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ON COMPACT RIEMANNIAN MANIFOLDS WITH
NONCOMPACT HOLONOMY GROUPS

BURKHARD WILKING

Abstract

Solving a long standing problem in Riemannian geometry we construct a
compact Riemannian manifold with a noncompact holonomy group. As
the title indicates we then prove structure theorems for these manifolds.
We employ an argument of Cheeger and Gromoll [1971] to show that the
holonomy group of a compact Riemannian manifold is compact if and only if
the image of the so called holonomy representation of its fundamental group
is finite. Then we characterize these holonomy representations algebraically.
As a consequence we prove that a finite cover of a compact Riemannian
manifold M (") with a noncompact holonomy group is the total space of
a torus bundle over another compact Riemannian manifold B®) with b <
n— 4.

1. Introduction

For a Riemannian manifold M and a piecewise smooth curve
v:[0,1] = M we let Pary: Ty oyM — T,y M denote the parallel trans-
port along «y. The holonomy group Hol(M, p) of M at p is the subgroup
of the orthogonal group O(7}, M) consisting of all endomorphisms of the
form Par, where ~y runs over all loops at p.

It is an elementary consequence of the de Rahm decomposition theo-
rem [2, Theorem 10.43] that the holonomy group of a simply connected,
complete Riemannian manifold is compact. For the general case the best
result so far known is due to Cheeger and Gromoll [4, Theorem 6]. They
combined their splitting theorem with the holonomy classification theo-
rem of Berger [1] and Simons [9] to show that the holonomy group of a
compact Riemannian manifold is compact, provided that the Euclidean
factor of the universal covering space is either at most one-dimensional
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or cocompact. In fact, the assumptions of this theorem turn out to be
optimal:

Example 1. There is a five-dimensional, simply connected, solv-
able Lie group S, a left invariant metric g on S and a discrete, cocompact
subgroup A C S such that the holonomy group of the compact Rieman-
nian manifold M := A\(S, g) is isomorphic to SO(3) x Z.

After learning that compact Riemannian manifolds with noncom-
pact holonomy groups exist, we want to investigate the structure of
these manifolds. More generally, we will prove structure theorems for
a compact manifold M whose universal covering space has a nontrivial
Euclidean factor. For that it is crucial to define and to understand the
holonomy representation of a fundamental group of a compact Rieman-
nian manifold: For a connected compact Riemannian manifold M and a
point p € M we consider the subspace V of T}, M that is kept pointwise
fixed by all elements of the identity component Holg(M, p) of Hol(M, p).
It is easy to see that for a loop 7 at p the restriction of Par, to V only
depends on the homotopy class [y] € w1 (M,p) =: m(M). The holon-
omy representation py: 71 (M) — O(V) is defined by p1([7y]) := Par,y-.
Finally, for any representation p : IT — GL(W) in a real vector space W
we define the integer rank of p by

p-invariant, cocompact

A is a finitely generated, }
subgroup of W

(1) Z-rk(p) = min{rank(A)

We emphasize that the group A occurring in this definition is not nec-
essarily discrete. Moreover, Z-rk(p) = oo is allowed.

Theorem 2. Let (M,g) be a connected, compact Riemannian
manifold, p € M, and let p1: m (M) — O(V) be the natural holonomy
representation as introduced above. Then the fundamental group m (M)
contains a finitely generated, free abelian normal subgroup L for which
the following hold:

(i) The natural action of w1 (M) on L by conjugation induces a repre-
sentation w1 (M) — GL(L) in the Z-module L and a corresponding
real representation p: m (M) — GL(L ®z R) in L @z R.

(1i) The representation p decomposes as a direct sum p = py D po where
p1 18 equivalent to p1.
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(11i) There is a subgroup H C 7w (M) salisfying LNH = {e}, and H-L
is of finite index in m (M).

(iv) rank(L) = Z-rk(p1) < oc.

In the special case of a compact flat manifold M the theorem is well-
known: It is an elementary consequence of the first Bieberbach theorem
that the holonomy representation of 71 (M) can be obtained by letting
m1(M) operate by conjugation on its translational part.

Notice that statement (iv) yields immediately the inequality rank(L)
> dim(V). Because of the de Rahm decomposition theorem the di-
mension of V is equal to the dimension of the Euclidean factor of the
universal covering space of M. Thus this inequality can be viewed as a
partial generalization of the first Bieberbach theorem.

As we will see in Section 3, the arguments in the proof of the above
quoted theorem of Cheeger and Gromoll can be used to prove that
the holonomy group of M is compact if and only if the image of the
holonomy representation p;: w1 (M) — O(V) is finite. This allows us to
show:

Corollary 3. Let M be a connected, compact Riemannian mani-
fold with a noncompact holonomy group. Then there is a nontrivial,
finitely generated, free abelian normal subgroup L C m (M) and an el-
ement g € m (M) such that the Z-linear map c;: L — L, v — gvg™*
has an eigenvalue A € S' C C which is not a root of unity. Moreover,
rank(L) > dim(V') + 2 > 4, where V is defined as in Theorem 2.

Furthermore, in combination with its proof Theorem 2 yields the
following corollary, which can be viewed as the main structure result of
this paper.

Corollary 4. Let (M,g), p, V C T,M, p1 be as in Theorem 2.
Then for a finite Riemannian cover (M,g) of (M,g) the following is
true: There is a compact Riemannian manifold B and a Riemannian
submersion o: M — B such that the fibers of o are flat tori of dimension
d = Z-tk(p1) > dim(V'). Moreover, there is a smooth section s: B —
M. Finally, we have the following in addition:

a) If the holonomy group of M is compact, then the fibers of o are the
orbits of a free isomelric torus action, and the corresponding dif-
ferentiable principal torus bundle over B is trivial. In particular,
M s diffeomorphic to the product B x (SH).
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b) If the holonomy group of M is noncompact, then

d>dim(V) +2> 4.

