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A R I T H M E T I C M A N I F O L D S OF P O S I T I V E S C A L A R 
C U R V A T U R E 

JONATHAN BLOCK & SHMUEL WEINBERGER 

1. Introduction 

Gromov and Lawson [18] and Schoen and Yau [34] have shown that 
no compact manifold of nonpositive sectional curvature can be endowed 
with a metric of positive scalar curvature. As is very well recognized 
by now, their approach is actually based on a restriction on the coarse 
quasi-isometry type of complete noncompact manifolds of positive scalar 
curvature. Our goal in this paper is to explore the situation if we study 
the problem of complete metrics with no quasiisometry conditions at 
all. 

Let M be an irreducible locally symmetric space of noncompact type 
of finite volume. It is the double coset space Y\G/K associated to a 
lattice r in a semisimple Lie group G. Our main theorem is the following: 

Theorem 1.1. Let M = F\G/K, G semisimple and F an irre­
ducible lattice. M can be given a complete metric of uniformly positive 
scalar curvature K > e > 0 if and only if F is an arithmetic group of 
Q-rank at least 3. 

Amplification 1.2. 
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1. In the Q-rank 1 and Q-rank 2 cases, one cannot have a metric of 
uniformly positive scalar curvature even in the complement of a 
compact set. 

2. On the other hand, in the cases where we do construct these met­
rics, they can be chosen to have finite volume or bounded geometry 
in the sense of having bounded curvatures and injectivity radius 
bounded away from zero (but of course not both). 

We will not address here the natural question of whether the pos­
itive scalar curvature metric can be chosen coarse quasi-isometric to 
the natural metric on M. The metrics constructed here in section 2 
have the coarse quasiisometry type of a ray. The classical methods dis­
cussed above show that the metrics cannot be chosen quasiisometric 
(i.e., uniformly biLipschitz) to the natural metric on M. Another nat­
ural question we do not address here is whether the complete positive 
scalar curvature metrics can be chosen to be bounded geometry in the 
sense of having bounded curvatures and volume. 

Our argument in the last section obstructing the existence of com­
plete positive scalar curvature metrics for quotients where the Lie group 
has low rank or the arithmetic group has low Q-rank is based on the 
picture of the ends of these manifolds given by Borei and Serre [32]. 
According to the compactness criterion of Borei and Harish-Chandra, 
Q-rank = 0 implies compactness and necessity in this case is the theorem 
of Gromov-Lawson and Schoen-Yau mentioned above. For M-rank = 1 
one has the situation of cusps and there are infranilmanifold "sections" 
of the cusps at the various ends. These are examples of what Gromov 
and Lawson call "bad ends", as their universal covers have contracting 
maps to appropriate Euclidean spaces, and the results of Gromov and 
Lawson cover this case as well. Thus one is in the situation of M-rank 
at least 2 and, by Margulis's work, arithmetic groups. For Q-rank = 2, 
there is still a beautiful aspherical, but rather mysterious, manifold 
which is a cross section of infinity. We do not know whether it has the 
appropriate "hypersphericality" to obtain the nonexistence result from 
[18]. However, instead we prove an appropriate Novikov conjecture type 
result and Bochner type argument to still show that we have a "quite 
bad end", namely the kind of end that does not support a metric whose 
negative scalar curvature set has compact closure. 

Our results should be understood within the context of the (even sta­
ble) Gromov-Lawson-Rosenberg conjecture and its analogue, the Novikov 
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conjecture. The topological analogue of characteristic class obstruc­
tions to positive scalar curvature are characteristic class obstructions to 
proper homotopy equivalence. The analogue of Theorem (1.1) in this 
setting, the rigidity aspects of which are essentially due to Farrell and 
Jones, [11], is: 

T h e o r e m 1.3. Let M = Y\G/K, G semisimple and T an irre­
ducible lattice. There exists a non-resolvable homology manifold proper 
homotopically equivalent to M if T is an arithmetic group of Q-rank at 
least 3. If r is arithmetic of Q-rank 0 or 1 then M is properly rigid. For 
Q-rank 2, if one knows the Borei conjecture for the fundamental group 
at infinity, then M is properly rigid. 

This theorem answers a conjecture of Quinn's, Conjecture 4.1 (Topo­
logical Rigidity), p. 603, [27], and suggests that it be reformulated to 
take into account the metric structure at infinity. 

The general problem can be reformulated (in our relative situation) 
by surgery theory into a statement about a relative assembly map: 

A:H*(B-K,Bir°°;h) -)• L(7r,7r°°). 

Here n and 7r°°, are the fundamental group of a manifold M and 
its end respectively. If A is injective, then the Poincaré dual of the 
I/-class pushed into this relative group homology is a proper homotopy 
invariant. It is natural to expect that the same thing is true as an 
obstruction for complete positive scalar curvature metrics on a spin 
manifold M, except that one uses the image of the Dirac operator 

f\[lpM]eKOn(B>K,B^) 

rather than a signature class in Hi„(B-K,BTr°0;h). For instance, a con­
jectural obstruction should be the rational vanishing of this class. More 
precisely, one could formulate: 

Conjecture 1.4. If M is a complete spin manifold with uniformly 
positive scalar curvature, and for which -KI(M) and ^(M) are torsion 
free, then f*[flM] = 0 in KOn(BTri(M),BiT^(M)). 

For 7Ti and n^ with torsion, one must use the relative term asso­
ciated to the functoriality of the "left hand side of the Baum-Connes 
conjecture" proven in [2]. 

Thus, unlike the case of closed manifolds discussed by Rosenberg in 
[30], the main problem in completing the picture analogous to the sig­
nature operator case (and by analogy to the closed manifold situation) 
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is that there is no assembly map from KOn(Biri,B-Ki:') to the appro­
priate K-theory of some C*-algebra that could be the relative K-theory, 
and which might reasonably be an isomophism for torsion free groups. 
The Baum-Connes conjecture makes predictions about the reduced C* 
algebra, and for such C* algebras one only has induced maps for in­
jections of groups, or at least homomorphisms where the kernels are 
amenable. In the Q-rank 2 case we consider, the relevant kernel is free 
of infinite rank, so this heuristic cannot be directly applied. It is thus 
a first interesting case where a new method is needed and that is what 
is provided here. The same reasoning we employ verifies the reduction 
of the vanishing of the higher relative À-genus to the injectivity of an 
assembly map for e.g. any simply connected manifold, even if the fun­
damental group at infinity is not amenable. What we have verified in 
essence is the vanishing of f*[pM] G KOn-i(Biï^°) assuming suitable 
Novikov type conjectures for the group nf2. 

In a subsequent paper we give further evidence for this conjecture 
showing that in the (rather complementary) case where n^ injects into 
7Ti, one can reduce the conjecture to the injectivity of the appropriate 
assembly map. This excludes many manifolds which do not have "bad 
ends" at all, e.g. which can support metrics whose nonpositive scalar 
curvature set is compact. For instance, a punctured n-torus or punc­
tured hyperbolic manifold have "good ends" but as suggested by this 
conjecture, they have no complete metrics of positive scalar curvature. 

