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Abstract 
Let u ^ const, satisfy an elliptic equation CQU = Yl o-ijDijU + Yl bjDJU = 0 
with smooth coefficients in a domain in R n . It is shown that the critical set 
| V u | - 1 { 0 } has locally finite (n — 2)-dimensional Hausdorff measure. This 
implies in particular that for a solution u ^ 0 of (CQ + C)U = 0, with c G C°°, 
the singular set u - 1 { 0 } n | V « | - 1 { 0 } has locally finite (n — 2)-dimensional 
Hausdorff measure. 

1. Introduction and main results 

Let fi be a domain in R", n > 3, and let u ^ 0 be a real-valued 
classical solution of the elliptic partial differential equation 

n n 

(1.1) Cu = 2_\ aijDijii + y~] bjDjU + cu = 0 in O, 

where the real-valued coefficients a,ij,bj,c are C°° functions in O. We 
call 

£(«) = |Vw|-1{fJ} and E0(u) = S ( « ) n « _ 1 { 0 } 
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the critical and singular sets of u, respectively. In the following we shall 
show that locally the singular set Eo of u has finite (n — 2) - dimensional 
Hausdorff measure, i.e., nn-2(T,0(u) n K) < oo for all compact K C Q. 
The first author and the remaining three authors independently wrote 
preprints proving this result, and the present paper is a combination of 
these two works. 

For n = 2, E(w) is well-known to consist of isolated points. For 
n > 3 an elementary argument (see [20, Section 1.9]), first given by 
L. Caffarelli and A. Friedman [7] for Au + f(x,u) = 0, shows that 
£(u) is contained in a countable union of smooth (n — 2)-dimensional 
submanifolds. Q. Han [16] obtains similar structural results with much 
weaker assumptions on the smoothness of the coefficients. In particular, 
he proved that £(u) is essentially contained in a countable union of Cl,a 

graphs if the coefficients are Lipschitz. But, even for smooth coefficients, 
the question remained concerning the size of E (it). Last year it was 
shown in [19] that for n = 3, So (it) has locally finite 1-dimensional 
Hausdorff measure. 

Here we generalize this to n > 3 dimensions. Our result is obtained 
by showing that the critical set E of a solution of (1.1) with c = 0 has 
locally finite (n — 2)-dimensional Hausdorff measure. 

Recently there is a rather rich literature describing the 'size' of the 
zero set, and in particular the singular set Eo of solutions to elliptic 
equations in terms of the appropriate Hausdorff measure and Hausdorff 
dimension respectively. See the list of references in the introduction 
of [19]. The size of the nodal set was considered in the conjecture 
of S.T. Yau [27] that H"-1 (u^1 {0}) ~ cy/X for the A-eigenfunction 
v,\ on a compact Riemannian manifold. This was established for real 
analytic metrics by H. Donnelly and C. Fefferman [9]. Note that , 
for real analytic coefficients, the local finiteness, without estimates, of 
'Hn~l(w_1 {0}) (or T-Ln~2(T,(u))) follows just from the real analyticity 
of u [11, 3.4.8]. For the nonanalytic case, R. Hardt and L. Simon [20] 
proved the local finiteness of % " _ 1 ( u _ 1 { 0 } ) with the coefficients being 
only Lipschitz smooth. However, for the Riemannian manifold applica
tion, their upper estimate C\c^x is weaker than Yau's conjecture. F. 
H. Lin and Q. Han [22], [17], [18] proved a parabolic nodal set esti
mate (with time-independent coefficients), simplified several arguments 
in [9] and [20], and made estimates involving the frequency (or order) 
NR = [R fB \Vu\2 dx] / [ fdB u2 dHn~1]. Lin [22] also conjectured that 

Un-l{u-l{<ò} n B Ä / 2 ) < CNR and ^ n " 2 ( E ( u ) n B B / 2 ) < CNR . 
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While more precise results are known in 2 dimensions [2], [8], [10], [24], 
the general Yau and Lin conjectures remain open. Two very recent 
preprints give some nonexplicit bounds. [14] treats coefficients with fi
nite differentiability, and [15] handles higher order equations. In another 
preprint [3], C. Bär discusses nodal sets for first order semilinear elliptic 
systems. 