¢) If the Ricci curvature of M is nonpositive, then the horizontal
distribution of o is integrable.

d) If the sectional curvature of M is nonpositive, then fibers of o are
totally geodesic. Moreover, the holonomy group of M is compact.

e) If the Ricci tensor of M is parallel, then Hol(M, p) is compact.

Corollary 4 yields obstructions for a manifold to have a prescribed
holonomy representation. For example, let M be a compact manifold
with a compact holonomy group, and suppose that the image of the
holonomy representation pq: w1 (M) — O(V) contains an element of
order k. Then Z-rk(p1) > p(k), where ¢ denotes Euler’s ¢-function.
Thus, by part a) of the addendum, a finite cover M of M is diffeomorphic
to B x (S1)#®) for some compact manifold B. This is to some extent a
striking conclusion, since the number ¢(k) can be huge even if dim(V') =
2.

In the light of Corollary 4 b) it is not very surprising that there is
much more rigidity in low dimensions:

Corollary 5. Let M be a connected, compact Riemannian mani-
fold with a noncompact holonomy group.

a) Then dim(M) > 5 and in the case dim(M) = 5 the following hold:
There is a connected, stmply connected, five-dimensional, solvable
Lie group S, a finite group F C Aut(S) and a discrete, cocompact,
torston free subgroup I' C S X F such that M is diffeomorphic to
the quotient S/T'. Moreover, M also admits a local homogeneous
metric with a noncompact holonomy group.

b) If dim(M) = 6, then M is aspherical.

From part a) of the corollary it becomes apparent that the manifold
of Example 1 is a solvmanifold not just by accident.

For the next theorem we introduce a notation: We say that a real
representation ¢ : IT — GL(U) of a finitely generated group II is a holon-
omy representation if and only if the following hold: There is a compact
Riemannian manifold M and an isomorphism «: IT — 71 (M) such that
prow: II — O(V) is equivalent to 1, where py: m (M) — O(V) is the
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holonomy representation of w1 (M) as introduced above. We can now
formulate a converse statement to Theorem 2.

Theorem 6. Let 11 be a finitely generated and finitely presented
group. Suppose there is a finitely generated, free abelian normal subgroup
L C IT and a subgroup H C 11 for which the following two conditions are
satisfied.

(i) HNL = {e} and H-L is of finite index in TI.

(1i) The representation p: 11 — GL(L ®z R) that is induced by conju-
gation decomposes, p = p1 ® pa, such thal py is equivalent to an
orthogonal representation.

Then p1 is a holonomy representation.

Notice that in combination the two theorems characterize the holon-
omy representations of the fundamental groups of compact Riemannian
manifolds. As is shown in the proof of Theorem 6 the representation p;
can be realized as the holonomy representation of the fundamental group
of a compact n-manifold with n = Z-rk(p;) + 4. On the other hand, by
Corollary 4 the integer rank Z-rk(p1) of the holonomy representation
of the fundamental group of any compact Riemannian manifold M is
bounded by the dimension of M. So we have a quite good estimate
for the minimal dimension in which a given holonomy representation
occurs.

Using Theorem 6 it is easy to characterize the images of holonomy
representations as well:

Corollary 7. A finitely generated subgroup ® of the orthogonal
group O(l) is the image of a holonomy representation if and only if
there is a finitely generated, cocompact subgroup A C R that is invari-
ant under .

Finally, we show that there are no obstructions for the closures of
the images of holonomy representations:

Corollary 8. Let G be a closed subgroup of the orthogonal group
O(l). Then there is a finitely generated dense subgroup ® C G which is
the tmage of a holonomy representation.

Of course, Corollary 8 ensures the existence of many compact Rie-
mannian manifolds with rather exotic holonomy representations.
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Remarks.

1.

In subsection 2.1 we construct a compact Kéhler manifold (N, g)
with a noncompact holonomy group and dimg(N) = 5. We do
not know whether five is the minimal complex dimension in which
compact Kahler manifolds with noncompact holonomy groups oc-
cur, nor do have an analogue of Theorem 6 for the holonomy
representations of fundamental groups of compact Kahler mani-
folds. So it might be true that there are additional obstructions
for these representations.

. Observe that Corollary 4 e) applies to locally symmetric spaces,

Einstein manifolds and quaternion Kihler manifolds. Thus the
compact manifolds in these classes have compact holonomy groups.

Viewing at Corollary 4 ¢) one might ask whether there exists a
compact Riemannian manifold with nonpositive Ricci curvature
and a noncompact holonomy group. The answer is yes. In fact,
a straightforward computation shows that the manifold of Exam-
ple 1 can be chosen such that its Ricci curvature is nonpositive.

It is clear from the proof in subsection 6.1 that the conclusion
of Corollary 4 d) remains valid if the hypothesis “K < 0” is re-
placed by the following weaker assumption: For all ¢ € M and all
orthonormal vectors vy, ... ,vq € Ty M the following two inequali-
ties hold

d d
ZRic(vi,vi) <0 and Z K (spang (v;,v;)) < 0.
=1 i,j=1
i

Combining Corollary 5 a) with a theorem of [5], we conclude that
two five-dimensional compact Riemannian manifolds with non-
compact holonomy groups are diffeomorphic if and only if their
fundamental groups are isomorphic. For further structure theo-
rems on infrasolvmanifolds we refer to [12].