We hope to eventually combine the methods of the special cases con­
sidered here with the approach of that forthcoming paper to give a sys­
tematic treatment of obstructions to complete metrics of positive scalar 
curvature under plausible Novikov type conjectures, that are hopefully 
verifiable in interesting cases. 

2. Cons truc t ing metr ics on non-compact manifolds 

Our goal in this section is to construct manifolds of uniformly pos­
itive scalar curvature on locally symmetric spaces of Q-rank at least 3. 
We will in fact prove a rather general theorem about existence of met­
rics of uniformly positive scalar curvature on locally compact manifolds. 
(This will by no means be the most general theorem on the subject.) It 
is a generalization of the bordism criteria of Gromov and Lawson [17] 
and Rosenberg and Stolz, [31]. 

Now we will apply the Schoen-Yau-Gromov-Lawson surgery theorem 
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and its proof which assert that if we do surgery on in codimension > 3 
on a manifold of positive scalar curvature, then we can put on the new 
manifold a metric of positive scalar curvature and that this procedure 
is local. Furthermore, by examination of their proof, one can achieve 
that the scalar curvature K on the new manifold is greater than or equal 
to AKO where Ko is the scalar curvature on the original manifold and 
A < 1 is any fixed constant. When there are an infinite, but locally 
finite sequence of surgeries we can achieve: 

T h e o r e m 2 .1 . Let M be a locally compact manifold with a complete 
metric of uniformly positive scalar curvature K > e > 0. Suppose that 
M' is another manifold obtained from M by a locally finite sequence of 
surgeries of codimension at least 3. Then M' also has a complete metric 
of scalar curvature n > e' > 0. Moreover, if M has finite volume then 
M' can be made with this property too. 

Proof. According to Gromov and Lawson [17] we can equip M' 
with a metric of positive scalar curvature. We want to see that we can 
perform these surgeries with their adaptation of the metric to achieve 
three things: 

1. Completeness 

2. Uniform positivity of the scalar curvature and 

3. finite volume. 

Recall that the surgery process replaces d{Dt+l) x Dn~% with Dl+1 x 
d(Dn~l). The only way to confound completeness is to make the metric 
on D%+1 small so that a sequence of points that was not Cauchy in 
the original metric is Cauchy in the new metric, by using "short cuts" 
through the disks. To avoid this we require that the metric on Dl+1 (this 
is from Di+l x d(Dn~i)) have the property that for x,y G d(Di+1) that 
dDi+i(x,y) > mdgrDi+i\(x,y). Having arranged this, order the sequence 
of surgeries. Perform them sequentially in such a manner that the metric 
in the Nth surgery have d{Dl+1) x Dn~% replaced by Dl+1 x d{Dn~l) 
where the metric on Di+l is big as above and the sphere d(Dn~i) is 
chosen so small that K > cko and so that the volume of D%+1 x d(Dn~%) 
is < 2iv ; this last is achieved by using very thin tubular neighborhoods 
of the spheres in the original construction of [17]. Note, that if the 
manifold M started with finite volume, the metric we construct on M' 
also has finite volume. This completes the proof. q.e.d. 
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In light of the surgery theorem 2.1, to construct manifolds of positive 
scalar curvature, we need a criterion that implies that we can construct 
a manifold from a given one by a locally finite sequence of surgeries 
of codimension at least 3. We now make an analogous definition to 
[31]. Consider a map B —> BO, which we can assume is a fibration 
by standard homotopy theory. We will assume for simplicity that B 
has locally finite n-skelata, for n < 3. (This condition simplifies certain 
arguments below.) A proper _B-manifold is a locally compact manifold 
M with a proper map v : M —>• B such that the composition M —> B —> 
BO classifies the stable normal bundle. A proper _B-cobordism between 
proper _B-manifolds M\ and M 2 is a proper _B-manifold W such that 

dW = Mi JJ M2 

and such that the structure map for W restricts to the structure maps 
of Mi and M 2 on the boundary. Finally, let us recall that a proper map 
/ : X —> Y of locally compact spaces is called properly k-connected if 
for all (P,Q), a locally finite ^-dimensional CW pair and all diagrams 
of proper maps 

P -> Y 

t t/ 
Q -+ X 

there exists a proper map g : P —>• X such that P —> X —> Y is properly 
homotopic to P —> Y. 

The following is the proper analogue of Theorem 3.3, [31]. 

T h e o r e m 2 .2 . Let M be a proper B-manifold of dimension at least 
h, such that the structure map ù : M —>• B is properly 2-connected. 
Assume that M is properly B-cobordant to a proper B-manifold X, a 
complete manifold with uniformly positive scalar curvature. Then M 
has a complete metric of uniformly positive scalar curvature. Moreover, 
if X has finite volume then M can also be made with finite volume. 

Proof. Let W be a proper _B-cobordism between M and X, dimen­
sion W is at least 6. By performing a locally finite sequence of surgeries 
that do not change M and X in dimensions < 2 we can make W —> B 
properly 3-connected. This uses the assumption that B has a locally 
finite 3-skeleton. ([36] is the standard, but unpublished reference for 
proper surgery. The same kind of arguments but in the slightly different 
context of bounded surgery are carried out in [12], Theorem 5.3) Since 
M —> B is properly 2-connected and W —> B is properly 3-connected, 
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this implies from the definition of properly 2-connected that M —>• W 
is properly 2-connected. Hence we see from the proof of the proper s-
cobordism theorem, [33], that W has a handle decomposition from M 
to X without handles of dimension 0,1 or 2. Thus the dual decompo­
sition from X to M has a presentation without handles of codimension 
0,1 or 2. Hence we can go from X to M by a locally finite sequence of 
surgeries of codimension at least 3. Thus by the surgery theorem, 2.1, 
the conclusion of the theorem follows. q.e.d. 

Now we construct the metrics on the locally symmetric spaces. 

Proof, (of sufficiency in Theorem 1.1) 
Let M = F\Gu/K, G semisimple algebraic and T a lattice and an 

arithmetic group of Q-rank at least 3. Let us recall what this means. 
A subgroup T C G defined over Q isomorphic to Gm

q is called a split 
torus. Let q be the dimension of a maximal split torus. By definition, 
this number q is called the Q-rank of T. Then M is compactified à la 
Borei and Serre [32] as a manifold with corners. This is accomplished 

by adding to M = G^/K certain Euclidean spaces to form M in such a 

way that GQ acts on M and so that M = T\M is compact. Some basic 

facts about this compactification are: 

1. dM has the homotopy type of its Tits building B of Q-parabolic 
subgroups of G. 

2. By the theorem of Solomon and Tits, dM has the homotopy type 
of a bouquet of q — 1-spheres. 

3. Not only is M a K(F, 1), but so too is M . 

From these facts we deduce 

Propos i t i on 2 .3 . If F C G K is as above, then the following hold: 

1. If q = 0 then M is compact. 

2. If q = I, then -nf(M) ->• iri(M) is infective. (Of course iri(M) = 

r.; 
3. If q = 2, there is an exact sequence of groups 

1 - • F,» - • 7I-HM) - • MM) - • 1 

where F ^ is the free group on an infinite number of generators. 
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4. Ifq> 3, then 7if°(M) = TTI(M). 

