume that all arc stabilizers of S are finite. CAT(O) groups
have only finitely many conjugacy classes of finite subgroups [10]. Thus
there is a bound on the size of a finite subgroup and the action of G on
S is stable. This action is also fixed point free by Theorem 24.

We will now analyze the action of G on S using the following which
follows from [16, 14.12.5; 14.12.2; 14.9.2; 14.12.6] and also from [4].

Rips Machine. Let G be a finitely presented group acting mini­
mally, stably and nontrivially by isometries on an IR-tree S. If G doesn't
split over an arc stabilizer of S, then one of the following is true:

1. There is a line L c S acted on by a subgroup H < G, and N <JH,
the kernal of the action of H on S, so that H / N is virtually zn
for some n > 1.

2. There is a closed hyperbolic cone 2-orbifold F and a normal sub­
group N <] G with 1rl (F) ~ G/ N. Furthermore the action of G on
S factors through 1rl (F) .

3. There is a finite graph of groups decomposition, r, of G with
H < G a vertex group having the following properties.

(a) There is F, a cone 2-orbifold with boundary, and a normal
subgroup N <l H with H/N ~ 1rl(F), so that the action of
H on S factors through 1rl (F).

(b) The edge groups of H in r correspond to the peripheral sub­
groups of F.

(c) All edge groups act trivially.

First consider (1). Since the arc stabilizers of S are finite, H is
virtually zn for some n > 1. From the flat torus theorem of [10] it
follows that AH ~ sn-l, which has no cut points. By Theorem 20
every hyperbolic element h which acts by translation on a line of T (or
S) has the property that the points h±oo are seperated by a cut point
in C. None of the hyperbolic elements of H can act by translation on
the line L, so the finite index zn-subgroup of H fixes L, contradicting
the fact that arc stabilizers of S are finite.
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In the case of (2), since the arc stabilizers are finite, G act geomet­
rically on JHI2 and so G is word hyperbolic and ax = aG ~ 8 1 .

Thus for both (1) and (2) ax has no cut points.
Now we need only consider (3). The normal subgroup N <JH will be

finite since the edge stabilizers of 8 are finite. Since H acts non-trivially
on 8, there will be an h E H which acts by translation on a line L of S.
Let 'Y be a loop in F representing the image of h in 1rl ( F). Since the
edge groups of r act trivially on 8, , is not peripheral in F.

Consider the covering F"'( of F corresponding to the subgroup ([,]) <
1fl (F). Since F has no reflections and , is not peripheral in F, it
follows that Fry has more than one end. Using the graph of groups
decomposition r for G, one can show that e(G, (h)) > 1. Thus the
quotient Xh of X by the action of (h) has more than one end.

By Theorem 20, (h) acts as a convergence group on both ax and
X with limit set {g±OO}. Hence (h) acts properly discontinuously on
X = X - {h±OO}.

Geodesic rays of Xh lift to geodesic rays representing points of ax ­
{g±OO}. Using this we see that the quotient, Xh, of X by the action of (h)
is compact. Since Xh has more than one end, it follows that the quotient
of ax - {h±OO} by the action of (h) has more than one component. Thus
the two point set {h±OO} separates ax. This is absurd. By Theorem
20, h±oo are singleton equivalence classes which are terminal in the tree
T, and so {g±OO} separates nothing. q.e.d.

Corollary. If anyone of the following conditions implies that ax
has no cut point, then:

1. G is virtually torsion free,

2. X is a cube complex,

3. X is 2-dimensional.

Proof. For (1) notice that any torsion free subgroup H of finite index
in G also acts geometrically on X.

G. Niblo, L. Reeves, and M. Roller showed that finitely generated
infinite torsion groups do not act properly discontinuously on CAT(O)
cube complexes [18],[19], and this proves (2).

In the case of (3), assume we do have a cut point c. There is an
infinite torsion subgroup H which fixes c. Applying Theorem 17, we ob­
tain a group K, containing an infinite torsion subgroup, with K acting
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geometrically on the one dimensional CAT(O) space Y. One dimension
CAT(O) spaces are also known as lR-trees, and no group acting geomet­
rically on a lR-tree contains an infinite torsion subgroup. q.e.d.

We now give an example, due to Bestvina, of a homology boundary
of BS(l, 2) with a cut point.

Example. Consider the group G == BS(l,2) == (a, bl aba- 1 == b2
).

We construct a 2-complex for G as follows: In the upper half plane
model, {(x, y) E lR2 1y > O}, for JHI2, consider the D region bounded by
x == 0, x == 1, y == 1, y == 2. In the hyperbolic metric, the vertical "sides"
of D are geodesics, but the horizontal sides are not. Furthermore, the
bottom "side" is twice as big as the top "side". We now label the sides
of D. The left and right we label with a pointing upwards. The top is
labeled by b pointing from left to right, and the bottom is labeled by b2

pointing from left to right. We can now tile JHI2 with copies of D so that
the edges match up. The quotient, XG of D by the edge identifications
is a K(1r, 1) for G, and we take its universal cover X for our geometry.
Each translate of D in X is contained in an isometrically embedded
copy of JHI2. These" sheets" bifurcate as you go upwards in X. Any two
of these sheets coincide except on a vertical hora-disk in each.

Thus the visual boundary is a non-hausdorff compactuum obtained
from a circle by replacing one point with a cantor set. That is, a neigh­
borhood of a point on the circle is the same as before replacement, and
a neighborhood of a point p in the cantor set is a neighborhood in the
cantor set (before replacement) together with a neighborhood of the re­
placed point of the circle (minus the replaced point of course). We now
alter this boundary as follows: We collapse the circle minus a point to
a single point c and blow up each point in the cantor set to an open arc
which has c as both of its endpoints. The resulting geometric bound­
ary Z is the Cantor Hawaiian earring. The usual construction for the
Cantor Hawaiian earring is to start with the standard cantor set in the
plane, and take the union of all circles B with center on the x-axis going
through the origin and one other point on the Cantor set.

There is only one cut point in Z, namely c. The tree T we obtain is
simplicial having one vertex of uncountable valence, and an uncountable
number of valence 1 vertices. The action of G on T interchanges valence
1 vertices, but leaves c fixed.
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