Up to some extensions and improvements the paper is also part of the
author’s dissertation, [11]. T am grateful to my Ph.D. advisor Professor
W.T. Meyer for his enlightening lectures on Riemannian geometry.
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2. A compact 5-manifold with a noncompact
holonomy group

Let ¢ € (0,27) be the number with ¢’ = 1 —v2+i(v2-V/v2 - 1),

and set A := 1++/2- (1 +vV2 + 1). It is straightforward to check that
the two matrices

cos(p) —sin(p) 0 0
A= sin(p) cos(p) 0 O
0 0 A0 |7

1

o) 0 0 0 4
0 0 0 1
B — -1 0 0 2
0 -1 0 =5

have the same characteristic polynomial. Since both matrices are
semisimple, there is a matrix S € GL(n,R) satisfying A = SBS™L.
Notice that B is contained in GL(4,7Z), and hence the cyclic group gen-
erated by A leaves the lattice L := § - Z* invariant. It is easy to see
that there is a matrix X € M(4,R) with exp(X) = A. Moreover, we
can assume that X has the same block form as A and that the first
block (2;;)s,j=1,2 is the skew symmetric matrix (g 7). Consider the
semidirect product

S=R'XR, (v,5) (w,t) := (v+exp(sX)w,s+1t)

and the discrete, cocompact subgroup A := L x Z. We view the two
subspaces U = R? x {0} and V = {0} x R? in the natural fashion as
normal subgroups of S. The group S; := VxR C S is complementary to
U, that is UNS; = {e} and S = S; - U. Thus we can describe S also as a
semidirect product U xSy, where 5: S; — GL(U) is the representation
induced by conjugation.

Observe that § is an orthogonal representation with respect to the
natural scalar product {-,-) on U C R*. Choose on S; a left invariant
metric g;. Since § is an orthogonal representation, the product metric
g = () X g1 is a left invariant metric on U x5 S; =2 S. The mani-
fold (S1, g1) does not split isometrically as a product, and therefore the
holonomy group of (S, g) is isomorphic to SO(3).

Let Lp: S — S, a — h-a be the left translation for h € A C S.
For a curve «: [0,1] — S from the neutral element e to h € A we define

229



230 BURKHARD WILKING

P_am = Lp-1,0Par,: s — 5, where Par,: s = 1.5 — TS denotes
the parallel transport along . Evidently, the holonomy group of the
quotient A\(S,g) is isomorphic to the subgroup ® of O(s) consisting
of all endomorphisms of the form P_arw where «y runs over all curves
connecting e with some element h € A C S.

The group ® leaves the subalgebras s; and u corresponding to the
subgroups S; and U invariant. Furthermore, the image of the natural
projection ® — O(s1) is SO(s1) = SO(3). It only remains to check that
the image of the projection pr: ® — O(u) is an infinite cyclic group.
Notice that for a curve v from e to h the endomorphism P_auaﬂu only
depends on A and that P_arﬂ”u = Adjy-1},. Consequently, the image of pr
is the group A := {Ady, | h € A}.

Clearly, Ady, = id for h € L C L xZ = A. Moreover, for hy =
(0,1) € L x Z the map Ady,, is a rotation by the angel ¢. Since e'¥ is
not a root of unity, it follows that A is an infinite cyclic group.

2.1 A compact Kihler manifold with a noncompact holonomy
group

We consider again the numbers A, ¢ € R that we have used in equa-
tion (2) to define the matrix A. Notice that the map

a: C — GL(4,0),

cos(zy) —sin(xzp) 0

_ . sin(zg) cos(zy)

Z=x+uwy ( 0 exp(zlog(A)) 0 )
0 exp(—zlog(A))
is a homomorphism. Moreover, (1) = A, and the kernel of « equals
_2mi_ 7 GQat
log(A) ™
. 2mi
I=7& (2 Z) CC.

Recall that there is a lattice L C R* that is invariant under A. Obviously,
the lattice Lz :=L@i-L C C* is invariant under a(T"). Consider the

semidirect product
R:=C"%aC, (v,2) (w,c) := (v+a(z)(w),z+ec),

and the discrete cocompact subgroup A := Lz X I Similarly to
above we can describe R also as a semidirect product C? x5 Ry, where
R = ({0} X (C2) X C is a complex solvable Lie group, and

B: Ry — O(2,R) C GL(2,C)
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is an unitary representation.

Clearly, we can find a left invariant metric g; on Ry with respect to
which (Ry, g1) is a Kéahler manifold. If we denote by (-,-) the natural
scalar product on C?, then the product metric g := (-,-) x g1 induces
a left invariant Kahler structure on R. Thus (N,g) := A\(R,g) is a
compact Kihler manifold, and analogously to above one can show that
the holonomy group of (N, g) is isomorphic to U(3) x Z.

3. The holonomy group is compact if and only if the
holonomy representation has finite image

The aim of this section is to prove the following.

Proposition 3.1. Let M and p1 : m (M) — O(V) be as in The-
orem 2. Then the holonomy group of M is compact if and only if the
image of p1 s finite.

Actually this proposition is a direct consequence of the proof of the
theorem of Cheeger and Gromoll [4] quoted at the beginning of the
introduction. But to avoid mysteries we just repeat the arguments that
are necessary:

Proof. Tf the holonomy group Hol(M, p) of M at p is compact, then
Hol(M, p) has only finitely many connected components. Taking into
account that the identity component Holy(M,p) of Hol(M,p) acts by
definition trivially on V' C T),M, we see that the image of p; is finite.

Assume now conversely that the image of p; is finite. Let q: M —
M be the universal covering map of M, and let TI C Tso(M) be the
deck transformation group. The identity component of the holonomy
group of M is isomorphic to the identity component of the holonomy
group of M and hence compact. It remains to show that Hol(M, p) has
only finitely many connected components. By de Rahm’s decomposition
theorem the manifold M splits isometrically as a product

Mlex---xkaRl,

where N; is a manifold with an irreducible holonomy group and
dim(N;) > 2; see [2, Theorem 10.43]. The decomposition is unique
up to the order of the factors, and for that reason there is a subgroup of
finite index in II that preserves the order. Clearly, we can assume that

IT itself preserves the order.