R e m a r k 2.4. If there is more than one end, (which can happen 
only if q = 1), we mean to just take one of them. 

Set B = M x [0, 00) and let B —> BO be the map classifying the 
normal bundle. Note that B has a locally finite 3-skeleton since M is a 
finite complex. Consider M as a proper _B-manifold, 

z>: M ->• B 

by v(m) = (m, p(m)) where p : M —> [0, 00) is distance from some fixed 
point, which is proper since M is complete. 

Now note that as a homotopy type M is obtained from dM by 
attaching cells of dimension q and larger. So 

dM ^ M 

is 2-connected if q > 2. This implies that v : M —> B is properly 2-
connected. Now consider (M,û) G fî^([0, 00)) the cobordism group of 
dimension n proper _B-cobordism classes of proper _B-manifolds. For our 
particular B = M x [0, 00) this bordism group clearly vanishes. Hence 
(M, ù) is properly _B-cobordant to any other proper _B-manifold. Hence 
it suffices to show that there exists a proper _B-manifold with a complete 
metric of uniformly positive scalar curvature and finite volume. 

To do this, we start with M. Consider inside M x [0, 00) the 2-
skeleton, K, and let N(K) be a regular neighborhood of K in M x 
[0,oo). Now we may assume that N(K) does not intersect {0} x M 
by taking only the part of the 2-skeleton that does not touch {0} x M 
and taking the second barycentric subdivision before taking the regular 
neighborhood (or just by the existence of collars). Then X = dN(K) 
is a manifold with the following three properties: 

1. 7 r 1 ( X ) = 7 r f ( X ) = 7 r 1 ( M ) . 

2. The normal bundle of [0, 00) x M restricts to the stable normal 
bundle of X, since X is a hypersurface in [0, 00) x M. 

3. Furthermore, X has a -B-structure given by the composite: 

X C M x [0,oo) 
_ I (Id x p, Id) 

(1) M x [0,00) x [0, 00) 

J(Id,+) 
M x [0,oo) 
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Now, X being the boundary of a regular neighborhood of the 2-skeleton 
means that X can be constructed as follows: Take an n-sphere for every 
0-simplex. Clearly, this has a complete metric of uniformly positive 
scalar curvature and finite volume. Then do a 0-surgery for every 1-
simplex, a 1-surgery for each 2-simplex. By 2.1 X has a complete metric 
of uniformly positive scalar curvature and finite volume. Hence X is a 
proper _B-manifold with uniformly positive scalar curvature and finite 
volume. 

We have thus completed the proof of sufficiency in Theorem 1.1 
and its amplification, except for the assertion about bounded geometry. 
Now let us describe the modifications necessary to produce bounded 
geometry instead of finite volume. To do this, we will be more explicit 
about the proper cobordism between M and X. The idea here is that 
since M has a collared end, (and we will see that X can also be so 
constructed), the proper cobordism between them can be arranged to 
also have a collared end. Thus we can perform the surgeries from X to 
M in a periodic manner, in particular, ensuring bounded geometry. We 
begin with the following topological lemma: 

L e m m a 2.5. Let Y and Z be two locally compact manifolds with 
collared ends, i.e., 

Y = cY UdcY (dcY x [0,oo)) 

for some core compact codimension 0 submanifold cY with smooth bound­
ary. Assume that W is a proper cobordism between Y and Z. Then there 
is a new cobordism W such that W has a collared end, i.e., 

W' = cW UdcW> (dcW x [0, oo)), 

where dcW means the frontier of a core submanifold cW. 

Proof. Given W as in the hypothesis of the lemma, choose a proper 
smooth function / on W. Assume t is some large number such that 
t is a regular value and {/ < t} n Y and {/ < t} n Z are both core 
submanifolds for a collaring of Y and Z. Then set cW = {/ < t} and 
finally let 

W' = cW UdcW> (dcW x [0, oo)). 

This W does the job. q.e.d. 

Now we construct X similarly to the finite volume case. Except we 
begin with a smooth triangulation of M and consider in it the interior 
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2-skeleton K, that is the union of simplices of dimension less than or 
equal to 2 that do not intersect the boundary. Since K does not inter­
sect the boundary, the regular neighborhood N(K) is a manifold with 
boundary lying completely in the interior of M. Then as above, N(K) 
can be constructed by taking a 0-handle for each O-simplex, attach a 1-
handle for every 1-simplex, and a 2-handle for every 2-simplex. We thus 
arrive at a compact manifold, with boundary dN(K), which is there­
fore constructed by surgeries as in the finite volume case. dN(K) is 
collared in N(K), i.e., there is a neighborhood of dN(K) diffeomorphic 
to dN(K) x (0,1]. Extend N(K) by an infinite collar, that is, add to 
dN(K) x (0,1], dN{K) x [l ,oo). This is X. This comes equipped with 
a B = M x [0, oo) structure. And since Q^([0, oo)) vanishes, M and X 
are properly _B-cobordant. 

Finally, we appeal to a result of Gajer's, [16], that says: if N is a 
compact manifold curvature (not necessarily connected) with a metric 
ds\, of positive scalar, and let N' be obtained from N by a surgery 
of codimension > 3. Let W be the trace of this surgery. Then W can 
be given a metric of positive scalar curvature dsyy which is a product 
metric ds2

N + dt2 in a collared neighborhood of N and in a collared 
neighborhood of N'. Recall the construction of N(K) and dN{K) by 
handle attachments and surgeries, respectively. We started by taking 
a 0 handle for each 0-simplex. We can put on the boundary of these 
0-handles a metric of positive scalar curvature and extend it to the 
handle to retain positive scalar curvature and so that it is a product in 
a collared neighborhood of the boundary. Now Gajer's theorem lets us 
do the same for the 1 and 2 dimensional handle attachments as well. 
Thus we end up with a metric of positive scalar curvature on N(K) 
which is a product on a collared neighborhhod of dN(K). Since the 
metric has such a product structure, it extends to the infinite collar and 
thus we arrive at our _B-manifold X with a complete metric of uniformly 
positive scalar curvature and bounded geometry, together with the fact 
that it properly _B-cobordant to M. 

Now use the previous lemma to ensure that the cobordism from M 
to X has a collared end as well. This also implies that the cross sections 
of infinity dM and dX are -B-cobordant. 

Let us look at the structure of the surgeries that must be done to go 
from X to M by virtue of the fact that the end of the cobordism W is 
collared. Since the cross sections of infinity are ß-cobordant one can go 
from X to M by a finite sequence of surgeries of dimension of codimen­
sion > 3. After that any surgeries that should be done at infinity should 
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first be done outside a compact set, and in a translation invariant fash­
ion. (This can be done without self intersection among the handles by 
the standard construction that goes from a handlebody on the cobor-
dism from dX to dM to one on the product with a ray - wherein each 
i-handle becomes replaced by an infinite translation invariant collection 
of % and % + 1 handles.) Having done this one has a complete bounded 
geometry uniformly positively scalar curvature metric manifold V which 
has the same end as M, and is -B-cobordant to it by a cobordism with 
compact support (i.e., which is a product outside a compact set). The 
compact Gromov-Lawson surgery theorem then gives the metric on M. 
It clearly has bounded geometry, completing our proof. q.e.d. 