Basic for all these investigations is the asymptotic behaviour of u(x) 
as x —> xo, where u(xo) = 0. Let O e i î , and let u be a solution of 
(1.1). Then it is well known (see e.g. [4]) that 

(1.2) u(x) = PM + 0(\x\M+1) as \x\ ->0, 

where pu ^ 0 is a homogeneous polynomial of degree M satisfying the 
osculating equation 

^ajj(Q)DijPM = 0. 

Assume without loss of generality that cnj(ö) = 8-ij so that PM is har
monic. Therefore the investigations of the zero set, respectively singular 
set, of a solution of (1.1) are motivated by the desire to understand to 
which extent these sets can be described locally by the zero sets, re
spectively critical sets, of harmonic homogeneous polynomials. For a 
harmonic polynomial PM of degree M in n variables it is known (see 
e.g. [20]) that for some C(n) < oo 

(1.3) nn-2(Z(PM) n Bt) < C(n)M2, 

B\ denoting a ball with radius 1. 
On the other hand there are examples showing that the singular set 

of a solution of an elliptic equation can be rather wild. See [19, Section 
1]. Conversations with L. Simon also led to the following simple exam
ple: For any closed subset K of R, let / be a nonnegative smooth func
tion vanishing exactly on K with | / / " | + | / ' 2 | < 1/4. Then u(x,y,z) = 
xy+f2(z) satisfies the elliptic equation uxx+uyy+uzz — (f2)"(z)uxy = 0, 
and has singular set equaling {(0,0)} x K. 

To state now our main results, we define the elliptic operator £o by 

Co = £ — c 

with £ and c given according to (1.1). 
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T h e o r e m 1.1. Let u ^ const. satisfy 

(1.1') Cou = 0 inQ, ft CR™. 

Then for every compact subset K of il 

r2 (s(«)nif ) <oo. 

Corollary 1.1. Let u ^ 0 satisfy equation (1.1). Then for every 
compact subset K of il 

Hn-2(Z0{u)nK) < o o . 

The Corollary is a rather immediate consequence of Theorem 1.1: 

Proof of the Corollary. Given xo G Q there is a neighbourhood 
U{XQ) and at*o E C°°{U{XQ)) with uo > 0 and Cuo = 0 in U{XQ). See 
e.g. [5, p.228]. It is easily seen that /z = uu^ satisfies in U{XQ) an 
equation of type (1.1), so that by Theorem 1.1, Hn~2(Y,(p) n U') < oo 
for every compact subset C/7 of U{XQ). Furthermore the singular set of 
u is a subset of the critical set of /z. q.e.d. 

Remark . That the assertion of Theorem 1.1 is false if Co is 
replaced by £ can be seen from the following example: Let v G C°°(B), 
B C R n , with \v\ < 1. Then with u = v2 + 1 and c = (Av2)(v2 + 1 ) _ 1 , 
AM + cu = 0 and £ («) = f _ 1 { 0 } . But every closed subset of R n can be 
the zero set of a C°°-function (see e.g. [26])! 

The structure of the proof of Theorem 1.1 is similar to the 3-dimen-
sional case in [19]. For this it was crucial to show [19, Theorem 3.1] that 
in 3-dimensions, the complex dimension of the complex critical set of a 
homogeneous real harmonic polynomial is at most one. Here it is shown 
that the complex critical set of a homogeneous harmonic polynomial P 
with real coefficients has at most complex dimension n — 2 (Theorem 
2.1). With this result it can be proven that for suitable complex 2-
planes ejj, 1 < i < j < n, P\eij has an isolated critical point in the 
origin of C 2 for all i,j. Using results from singularity theory, [1], this 
implies that the algebraic multiplicity of the gradient map of P\eij at 
the origin is finite. Further looking at the restriction of the solution u 
to affine 2-planes it follows via a C°°-perturbation argument that the 
number of critical points of u restricted to these affine 2-plane slices is 
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uniformly bounded in a small enough neighborhood of the origin. This 
estimate together with the countable rectifiability of E(w) (which follows 
immediately using the arguments from the proof of Lemma 1.9 in [20], 
or see also [7]) allows us to apply a geometric measure inequality of 
Fédérer [11] which yields the desired result. 

2. T h e critical set of a harmonic h o m o g e n e o u s po lynomia l 

A homogeneous polynomial of degree k > 1 on R " is a nonzero 
function in the form 

U(x) = ^ aax"i 

\\a\\=k 

where aa G R, xa = a;"1 . . . x®n for x = (xi,...,xn) G R" , a = 
( « i , . . . ,an) G { 0 , 1 , . . . }", and ||a|| = OL\ -\ \- an. 