231
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We let pr;: TT — Iso(NV;) denote the projection onto the i-th factor.
For each ¢ we choose p; € Ni and define a group ®; C O(T), Z\~fi) consist-
ing of all endomorphisms of the form ¢! o Par. : T}, N; — Ty, N;, where
¢ € pr;(IT), v is a piecewise smooth curve from p; to «(p;), and Par,
denotes the parallel transport along . Notice that ®; is isomorphic to
the image of the representation of the holonomy group Hol(M, p) of M
that is defined by restricting an element of Hol(M, p) C O(T, M) to the
subspace corresponding to the i-th factor of M. In order to show that
Hol(M, p) has only finitely many connected components, it is therefore
sufficient to verify that ®; has only finitely many connected compo-

nents, 2 =1,... , k. The group Hol(ZVi,pZ-) is the identity component of
®;, and accordingly ®; is contained in the normalizer of Hol(Ni,pi) in
O(T}; N;). The holonomy classification theorem of Berger and Simons
can be used to prove that Hol(N;, p;) has finite index in its normalizer
unless N; is Ricci-flat; see [2, p. 308] and the references there. In par-

ticular, Hol(N;, p;) has then finite index in ®;. Thus we have reduced
the situation to case of a Ricci-flat manifold V.

By construction the isometry group of N; acts cocompactly, and
hence Nj itself is compact, unless it contains a line. The existence of
a line would imply via the splitting theorem of Cheeger and Gromoll
[4] that the Ricci-flat manifold N; decomposes as a Riemannian product
which is impossible. So N; is compact. Suppose now that Hol(Ni, p;) has
infinite index in ®;. Then pr;(IT) C Iso(V;) is infinite. Since Iso(NV;) is
by [7] a compact Lie group, there must be a nontrivial Killing field on N;.
By Bochner
[3, Theorem 2, p. 782] a Killing field on a compact manifold with non-
positive Ricci curvature is parallel. But the irreducible manifold N;
admits no nontrivial parallel vectorfields — a contradiction. q.e.d.

4. Completely reducible representations

In this section we prove several Lemmas on completely reducible rep-
resentations, which are needed for the proofs of Theorem 2 and Corol-
lary 7.

We recall that a representation p: G — GL(V) is called completely
reducible if and only if p is the direct sum of irreducible subrepresen-
tations. It is an elementary fact that this is equivalent to saying that
for any invariant subspace X C V there is an invariant subspace Y
satisfyingV =X @Y.
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Lemma 4.1. Let F C F be a field extension, p: G = GL(V) a
completely reducible representation in a vector space V over F. Suppose
that there is finite dimensional F-subspace Z C 'V that is invariant under
p. Then the induced F-representation in Z is completely reducible, too.

Proof. Without loss of generality there is a nontrivial irreducible
F-subspace Z' C Z. Observe that for A € F the vector space X - 2’
over [ is invariant and irreducible, too. Evidently, the sum of all sub-
spaces (A - Z')\cr equals spang(Z'). Using Zorn’s Lemma one can
find numbers (A; € F);er such that spang(Z’) decomposes as a di-
rect sum, spang(Z') = @,;.; AiZ’. Furthermore, we can assume that
1 € I and Ay = 1. Since the F-representation p is completely re-
ducible, there is a p-invariant subspace U with V = spang(Z') @ U.
Thus Z" := Zn (U & ®iel\{1} AiZ') is an invariant F-subspace and
7 =7'® Z". By induction on dim(Z) we can assume that the induced
[F-representation in Z” is completely reducible.  q.e.d.

Lemma 4.2. Let p: G — GL(n,Q) C GL(n,C) be a representation.
Suppose that there is a real invariant subspace U C R™ satisfying the
following two conditions.

(i) The induced real representation in U is completely reducible.
(1) The additive group Z" + U is dense in R".

Then p, regarded as a complex (real or rational) representation, is com-
pletely reducible.

Proof. Remark that Z := spanc(p(G)) N GL(n,C) is a Lie group.
By definition the space spang(p(G)) has a complex basis consisting of
rational matrices. It follows that Z is an algebraic group defined over
Q, i.e., Z is the zero set of a collection of rational polynomials in the
coefficients a;;.

Notice that a real subspace V C R’ is invariant under p(G) if and
only if it is invariant under Zgr = ZN GL(n, R). The unipotent radical N
of Z is an algebraic group defined over @, too. Therefore N N GL(n, Q)
is Zarisky dense in N; see [8, p.10]. By Engel’s theorem,

Vi={veR" | Av=uvforall A€ NNGL(n,Q)} # {0}.
More precisely, we deduce from Engel’s theorem that

U =UNV # {0}
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The spaces V and U’ are p-invariant because p(G) normalizes
N N GL(n, Q).

Suppose that U" # U. Since the induced representation in U is
completely reducible, there is a p-invariant subspace U” with

U=UoU".

The space U” is also invariant under Zp D N N GL(n, Q). Once again
Engel’s theorem applies, so VN U” # {0} which is impossible.

This proves U C V. From the definition of V it is clear that
V NZ"is a lattice in V, and accordingly V + Z" is closed. On the
other hand, V + Z" D U + Z" is dense in R"* and thus V = R". In
other words, N N GL(n,Q) is the trivial group. Hence the unipotent
radical N of the algebraic group Z is trivial, and for that reason the
natural representation of Z in C” is completely reducible; see [8, p.11].
Now, let X C C" be a complex p-invariant subspace. Since X is also
invariant under Z, there is a Z-invariant complex subspace Y satisfying
C" = X @Y. Evidently, Y is p-invariant. Consequently, p is as a com-
plex representation completely reducible. By Lemma 4.1, p is also as a
real (rational) representation completely reducible.  q.e.d.