R e m a r k 2.6. 

1. One could use B = B-KI(M) X Bspin x [0, oo) in the case where M 
is 7T — 7T and Spin-Spin (i.e., spin and spin at infinity) and similar 
constructions for the other possible configurations of 7Ti's and spin 
or non-spin conditions as in [31]. The use of B = M x [0, oo) is in 
our case a slick way to deal with the Spin or non-spin issues that 
normally arise, [31]. 

2. As an example of how the spin issues can effect things consider 
the following. Hitchin, [19] shows that some of the exotic spheres 
have no metric of positive scalar curvature. Let S be one such 
exotic sphere. This sphere bounds a manifold W, which can not 
however be spin. Let M be the non-compact manifold W — S. 
This manifold is non-spin but is spin at infinity. This manifold 
is 7T — 7T where n is the trivial group, since W can be taken to 
be simply connected. So it might seem that the same argument 
as above would imply that M has a metric of uniformly positive 
scalar curvature . However, the map M —> M x [0, oo) is not 
properly 2-connected, which is derived from the fact that M is 
(non-spin, spin). We will remark in the last section that M in 
fact has no metric of uniformly positive scalar curvature. 

3. As another quick application of the above cobordism theorem, 
the univerisal cover of a manifold Mn with ni(M) = Zfc always 
has a complete metric of positive scalar curvature for k > 2. For 
k = 0,1 or 2 and M spin, combining Stolz's theorem, [35] with the 
Bochner argument of the next section, if d imM > k + 4, then M 
has a metric of uniformly positive scalar curvature if and only if 
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the higher *4-invariant associated to M —> Tk the &-torus vanishes; 
by [17], if M is not spin and is high dimensional, then there is no 
obstruction to positive scalar curvature on M. 

3. The index theorem 

We extend the calculus of correspondences defined in [7] slightly to 
handle the following situation. Let A be a C*-algebra, X and Y locally 
compact Hausdorff spaces, Y a manifold (see [1] for the case where Y is 
a stratified space). There are certain geometrically defined elements of 
KKi„(Co(X), Co(Y) (g> A) defined by the following data which is called 
an ^-correspondence a la [7]: A diagram 

(2) 

(Z,£) 
f 9 

S \ 
X Y 

1. where Z is a smooth manifold, 

2. £ is a vector bundle over Z whose fibers are projective A-modules, 

3. / : Z —> X is a continuous and proper map, 

4. g : Z —> Y is continuous and Spinc, which means that the Eu­
clidean vector bundle TÎ = T*Z®f*T*Y is endowed with a Spinc 

structure, and thus a bundle of spinors S. So S is a complex Her-
mitian bundle. Each £ G T*j\x defines an endomorphism c(£) of Sx 

such that 

(a) £ i-)- c(£) is linear, 

(b) c(e) = c(er and c(e)2 = ii£ii2, 
(c) Sx is irreducible as a module over Cliffy (Tî|-c), 

(d) if j = divaZ — dimY is even, the bundle S is Z/2-graded and 
c(£) is of degree one. 

Connes and Skandalis show how to associate to g : Z —> Y a Spinc 

map an element g\ G KKj(Co(Z), Co(Y)). So if we are given an A-
correspondence C as above (2), we form the following element 

[C] = US ® g\) G KKj(C0(X),Co(Y) ® A). 

We single out the following special case for future reference. 
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Propos i t i on 3 . 1 . The KKn(Co(M),Co(pt.)) element correspond­
ing to the following correspondence under the correspondence between 
correspondences and elements of KK 

M 

(3) ? \ 
M pt. 

where Mn is a Spinc-manifold is equal to the class defined by the Kas­

parov bimodule (H,FQ) where H is the Hubert space of I? spinors with 

the usual grading operator, [22] and FQ = p(l + Ijr)~2. Here p is the 

Dirac operator of M. 

Proof. This follows from the symbol calculus of [15]. q.e.d. 

The Kasparov product of two elements defined by correspondences 
can be accomplished geometrically as follows. 

T h e o r e m 3.2 (Connes and Skandalis, [7]). Let 

Ci = (Z1,£1,f\,gi) 

be an A\-correspondence from, X to Y of dimension j \ , and 

C2 = (Z2,£2,f2,g2) 

an A<2 correspondence from Y to V of dimension j 2 , Y and V mani­
folds, such that gi and f'2 are transverse. Then their Kasparov Product 
C\ ®C0(Y) C-2 G KKji+jïiCoiX), Co(V) <g> Ai <g) A2) is represented by the 
Ai (g) A2-correspondence [Ci ̂ €2] = (Z,£,f,g) described in the diagram 

(4) 
[Z = Zi Xy Z2, 

p\£i ®p*2£2) 

(Zi,£i) (Z2,£2) 
h 9i h 92 
/ \ , / \ 

X Y V 

where 

1. Z = Zi Xy Z2 
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2. £ = p\£\ 0P2^2 where pi and pi are the natural projections, 

3. f and g are clear. 

Finally, we recall the definition of cobordant correspondences. Let 
C\ and C2 be two A- correspondences from X to Y. They are called 
cobordant if there exists C = (Z, £, / , g) such that 

1. Z is a manifold with boundary dZ = Z\ TJ Z%, 

2. £\zk = £ki 

3- f\zk = fk, and g\Zk = {-l)k+lgk 

for k = 1, 2. Here g\gz is given a Spinc structure by requiring the Spinc 

structure on T*\QZ to be isomorphic to the product Spinc structure on 
T*, x v where v is the inward normal bundle. 

g\dz 

Theorem 3.3 (Connes and Skandalis). IfC\ andC<2 are two cobor­
dant A correspondences, then 

Pi] = [C2] 

in KKJ(C0(X),C0(Y) 0 A). 

Now using this calculus, we prove a simple index theorem which is 
a generalization of Roe's partitioned index theorem, [29]. 

Let M be our not necessarily compact manifold, with K\M = V. Let 
M be Spinc and / : M - > K a proper differentiable map. As above, let V 
be the canonical flat C*T- bundle over M. We then form the following 
correspondence CM'-

(M,V) 

(5) 

So [CM] 

(6) 

eKK, 

Id 

M 

(CotM), C;r ) . Define 

f 
M 

\ 
pt. 

/ * e i ^ o 

Id 
\ 

M 

(Co C 0 (M))by 
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Form the product 
by 

(7) 

*®MCM G KKn(C0( 

(M,V) 
/ 

Co (pt)) which is represented 

Finally, if t G 
dence 

(8) 

is a regular value for 

{t} 

pt. 

pt. 

define Ct to be the correspon-

Ct G if if i (Co (pt.), Co (M)). Then [Ct 

is given by the correspondence 
*®cM]GKK„_1(c0(pt.),c;r) 

(9) 
(iV,V| w 

, / 
pt. pt. 

where TV = / _ 1 ( t ) and is equipped with its natural Spinc structure. This 
last correspondence corresponds to the higher index class defined by 
Rosenberg Ind^y G KKn-i(Co(pt.), C*T) and pN is the Dirac operator 
corresponding to the Spinc- structure on N. So we have 

Theorem 3.4. The class in KKn_i(Co(pt.),C*T) defined by the 
product [Ct® f * ®CM] = IndpN. 

When r = {e} is the trivial group, one can check that product [Ct <g> 
/ * ®CM] is the partitioned index of M corresponding to the partition 
N, and the theorem above is Roe's partitioned index theorem. 

4. The Bochner argument 

Let M be a complete Riemannian manifold with -K\M = T, and let 
M denotes its universal cover. Let H = L2(M), and (-,-)0 its inner 
product. We describe the basic Hilbert C*T-bundle over M. Let V = 
M Xr C*r where C*T acts on the right of V; V is a flat bundle of 
projective C*r-modules. So TC(M, V), the space of compactly supported 
continuous sections is canonically isomorphic to 

{s: M c;r s{rwf) = 7-s(m) which are compactly supported mod Y} 
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Define a C*r-valued inner product on TC(M, V) by 

(si,S2)= / si(m)*S2(rh)dm, 
F 

where -F is a fundamental domain of the T-action on M. The canonical 
flat connection on V 

V : r ° ° ( M ; V) -)• r ° ° ( M ; AXT*M <g> V) 

is given by (Vs) = (is where s is viewed as a function from M —>• C*T. 
One also checks that 

( s 2 , s i ) = / S2(m)*si(m)dm = (si{m)* S2{m))* dm = (si, S2}* 
F F 

and 

(si,s2 • <p) = (si,s2)(p, 

where ip G C*rT. Thus TC{M;V) is a pre-Hilbert C; r -module . Let 
%(M; V) denote its completion to a Hilbert module. 

Another useful description ofH(M; V) is as follows: Let £0 = CC(M). 

Define (•,•): £0 x £0 ->• C r by 

(si,«2) = Y ] ( /__ ( s i (m) , s 2 (m7) )dm)7 

= ^««i,7«2>o)7-

Then 

<S2,«l) = 2 « S 2 , 7 S l ) o ) 7 
7 

7 

(10) = X > i ' 7 " l s 2 > 0 7 

7 

= 2<ai,7*2>o7_1 

7 

= ( s i , s 2 ) * . 

C r acts on £0 by (s • ip) = /~]j~ sip(j). Again one easily checks that 
7 

this action with (•, •) turns £0 into a C*Y pre-Hilbert module. 
Now define an homomorphism $ : £Q —> TC(M;V) by (<&s)(fh) = 

E(7-s)7 • 
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Proposition 4.1. $ defines a C*T Hubert module isomorphism 
from the completion of So with respect to the C*Y-valued Hermitian 
product defined above to the C*T Hilbert module ,H(M;V). 

Proof. It is straightforward to check that $ commutes with the C*T 
actions. For s\,S2 G So we have 

while 

(si,s2) = 2«si ,7*2>o)7) 

($si,$S2) = / ($si)(fh)*($S2)(fh)dfh 
JF 

= / (y^ s i ( m 7 i ) 7 i ) * ( ^ 52(^72)72)^ 
F 71 72 

= X I W si(^7i)-S2(m72)rfw)71"
172 

71,72 

= 5 Z ( / Si(w7i)s2(m7i7)^"i)7 
71,7 JF 

= (̂ I_si(m)s2{rh'y)drh)~fi 

= (si,s2). 

So $ is an isometry. Now define \I/ by (^E's)(m) = s(m)(e). One checks 
directly that \I/ is also a map of Hilbert modules and is inverse to <&. 

q.e.d. 

So % = %(M;V) can be also viewed as the Hilbert CjfT-module 
obtained by completing So. If S is a vector bundle on M (with a Her­
mitian metric), then we form H(M;V <8> 5) in the obvious way. Thus, 
as we've seen, the C*Y-valued inner product on H. is given by 

{si,s2)c;r = ^ ( s i , 7 - * 2 ) o • 7-
7 

Note that (si,s2)o = (si,«2)(e). So clearly | | (s,s) | |c;r > |<s, «>o|-
Hence U^H. 

Now let M be spin and If) the Dirac operator acting on the spinors 
of M. We may couple p to the flat bundle V using the canonical flat 
connection on V to obtain 

% : Vf{M- S <g> V) -)• r ~ ( M ; 5 (g) V). 
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In terms of our other description, we can define pa.s acting on r£° (M; S). 
$ can be extended to a map 

$ : Vf{M- S) -+ Vf{M- V <g> S). 

Then we have that 

p^^ = $p 
This depends on our canonical choice of fiat connection on V and is left 
to the reader. 

For A; = 0 , 1 , . . . , let 

k 

3=0 

be the standard Sobelov norm on Tf(M;S) and Hk{M;S) = Hk{S) 
its completion. Similarly, let 

(si,s2)c*r,k = 5 Z ( S I , 7 S 2 ) A ; 7 
7 

and Uk(M;V <g> S) = Hk{V <g> 5 ) the completion a s j i Hilbert C7r*r-

module. And as above we have Uk(M; V <g> S) <->• Hk(M; S). 

L e m m a 4 .2 . ^ f c ( M ; V « > S ) = ^ ° ( M ; V <g> 5 ) n Hk(M; S). 

Some standard facts about T-Lk from [15]: 

1. pv : Uk{V <g> 5) ->• ftfc_1(V <g> 5 ) is a bounded operator. 

2. For ip G Co (M), the multiplication operator Mv : Uk{V <g> S) ->• 
ft'(V ® 5) is Cr*r-compact for I < k. 

According to the discussion above r £ ° ( M ; 5 ) is a common domain 

for p acting on H(M, S) and for py acting on 'H(M; S®V). According 

to [18], pis selfadjoint on M. Hence we may apply the spectral theorem. 

We now show how the spectral calculus can be extended to the Hilbert 

module-H(M;V<g> S) . 

Let ip be a bounded function on R such that its_Fourier transform 

•ip is compactly supported. We now can apply ip to p to get a bounded 

operator ip{Jp) on L2{M; S) = H(M;S). Since H{M; S) Ç H (S) we can 

apply ip(p) to elements of %{M;S). 
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Proposi t ion 4.3. ip(P)\n(M-.s) ^as image in ,H(M;S), and defines 
a bounded Hubert module operator in C(T-L(M;S)). Moreover, 

\mm\c(n(M-,s)<\mmc{H{M-s)y 

Proof. Since T^(M;S) is dense in H(M;S) (and in H(M;S)) we 
need to check that for s G F™ (M; S) that 

'il){ìp)seU{M-S) 

and that 

\\^{Ì>)S\\H{M;S) < \\^OP)\\C{H{M;S))\\S\\U{M,S)-

According to the ordinary spectral theorem, if s G Y^°(M]S) then 
ip(P)s G H°(M;S) while by the condition on supp -ip it follows that 
suppip(P)s is compact by a finite propagation speed argument (see Roe, 
[28]). Hence il>(fys£U(M;V®S). 