Lemma 4.3. Let p: G — GL(n,Q) C GL(n,R) be a representation.
Suppose that p is completely reducible as a rational representation. Then
p 1s completely reducible as a real representation.

Proof. Choose an irreducible real subspace U C R” with U # {0}.
Let W be the identity component of the closure of U + Z". For g € G
the group Z" N (p(g)(Z")) has finite index in both Z" and p(g)(Z").
Hence W is also the identity component of the closure of p(g)(Z") 4+ U.
Consequently, W is a p-invariant real subspace. Moreover, Wz = WNZ"
is a lattice in W. Since Wyz+U is dense in W, we deduce from Lemma, 4.2
that the induced real representation in W is completely reducible. By
assumption there is a p-invariant subspace Vg C Q" such that Q* =
Vo® (Q@'NW). Set V = spang (V). Clearly, V is an invariant subspace
of pand R* = V @ W. By induction on n we can assume that the
induced real representation in V is completely reducible, too. q.e.d.

Lemma 4.4. Let p: G — GL(V) be a completely reducible real rep-
resentation. Suppose there is a finitely generated, p-invariant subgroup
A C V. Then for any p-invariant subgroup A’ C A there is a p-invariant
subgroup A" such that ANA" = {0}, and '@ A" is a subgroup of finite
index in A.
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Proof. By Lemma 4.1 the induced rational representation in Ag :=
spang(A) is completely reducible. Since Ag, := spang(A’) is a p-invariant
subspace of Ag, there is a p-invariant subspace ¥ C Ag such that
Ag = YEBA{@. Therefore A” := Y NA is a group satisfying the conclusion
of the lemma. q.e.d.

Lemma 4.5. Let p: G — GL(V) be a real representation. Suppose
there is a finitely generated, p-invariant subgroup A C V for which
spang(A) = V. Then for any element v € V the group

(Gxv)z = spang{p(g)(v) | g € G}

is finitely generated.

Proof. Choose ay,...,a, € R and vy,...,v, € A such that
Yo, aw; = v. Then (G* v)z is contained in the finitely generated,
free abelian group a;A + --- + apA, and thus (G % v)yz is finitely gener-
ated, too. q.e.d.

Lemma 4.6. Let p: G — GL(V) be a completely reducible real rep-
resentation, and let A C 'V be a finitely generated p-invariant cocompact
subgroup. Then there is a p-invariant subgroup A" C A satisfying:

(i) rank(A') = Z-rk(p); see equation (1) for the definition of Z-rk(p),

(i1) the induced representation p: G — GL(A' ®z R) decomposes as a
direct sum p = p1 @ pa, where py1 is equivalent to p.

Proof. Let Z C V be a p-invariant cocompact subgroup with
rank(Z) = Z-rk(p), and set W := spang(A) and Zg := spang(Z).
We claim that there is a p-invariant subspace W/ C W such that the in-
duced rational representation in W' is equivalent to the induced rational
representation in Zg.

By Lemma 4.1 there is a decomposition Zg = Z1 @ - - @ Zj into non-
trivial irreducible subspaces. Clearly, there are numbers A{,--- , A\ €R
such that W C M\ Zg @ --- © A\¢Zg. It follows that any irreducible sub-
representation of W is equivalent to an irreducible subrepresentation of
Z.

If the induced rational representations in the subspaces Z1,--- , Z
are pairwise equivalent, then we can argue as follows. Let Wy ®---® W,
be a decomposition into nontrivial irreducible p-invariant subspaces.
Clearly, the induced representation in W; is equivalent to the induced
representation in Z; for all 4,j. Since A is cocompact in V, we obtain



236 BURKHARD WILKING

dimg(W) > Z-rk(p) and accordingly | > k. Thus we can define W' =
Wid--- oW

If the induced rational representations in the subspaces Z1,--- , Zk
are not pairwise equivalent, then after reordering we can assume that
for some positive integer &’ < k — 1 the induced representation in Z; is
equivalent the one in Z; if and only if 7 < k'. Set

V' = spang(Z1 @ & Zp)

and
V" .= spang(Zp41 @ - © Z,).

Clearly, V = V' & V" and it is straightforward to check that W =
(WnV)ye (WnV"). The statement follows by induction on dim(V).

Hence we can choose a p-invariant Q-subspace W’ C W such that
the induced representations in W’ and Zg are equivalent. Set A’ :=
W' N A. Then rank(A’') = dimg(W') = Z-rk(p1). Moreover, the natural
representation of G in A’ ®7Q is equivalent to the natural representation
in Zg. Consequently, the natural representation of G in A’ ®7 R is
equivalent to the representation p of G in Z ®z R. By Lemma 4.3 the
representation p is completely reducible. The inclusion Z — V induces
an equivariant epimorphism Z®zR — V. Thus the completely reducible
representation p decomposes as a direct sum p = p; @ p2, where p; is
equivalent to p. Since p is equivalent to p, this completes the proof of
the lemma. q.e.d.

5. Algebraic properties of the holonomy representation

5.1 The proof of Theorem 2

The universal covering space M of M is isometric to a Riemannian
product M = N x R', where Nisa simply connected manifold without
Euclidean factor. Let II C Iso(N) x Iso(R!) = Iso(M) be the deck
transformation group. Clearly, I = 7(M), and M is isometric to
the orbit manifold N x R JII. Furthermore, under the identification
m1(M) =TI the holonomy representation p; is equivalent to 1, where

(3) P: Iso(N) x Iso(R') — Iso(R') = R % O(1) — O(I)

is the projection. In the following we identify R' and O(I) with the
subgroups R x {e} and {0} x O(I) of Tso(R!) = Rl x O(l), and we view
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Iso(R') and Iso(N) in the natural fashion as subgroups of Iso(N) x

Iso(RY) = Iso(M). Recall that, by a theorem of [7], Iso(M) is a Lie

group. Since II acts discontinuously and cocompactly on M, it follows
that II C Iso(M) is a discrete, cocompact subgroup. Denote by Isog(M)
the identity component of Iso(M). Then IT* := TINIsog(M) is a discrete,
cocompact subgroup of Isog(M).

Consider the projection pr: Isog(M) — Isog(M)/R!, and let A be
the identity component of the closure of pr(IT*). The group A is solvable
because the kernel of pr is abelian; see [8, Theorem 8.24]. Evidently,
B := pr~!(A) is also solvable and T normalizes B. By construction the
group II - B is the closure of II - R". Taking into account that II is
cocompact in ISO(M ), we see that TIN B is a cocompact subgroup of B.

Let N be the maximal connected, nilpotent normal subgroup of B.
By a theorem of Mostov II NN is a cocompact subgroup of N, and thus
II-N C Iso(M) is closed; see [8, Theorem 3.3.]. Furthermore, R ¢ N
and accordingly B = N.

Since B is nilpotent, the representation of B in R induced by con-
jugation is unipotent. On the other hand, this representation coincides
with g, where 1 is defined in equation (3). The image ¢(B), be-
ing both unipotent and orthogonal, must be trivial, and therefore R is
contained in the center of B.

Next we claim that B is abelian. Otherwise the dense subgroup
(TT- R") N B of B would contain two sequences a;, b; tending to e such
that a; does not commute with b;. The commutator sequence ¢; :=
[ai, b;] # e converges to e, too. But R" is contained in the center of B,
and accordingly we can write ¢; also as a commutator of elements in II.
In particular, ¢; € II which is impossible.

Hence B is abelian, and D := BNII is a discrete, cocompact subgroup
of B. Notice that the exponential map exp: b — B is a homomorphism
and that A := exp~!(D) is a lattice in b. We identify Rl C B with its
Lie algebra and let to C b denote the Lie algebra of B NIso(N). Since
B is the closure of R - D, it follows that b is the closure of Rl + A. The

adjoint map of II - B induces a representation

p: II — GL(b).

Clearly, Rl and to are p-invariant and the induced representation in
R' is the orthogonal representation Y- Moreover, A + R is dense in
b = R @ o, and the lattice A is invariant under p. Via Lemma 4.2 this
implies that p is completely reducible.

237
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Observe that vy = ANtv is invariant under p. By Lemma 4.4 there
is a p-invariant subgroup L C A satisfying LNwa = {0} and A’ = L@ty
is a subgroup of finite index in A. Let f: b — R' be the projection with
kernel w. Clearly, f is an equivariant homomorphism from (b, p) onto
(Rl,¢|n), and the restriction f|£ is injective. The image f(L) is of finite
index in f(A). In particular, f(L) is cocompact in R'. By Lemma 4.6
there is a subgroup L C L 2 f(L), such that

rank(L) = Z-rk(¢r1) = Z-rk(p1)

and the induced real representation g in L @z R decomposes as a direct
sum p = p1 ® pa, where py is equivalent to ¢ = p1.
The space Lr = spang(L) has trivial intersection with

spang (Ker(expy)) C spang(wy).

Thus exp, is an embedding and we can identify Lg with the closed
subgroup exp(Lg) C B. Notice that L becomes under this identifica-
tion a normal subgroup of II. For later applications we remark that II
normalizes the simply connected, closed, abelian group Lg C B.

It remains to verify statement (iii). The group L C B has trivial

intersection with B NIso(N). Therefore the projection
h: Tso(N) x Iso(R') — Tso(R!)

maps L injectively onto a subgroup of R C Iso(R!).
Since M is compact, its fundamental group w1 (M) = TII is finitely
generated. Let b1,...,b, € II be elements that generate II, and let

(vi, Ag) == h(b) € R x O() =Tso(R"), i=1,...,q.

The finitely generated cocompact subgroup f (li) of R is invariant under
(IT) € O(l). Hence we can employ Lemma 4.5 in order to see that the

group
C = spanz{w(g)(vi) lgell,i=1,... ,q} C R

is finitely generated. Evidently, A(IT) normalizes C, and the product
h(TI) - C contains the elements A1,..., A, € O(l) C Iso(R') which gen-
erate ¢ (IT). Therefore
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Next, we remark that h(L) C C is invariant under ¢ (IT). By Lemma 4.4
there is a 1 (IT)-invariant subgroup C' C C such that C' & h(L) has finite
index in C. For the group H := (¢(IT) - C') N h(TT) this implies that
HNA(L) = {e} and that

H - h(L) = h(IT) N (p(IT) - (C' ® h(L)))

is of finite index in A(IT). Thereby the group H := h,|_H1(I:|) satisfies (iii).

5.2 The proof of Corollary 3

We use the notations of Theorem 2. By Proposition 3.1 the image of p;
(and of p;) is infinite.

Suppose for a moment that the image of p; contains only elements
of finite order. Then any eigenvalue of an element in

pr(mi(M)) = p1(mi (M)) C O(V)

is a root of unity. Taking into account that the representation p = g1 ®p9
leaves a lattice invariant, we see that the degree of the field extension
Q C Q(X\) is bounded by rank(L) for any eigenvalue A of an element in
p1(m1(M)). But then the order of any element in py (71 (M)) is bounded
by a constant only depending on rank(L). Consequently, the relatively
compact group p1(m (M)) is discrete and hence finite — a contradiction.