Let N = W^PiP^WaH(M-S))' Then N — ip{]p)2 is an invariant and 
positive bounded operator on H(M,S). As such, for any £ G H(M,S) 
the function on T defined by 

= ( ( A T - ^ ( # ) ^ , ( 7 V - V W 2 ^ 7 £ ) o 

= ((N-tß(ip)2)k,J-(N-tP(iP)2)k)o 

is positive definite. So finally we have for £ G r£°(M; S) that 

5]((7v-v(|>)2)-e,7e)o7 

is a positive element of C*T. Therefore, in C*Y we have the inequality 
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So 

(again by the T-invariance of p) 

E^(^"^)o^llc;r 

< Ar| |^<e,-Te)oTl |o*r 
7 

Hence, V(-^) i s a bounded operator in the Hilbert module norm. 

Finally, since p is T invariant and ip(P) is s e H adjoint, one checks 

that ip(p) satisfies 

(psi,s2)c;r = (si,pS2)c;r 

for si, s<2 G r ^ ° (M; S). Therefore ip(P) extends to an adjoinable bounded 
Hilbert module operator, finishing the proof of the proposition. q.e.d. 

Let e : S —> S be the grading^ operator on the spinors. From now 
on we write p for the operator p or py which as we've seen can be 
identified. 

P r o p o s i t i o n 4 .4 . The operator p+ Ae has a bounded inverse 

Qx : n(M; V®S)^ U(M; V <g> S) 

for all A > 0 and \\Q\\\C(H(M;V®S)) < A _ 1 -

Proof. For s G T™(M;S) we have 

o \\(P+Xs)s\\20 = ((p+\£)s,{p+Xs)s) 

= ((f + \2)Sis)0 

(11) = (fsis} + \2(s,s) 

> A 2 | | S | | 2 . 

Hence there exists c with Spec(p+ Ae) n (—c,c) = 0. 

Let ip be a continuous function on M with ^ ( t ) = | for |t| > c. 

•0 can be approximated by ipn with \\ip — ipn\\ < ^ and ipn having 
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compact support. Then ifin(p+ Ae) G C(V.(M;V <g> S)) by the previous 
proposition and 

\\ll>n(P+ te)\\c{H(M;V®S)) < \Wn(P+*e)\\cmM.s)y 

hence since ipn(p + Ae) is Cauchy in C(H(M;S)) it 's Cauchy in 

C{H{M,V®S)) so 

ip{p+Xe) £C(H(M,V®S)). 

The statement about the norm is clear. q.e.d. 

Corollary 4 .5 . Q\ in fact defines a bounded operator 

Qx: n°(M,S)^n1(M;S). 

Proof. The estimate (11) can be refined to 

(12) \\{]p+\£)s\\2
0 > (ps,]ps) + \2(s,s) > c 2 | | s | | 2 . 

So we have \\(p+ Xs)s\\0 > c | |s | | i , hence (fl+ Ae)"1 : H° ->• H1, 

(13) WP+\e)s\\2
c.r = | | ( ( ^ + A e ) 2

S , ( ^ + A e ) S ) c r * r | l e > r 

(14) = \\J2((]p+Xs)s, j(]p+\s)s)0l\\c*rr 
7 

(15) = HE^^> + A2^s»*;r 
7 

(16) > A2 | |a | |c rT,i. 

Thus we have 

Qx : H°(M; V®S)^H1(M-,V® S) 

is bounded. q.e.d. 

The rest of what follows in this section is influenced heavily by 
Bunke, [5]. Let ip : M ->• M where ip G Cf(M) and ip + f > c on 
all of M. (Recall that K is the scalar curvature function.) Thus we are 
assuming that M has scalar curvature K > e > 0 off a compact set. 

Then we have 

(17) ((f + A2 + <p)s, s)Q = ((A + A2 + | + <p)s,s) > (A2 + c)(s,s)0 
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for all A. 
We have 1fr + A2 is invertible with inverse Q2 and has norm 

HQAII < A ~ 2 - N o w 

^ + A
2 + ^ = ( ^ + A2)(l + Q2</?), 

therefore 

oo 

(^ + A2 + ^)-1 = (^ ( - i r (Q 2 ^)Q 2 

i=0 

exists for large A. 
Now we want to see that (Qv)2 = (fi + ip)'1 exists and ||Q^|| < c"1. 
Set (Qf)2 = {Iff" + ip + A2) - 1 . We've seen this exists for large A. For 

(fi+<p+l*2) = ^+^+A2-(A2V) = (^+¥3+A2)(l-(A2 V)(Q£)2). 

So 
oo 

{f + <P + M2)-1 = ( £ ( A 2 - /^(QD^XQD2-
i=0 

In order for this sum to converge we need 1 > ||(A2 — M2)(Q^)2||. But 

||(A2 - /.2)(Q^)2 | | < (A2 - Ai2)(A2 + e)"1 

so we need (A2 — /J,2) < A2 + c or JJ,2 > —c. Hence 

(Q^)2 = ( ^ + ^ + A2)-1 

exists for VA. Thus 

(Qv)2 = (fi + tp)-1 : U°^U2 

is a bounded operator. 

Now define F = ]p\Qv). Then F : U° ->• %° is a bounded operator. 
We need to see that its adjoinable. We'd like to have that F* = (QP)]p 
but this is a priori not defined on H°. We will see that it extends. So 
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let seV.1. Then 

wmm2 = wimps, mm 
= \\((Q^fps,ps)\\ 
= \\(]piQv)2s,Jps) 

+{(Qv)2(y<p)(Qn\vs) 
(since [# Q] = -QV<pQ) 

(18) = \\(fi(QTs,s <Pft 

+w(]p(Q'p)2v<p(Qn2s,s) 
< A\\s\\2 

for some A > 0 since jf{Qv)2 and fliQ^fVipiQ^)2 are bounded oper­
ators. So Qvp extends to a bounded operator from H° —> V.0. 

Now we calculate a few things: 
F = pQ"P and F* = Q^fl. 

2 f°° 
First we see that Qv = - {QlfdX. 

K O 

So 
9 OO 

JPQV = - PiQlfdX 
K O 

IfdX 
9 00 

- / (Q£)2#-(Q£)2V*>(Q 
^ o 

9 r00 

Q ^ _ _ / ( Q ^ V ^ ) 2 ^ . 
K O Thus F - F* = l^(Ql)2Vip{Ql)2d\. The intergrad is norm con 

vergent and compact since (Q?)2V<^(Q^)2 is the composition %Q -4 
¥>2 

%2 -4 H° -4 %° and the middle operator is C*T compact by Rellich's 
lemma, (4). Hence F - F* G K,(H°). 