Thus for some g € 71 (M) the semisimple endomorphism g1(g) has
infinite order. Since the eigenvalues of p1(g) have absolute value 1, there
must be an eigenvalue A € S' C C of j(g) = p1(g9) @ po(g) that is not
a root of unity. By the very definition of g the number A is also an
eigenvalue of

cg:L—=Lwv — gug L.

It remains to verify the inequalities
rank(L) > dim(V) 4+ 2 > 4.

Using that py (w1 (M)) C O(V) is infinite we obtain dim(V') > 2.
Suppose, on the contrary, that

dim(V) + 1 > rank(L) = dim(L ®z R).

Then the rank of the representation po is at most one. The representa-
tion p; is equivalent to the orthogonal representation p;, and p leaves
the lattice L C L®gz R invariant. In particular, |det(p,)| = | det(p)| = 1.
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In the case rank(pe) = 1 this implies |det(p2)| = 1, and py is then or-
thogonal, too. For that reason p itself is equivalent to an orthogonal
representation. Thus the image of g is relatively compact. Furthermore,

p(I1) C GL(L) C GL(L ®z R)

is discrete and hence finite — a contradiction.
6. Implications of a nontrivial holonomy representation

6.1 The proof of Corollary 4

We use the notations and conventions of the proof of Theorem 2. In
particular, M = N x R' is the universal covering space of M, and
(M) =TI C Tso(N) x Iso(R!) is the deck transformation group. Recall
that the identity component B of the closure of the group R!-TI is abelian.
The group L constructed in the proof is a subgroup of B. Moreover,
there is a connected, simply connected, closed, abelian subgroup Lr C B
that is normalized by II and that contains L as a discrete, cocompact
subgroup. Finally, we can choose a group H C II such that HNL = {0}
and II := H - L has finite index in IL.

In order to prove the addition a) of the corollary later on, it is
convenient to assume that the following hold: If the holonomy group
of M is compact, then the holonomy group of the finite cover M / I is
connected. As we know a compact holonomy group to have only finitely
many connected components, this assumption can be made without loss
of generality.

We proceed with the general case. Remark that Il is a cocompact
subgroup of II- Lg = H-Lg. Since the orbits of 1T are closed, the orbits
of H-Lg are closed, too. Next we want to show that Ly acts freely on M.
For an arbitrary point p € M we consider the map g: Lg — M, v — vkp.
Using that ¢ maps the cocompact subgroup L C Lg monomorphically
onto a discrete subset of M, it is straightforward to check that g is a
proper map. Accordingly the isotropy group L% C Lg of p is compact.
Taking into account that Lg is a vector group, we see that LE = {e}.

Thus the action of Lg on M is free and the corresponding orbits
are closed. Consequently, the orbit space B:=M /Lr is a complete
Riemannian manifold. As Lg is normal in H-Lg, the group H = H-Lg /Lr
acts isometrically and discontinuously on B.
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Suppose that this action is not free. Then we can find a point
7 := Lrp x p € B for which the isotropy group Hp is nontrivial. Since
the action of H on B is discontinuous, it follows that Hp is finite. The
group Hy C H C II acts freely on the submanifold Lg xp C M. But
this contradicts the fact that Lg = p is isometric to a Euclidean space
because a nontrivial finite group can not act freely on R?.

We have proved that H acts freely and discontinuously on B. There-
fore M := M/II fibers over B = B/H = M/(II - Lg). Clearly, the
fiber bundle map o: M — B is a Riemannian submersion and the
fibers are flat tori diffeomorphic to Lg/L. Together with the equal-
ity, dim(Lg) = rank(L) = Z-rk(p;) > dim(V'), this establishes the first
part of the corollary.

In order to prove the existence of a section, we remark that the
manifold M/H fibers over B = M/H - Lg as well. The fibers of this
fibration are diffeomorphic to the vector group Lr. Hence there is a
smooth section §: B — M/H; see [10, Theorem 12.2]. Evidently, §
induces a smooth section s: B — M = M/H - L.

If the holonomy group of M is not compact, then rank(L) > dim(V)+
2; see Corollary 3. Hence we have verified statement b).

Now we want to prove a). So we assume that the holonomy group of
M is compact. By construction the holonomy group of the finite cover
M is then connected. In particular, the holonomy representation of
71 (M) 22 11 has trivial image. This implies that the deck transformation
group IT = H - L commutes with R C Tso(N) x Iso(R'). Recall from the
proof of Theorem 2 that the natural projection k: Iso(N) x Iso(R) —
Iso(R') maps L injectively onto a subgroup of R'. Moreover, h(gag™') =
gh{a)g™! = h(a) for g € T and a € L. Consequently, IT commutes with
L. Since L is a lattice in the vector group L, it follows that [T commutes
with Lg as well.

Thus the torus T := Lr/L acts freely and isometrically on M =
M /TI. Furthermore, the orbits of this action are precisely the fibers of
the submersion o: M — B. Therefore M is the total space of prln(:lpal
T-bundle over B. Recall that there is a smooth section s : B — M =
M /T1. Hence the product bundle (B x T, B, T) is via

v: BxT — M, (b,h)— hxs(b)
isomorphic to (M, B, T, o).