Now 

i?2 - 1 = F2 - FF* + FF* - 1 = F (F -F*) + FF* - 1 = FF* -l + A, 

where A G /C(%°) and 

FF* - 1 = IpQ^Q^Ip- 1 

= TO^)2^-1 

= f(Qn2 - ip(Qn2v<p(Qv)2 - i 
= 1 - ( ^ ) 2 - TO^)2V(^)2l 
= ^ ) 2 - W ^ ) 2 V ^ ) 2 . 
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Again by Rellich's lemma, W0 —> 7-L2 —> H0 is compact. Also 

n0 (Q_;)2
 H2 V^ no (Q\)2

 H2 % n0 i s c o m p a c t ) s i n c e V(ß . H2 _+ n0 i s 

compact and all the other operators are bounded. So F2 — 1 G /C(%°). 
That [F, a] G K{U0) Va G C70(M) follows as in Bunke [5]. We have thus 
verified the following: 

Corollary 4.6. The pair ('H0,F) defines an element in 
KKi„(Co(M),C*r), and in fact, pulls back to define an element in 

KK,(C0(M)+,C;V) = KK,{C{M+),C*rY). 

(Here, Co(M)+ denotes the algebra CQ{M) with a unit adjoined and 
is therefore the same as the continuous functions on the one-point 
compactification M + . ) We now show that the element so defined in 
KKi„(Co(M), C*T) equals the element usually associated to a Dirac op­
erator on the manifold M. 

Proposi t ion 4.7. As elements of KK*{C0{M),C;r), {U°,F) and 

(H°,F0) are equal, where F0 = ]p{l + ^ ) " i 

Proof. We show that a{F - FQ) G K(H?) for all a G C0{M). Let 
(Q0)2 = ( ^ + A2 + l ) - 1 . Then 

OO 

a(F-F0) = - aIp{[Qlf - {Q\f)d\ 
n o K Jo 
9 f°° 
n Jo 
9 f°° 
A I ^ 2 0 2 

1" O 
-Va + Ij)a){(Qiy-(Qiy)d\ 

2 °° 

K O 

oo 

. ( _ V a + W ( ( Q ^ ^ _ i ) ( Q 0 ) 2 ) d A 5 

o 
which is compact for a G C%°(M) since the integrand is the sum of the 
two compositions 

U0 (Q|)2
 H2 <Pj H2 (QJ)2

 n4 A H3 4 H0 

and 
^ 0 ( ^ ) ^ 2 V^l -^2 ( ^ ) ^ 4 Va ^ o 

and the operators multiplication by a and Va are compact on the ap­
propriate Sobelev spaces. Hence for a G CQ(M) and a, G C£°(M) with 
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ai —> a uniformly we have a,i{F — FQ) —> a(F — FQ), and so a(F — FQ) is 
compact for all a G Co (M). 

That (F - F0)a G K,(H°) follows from the fact that both [F,a] and 
[FQ,a]£K. 

Hence the two elements are equal in KK{CQ{M), C*F) q.e.d. 

We can now state our Bochner-Lichnerowicz theorem. Suppose M 
is a Spin manifold with fundamental group I \ Let / : M —> R be a 
proper differentiate function. Then there is a map 

KK*(c0(M),c;r) h KK*(c0(R),c;r) *4 ürür»_i(c0(pt.),c;r) 

where C< is the correspondence described by (8). 

T h e o r e m 4.8 . Let M be a complete Riemannian spin manifold, 
with fundamental group F and scalar curvature K satisfying K > e > 0 
off of a compact set. Then the image of (T-L^.FQ) G KKn(C0(M), C*F) 
in KKn_i{C0{pt.),C;F) is 0. 

Proof. By the previous proposition, the elements (T-L°,F) and (%°, FQ) 
define the same class in KKn(Co(M),C*F). So by Corollary (4.6), the 
class of (H°, F0) pulls back to KKn(C0(M)+, C;F). From the sequence 

0 - • C 0 (M) -^ C 0 (M)+ - • C0(pt) ->• 0 

we get a long exact sequence in KK theory which is the first column of 
the following commutative diagram 

KKn(c0(M)+,c;F) -• KK„(c0(M)+,c;r) 

KKn(C0(M), C;F) ->. KKn(C0(M), Cr*r) 

KK„_1(c0(pt.,c;r) = ifJFfn_1(Co(pt.,c;r). 

Now the result follows from the fact that the compostition of the two 
left vertical arrows is zero. q.e.d. 

5. T h e Novikov conjecture for fundamenta l groups of ends 

In this section we verify the Novikov conjecture for the relevant end 
groups. 
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T h e o r e m 5 .1 . Let M be an irreducible locally symmetric space of 
finite volume and non-positive curvature. Then the assembly map 

KKn(C0(Bir?(M)),C) - • Kn(C;(n?(M))) 

is split injective, where 7rf°(M) is the fundamental group of the end of 
M. 

Proof. If the Q — rank > 3 the fundamental group of the end is 
the same as the fundamental group of M , (2.3) and the result therefore 
follows from Kasparov's theorem, [22]. In the Q — rank 1 case, 7rJ°(M) 
injects into 7ri(M), (2.3) and the result again follows from Kasparov's 
theorem. In the only interesting case, Q—rank 2, we have an extension, 
(2.3) 

1 ->• Foo ->• 7 i f (M) ->• TTI(M) ->• 1. 

As we shall see, the Novikov conjecture for 7rJ°(M) follows from Kas­
parov's theorem for -KI(M) together with Pimsner and Voiculsescu's 
theorem, [26] for F ^ . 

Now recall from section 2 that the Borei-Serre compactification M 

of M is formed by adding to the universal cover M a boundary dM such 
that 7Ti(M) acts on M = MUdM and M/in(M) is compact. Therefore 
d~M is dM/m(M) and ^ ( M ) = vri(ôM). Also, dM has the homotopy 
type of a bouquet of circles (Q — rank is 2). m(M) does not act on 
TTi(dM) = FQO but it does act on the fundamental groupoid -n:(dM). 

L e m m a 5.2. 

1. C*(-ïï(dM)) is Morita equivalent to C'^F^). 

2. C*(7T^°(M)) is Morita equivalent to the crossed-product algebra 

Cr*(7ri(M),Cr*(7r(3M))). 

Proof. The first part is a standard fact. As for the second, form the 
topological semi-direct product groupoid 

H = {{q,l)\q G 7Ti(M),7 G T T ( Ö M ) } . 

Define the source and target maps s, r : II —> dM by s(q, 7) = 0(7) and 
r(<??7) = 9 " r (7 ) - Multiplication is defined by 

(9i, 7i) • (92,72) = (9192, {q2 7i)72) 
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when s(<7i,7i) = r(<?2,72)- It is easy to see that 

c ; (7r iM,c ; (7TöM)) = c ; ( n ) . 

Now we see that IT is equivalent as a topological groupoid to 7rf°(M). 
Indeed, since II is connected (i.e., there is a morphism between every 
object of LI), IT is equivalent as topological groupoids to the group 

{(9,7) G n |s(<?,7) = r{q,j) = x} 

for any object x. It follows from the homotopy lifting property that 
this group is isomorphic to iri(dM/-Ki(Mix)) = 7rf (M) . So C*(IT) is 
Morita equivalent to C*7rf (M) , [24]. q.e.d.(the lemma) 

Now notice that Sv r f^M) = <9M x T l ( M ) £ T T I M . We have the fol­
lowing composition: 

KKn(C0(dM xMM) ETT.M)^) 

KKl^M\C0{dM x EmM),C) 

KK^M(C0(EinM), C;(n(dM)) 

KKn (C, C; (TTI (M) , C ; ( T T ( 0 M ) ) 

^ „ ( Ç C ^ T T H M ) ) ) . 

The isomorphism (1) follows since the action of iri(M) is free and 
proper. The isomorphism (2) follows from the Pimsner-Voiculescu the­
orem, [26], together with a Mayer-Vietoris argument on the quotient 
E-Ki(M)/-Ki(M) = B-K\M. The map /z is the Baum-Connes assembly 
map for m(M) with coefficients in C*7r(<9M), which is split injective, 
according to [3]. This is implicit in Kasparov, [22]. This completes the 
proof of the theorem. q.e.d.. 

The preceding proof can be greatly generalized and seems to be 
useful in many cases where one as an extension of a group for which one 
knows Novikov with coefficients by a group for which one knows Baum-
Connes. For example, the same method proves the following result. 

Propos i t i on 5 .3 . 

1. Consider the class of discrete groups V that contains the abelian 
groups and is closed under amalgamated free products and HNN 

KKn(Co(Bir^(M)),C) 

(1) 

(2) 

A 
Morita 
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extensions. Let T G V. Then the Baum- Connes assembly map, 
[3] 

ß:KKl(ET,C) -+K*(C;(T)) 

is an isomorphism. 

2. Ifl—tT—ïA—ïK—ïlisan extension where T G V and K is a 
discrete subgroup of a Lie group, then the standard assembly map 

K,(BA) -+ K,(C;(A)) 

is split injective. 

Proof. The first statement follows from [25], while the second state­
ment follows from the first, Kasparov's theorem and the technique used 
above. q.e.d. 

6. C o m p l e t i o n of t h e proofs of T h e o r e m (1.1) 
and T h e o r e m (1.3) 

We need to show that if T is not an arithmetic lattice or even if it 
is arithmetic, if its Q — rank is less than 3, then M has no uniformly 
positive scalar curvature metric. If the Lie group G has R — rank below 
2, then all associated homogenous manifolds are either compact and 
eliminated by the classical results cited in the introduction or, by the 
Margulis lemma, have an almost flat manifold cross section at infinity, 
and are thus A2 enlargable in the sense of [18], and thus have no metrics 
of positive scalar curvature . If the R — rank is at least 2, then by Mar-
gulis's arithmeticity theorem the lattice T is arithmetic. We can thus 
use the analysis of Borei-Serre, [32]. If the Q — rank is 0, we are again 
in the compact case. If Q — rank is 1 or 2, then there is an aspherical 
manifold at infinity who fundamental group satisfies the strong Novikov 
conjecture as we saw in the previous section. (Note that in the Q—rank 
at least 3 case, the manifold at infinity is not aspherical.) Suppose that 
M has a metric which is uniformly positive scalar curvature outside of 
a compact set. One can cut M open along a cusp and double the result­
ing cusp using the given Riemannian structure near the two ends and 
any Riemannian structure in the interior (there is no canonical metric 
doubling for a manifold whose boundary is not metrically collared, al­
though away from the a neighborhood of the former boundary, one can 
use the original metric), to obtain a new manifold, V, diffeomorphic 
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to the slice cross M, and which is uniformly positive scalar curvature 
outside of a compact set. If V is spin then one can directly apply the 
Bochner-Lichnerowicz argument of section 4 with the index theorem of 
section 3 to get vanishing of the K-theoretic higher A-genus, which con­
tradicts the strong Novikov conjecture, since for an aspherical manifold, 
the homology A-genus does not vanish. If V is not spin, it still has a 
spin universal cover (by asphericity), so one can modify this argument 
in exactly the same way that Rosenberg does in [28]; one uses the Dirac 
operator on the universal cover thought of as being equivariant with 
respect to a Z / 2 Z group extension of ni(V). This completes the proof 
of Theorem (1.1). 

R e m a r k 6 .1 . Consider the manifold M constructed in Remark 
2.6, 2., from a Hitchin sphere. We can use the same doubling trick to 
show that M has no metric of uniformly positive scalar curvature . For 
if M had such a metric, we cut M at a cross-section of infinity, and 
double the end as above, putt ing any metric on the section where it is 
glued. We thus arrive at a manifold with a metric of uniformly positive 
scalar curvature off a compact set. Then a generalization of the index 
theorem above to real if- theory shows that this is obstructed by the 
same element that obstructs in Hitchin's argument. 

Let us now turn to the issue of proper rigidity of K\G/T. We will 
only make several remarks here, postponing a more detailed discussion 
to another paper. We will break down Theorem 1.3 into several propo­
sitions. 

Definit ion 6 .2 . A manifold X is called properly rigid if any ANR 
homology manifold with the disjoint disk property proper homotopy 
equivalent to it is homeomorphic to it. This is equivalent to a slightly 
stabilized version of the more naive version of rigidity using manifolds 
proper homotopy equivalent to X in light of [4]. In particular all of the 
compact rigidity results of e.g. [20], [8], [9], [10] apply equally in this 
more general context. 

Propos i t i on 6 .3 . IfQ-rank of Y is at least 3 ; then K\G/T is never 
properly rigid in the setting of homology manifolds. (It will be properly 
rigid in the topological category if and only if [K\G/T : F/Top] = 0, 
which seems to be rather infrequent.) 

Proof. Since the fundamental group at infinity is T, the proper 
surgery obstruction group vanishes, so the structure sequence for ho-
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mology manifolds [4] implies that there is always a proper homotopy 
equivalent homology manifold with any given resolution obstruction. 
The parenthetical remark follows from ordinary proper surgery, [36]. 

Propos i t i on 6.4. If the real rank of G is 1 or the Q-rank of F is 
0 or I, then K\G/F is properly rigid (even in the setting of homology 
manifolds). 

Proof. This is established in [11] aside from the issue of homology 
manifolds. (Essentially, the proper homotopy equivalence is first made 
into a homeomorphism at infinity, using the Borei conjecture for the 
group at infinity as well as the vanishing of Whitehead and projective 
class groups. Then one has an essentially compact situation, so the 
Borei conjecture for F makes this rei infinity homotopy equivalence ho-
motopic, rei infinity, to a homeomorphism.) However, the Novikov con­
jecture for r or the fundamental group at infinity (for the noncompact 
case) implies that the resolution obstruction of Quinn [4] is homotopy 
invariant for aspherical homology manifolds, so one is reduced to the 
case of manifolds, after all. q.e.d. 

R e m a r k 6.5. Note that the same proof works in the Q-rank 2 case 
if the Borei conjecture for the fundamental group at infinity were known. 
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