Next we want to prove statement ¢). Thus we assume that the Ricci
curvature of M is nonpositive, Ric < 0. Clearly, it is sufficient to show
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that the horizontal distribution of the Riemannian submersion
6:M—>B:M/L]R, q|—>LR*q

is integrable. For w € TqM we denote the vertical (resp. horizontal)
component of w by w? (resp. by w"). Let vy,... ,vq be a basis of the
vector group Lg = R?%, and let Yi,...,Y, be the corresponding Killing
fields on M. We claim that the function

f+ M >R, g~ log(det((¥;, Y;)))(q)

is subharmonic. Remark that f is up to an additive constant indepen-
dent of the choice of the basis v1,... ,v4. In order to compute Af(q)
we can assume that Yyjg,..., Yy, are orthonormal vectors. Choose
orthonormal vectorfields ey,... ,e, in a neighborhood of ¢ satisfying
Ve 6 =0ford,j=1,...,mand e, =Y, fori =1,...,d. Since
Yioexp(te;) 18 a Jacobi field along the geodesic exp(te;), we obtain

Ve Ve ¥j = _R(Yjvei)ei\q-

€ilq

Therefore

Af(g) = Y epjq(erlog(det((V;, 7))

k=1
= Zek‘qtr(“ybYj))_l(eMYEYJ’)))
k=1
= Ate((Y;, V) (a) — D tr((enYi, Y3))?)
k=1
m d

- ZZ( eua Ve Vi Y3) + 1V, i)
(4) - Z((V%Y Y;)®

kg

= 23 (Riex, V)Y en) g +2Z||VequY‘ll2

k.j

=23 (Y, Vi, exy)? —2le ol

kyi,j
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= =2 Ric(Y;,Y)(q) +2)_ (Ve ¥)"I”
J

k.j
—2 Z HVYJ‘Iin||2
2]

d m d

= =2 Ric(Y;,)(0) +2 > D I1(Ve, Y)"II”
j=1 k=d+1 j=1

> 0.

For g € II the endomorphism ¢,: Lg — Lg,v gvg~" leaves the
lattice L C Lg invariant. Hence, | det(cy)| = 1. With this in mind it is
straightforward to check that f is invariant under the deck transforma-
tion group TI, that is f(q) = f(gq) for all g € IT and ¢ € M. Therefore
the subharmonic function f attains its maximum on a compact fun-
damental domain, and by the maximum principle f is constant. In
particular, equality holds in inequality (5). Consequently, the vertical
distribution is parallel along a horizontal geodesic. This clearly implies
that the horizontal distribution is parallel along a horizontal geodesic,
too. For that reason the Lie bracket [Hy, Ho] = Vg, Ho — Vg, Hy of two
horizontal vectorfields is horizontal, too. Thus the horizontal distribu-
tion is integrable.

Next we want to prove the addition d). First notice that the proof
of ¢) yields another result: Since the function f is constant, the mean
curvature of all fibers of 6 vanishes. For g € M we choose as above
vertical Killing fields Yi,... , Yy induced by the action of Lg such that
Y1/g)--- s Yg)q are orthonormal. Clearly, the vertical component of Vy;Y;
vanishes. Because of the vanishing mean curvature we obtain

g:l Vy,,Yi = 0. Using the Gauss equations we compute the (intrinsic)
scalar curvature scalgy(q) of the fiber Lg x ¢ in ¢

d d

(5)  scalgp(q) = Y K(spang(Yig Vi) — 3 Vv, Yill%,
ij=1 h,j=1
i#j

where K denotes the sectional curvature in M — a function which by
assumption is nonpositive. On the other hand, the submanifold Lk % ¢
is isometric to R? and accordingly scalgy,(¢) = 0. So by equation (5) the
second fundamental form of Lg x ¢ in ¢ vanishes. Hence the fibers of o
are totally geodesic.

In summary we can say that the horizontal distribution of & is in-
tegrable and that the fibers & are totally geodesic. Since B is simply
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connected, it follows that M is isometric to a product R? x B. Thus the
dimension of the Euclidean factor of M is at least d. In other words,
d < dim(V), and from Corollary 4 b) we infer that the holonomy group
of M is compact.

Finally we prove e). By assumption the Ricci tensor of M is parallel.
Thus each factor of the de Rham decomposition M = Nj x - -+ x N, x R!
is Einstein. We assume that the Einstein constant of Nj is nonnegative
if and only if § < h. By Myers theorem the factors with positive Einstein
constants are compact, and we have seen in section 3 that the Ricci-flat
factors are compact, too. Hence, Ny x -+ x Nj, is compact. Notice
that the Ricci curvature of M’ := Nh+1 x -+ N x Rl is nonpositive.
Furthermore, for a vector v € TM’ we have Ric(v,v) = 0 if and only if
v is tangential to the Euclidean factor.

Let TI' denote the image of the deck transformation group IT under
the projection pr: Tso(M) — Tso(M’). Observe that Lj := pr(Lg) = R?
is a closed subgroup that is normalized by IT'. Moreover, the action of
Lk is free and the corresponding orbits are closed. Thus

& BT B = BT Uy, g Ly xg

is a Riemannian submersion. We define a function f’: M’ — R analo-
gously to the proof of Corollary 4 c). Since the Ricci curvature of M
is nonpositive, we can use the same argument in order to show that
f' is subharmonic and accordingly constant. Now we infer from the
equality case in inequality (5) that Ric(v,v) = 0 for any vertical vector
v € TM'. So the vertical distribution of & is everywhere tangential to
the Euclidean factor. In particular, dim(V) = [ > dim(L;) = d, and
thus the holonomy group of M is compact by Corollary 4 b).

6.2 The Proof of Corollary 5

First we prove part b) of the corollary. By Corollary 4 a finite cover
M of M is a torus bundle over a compact manifold B. Moreover, the
dimension of B is at most dim(M) —4 = 2. Tt is clear from Corollary 3
that 71 (M) is not abelian up to finite index, and thus 71 (B) is neces-
sarily infinite. By the classification of compact 2-manifolds this implies
that B is aspherical. Consequently, the universal covering space of M
is diffeomorphic to RS.

It remains to prove a). The inequality dim(M) > 5 is an immediate
consequence of Corollary 4 and part b) of the addendum. So we only
have to consider the case dim(M) = 5. Let M be the universal covering