The critical set S(t>) of a polynomial v(x) = ^\\a\ 
real 

algebraic variety that is a cone in case v is homogeneous. Extending 
v to a complex-valued polynomial, also denoted v, on C n by replacing 
each Xi by Zi, we also have the complex critical (zero) set 

Sc(«) = {z = (zu...,zn) EC" 
dv , , „(0) = _ ( , ) = . . .= dv 

dzn 
0 } , 

which is a complex algebraic variety that satisfies 

£ c ( i > ) n R n = S(u) • 

Analogously we denote Soc(^) = Sc(w) fl v~l{0}. 
For a nonconstant polynomial v on R" , one thus always has the 

rough estimates 

dimR,E(w) < n —1 and d i m c S c ( w ) < n —1 . 

Suppose now that v is a nonconstant harmonic polynomial on R n . 
From [7], [20], we know that 

diniR £(t> ) < n — 2 . 

[19, Theorem 3.1] also shows that 

d ime S c ( " ) < 1 in case n = 3 , 



364 R. H A R D T E T AL 

and v is homogeneous. 
For the proof of Theorem 1.1 we need the generalisation of this last 

result to n dimensions, which is given below. Thereby we thank H. 
Knorrer for crucial remarks. 

T h e o r e m 2 .1 . Let P be a harmonic homogeneous polynomial in 
Cn with real coefficients, P ^ const. Then d imSc(-P) < n — 2. 

Proof of Theorem 2.1. For any nonconstant irreducible polynomial 
in C n the conclusion is true. See e.g. [25, Chapter II, 1.4]. 

So now we assume P be reducible, and, for contradiction, that 
dimEc(-P) = n — 1. Then P can be represented as 

(2.1) P = p q, where p and q are homogenous and p is irreducible. 

This can be seen as follows: Let P = Y\j=iQji 1j irreducible Vj, with 
k > 2, and denote Nj = q'1^}. I f for i + h dimiVj n Nj < n - 1, 
then clearly dim S (P) < n — 1. Without loss of generality we assume 
dimiVi n N2 = n — 1. Since gi,(/2 are irreducible, this implies (see e.g. 
[23, Lemma 2.5]) q\ = const <?2, proving (2.1). 

(2.1) now implies a nontrivial factorization 

(2.2) P=tfq, 

where p, q are homogeneous polynomials with real coefficients. 
This can be seen as follows: Le t / denote the polynomial which is ob

tained from the polynomial / by complex conjugations of its coefficients. 
Since P has real coefficients, we conclude from (2.1) that P = p2q = p2q. 
Since p is irreducible, q = p2q follows for some homogeneous polynomial 
q. Hence P = (pp)2q and pp has real coefficients. 

Finally we use: 

Propos i t i on 2.2. If P is a harmonic polynomial in R n given by 
P = p2q, where p and q are homogeneous polynomials with real coeffi
cients and p ^ const, then P = 0. 

Proof of Proposition 2.2. Let M denote the degree of P. Then for 
some spherical harmonic YM{X\X\~1), P(X) = | : T | M Y M in polar coordi
nates. Further we have 

M - l 
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where each a,j G R, and the Y}'s are spherical harmonics of degree 
< M — 1, which can be taken to be orthonormal on S1"-1. Hence 
jSn-i YJYM<ÌU) = 0 for j T^ M , and 

/ p2q2dco = / Pqdco = 0 
s™-1 s™-1 

implying pq = 0. q.e.d. 

Now we may combine (2.2) and Proposition 2.2 to conclude that 
P = 0. This contradicts that P ^ const and finishes the proof of 
Theorem 2.1. q.e.d. 

3. Restriction to 2-plane slices 

Suppose now p : Cn —> C is a complex homogeneous polynomial; 
hence, 

SOCCP) = SCCP). 

For any complex 2-dimensional subspace e C C", the restriction p\f is 
essentially a complex homogeneous polynomial of two variables. More
over, for z £ t \ {0}; 

V(p | £ ) ( s )=0 

if and only if either 
z e Sc(p) 

or 

(3.1) z e p ~ {0} \ Sc(p) and e is tangent to p~ {0} at z . 

For each pair i, j of integers with 1 < i < j < n and point 
(zi,...,zn) G C n , let 

Kijyzij..., zn) = \z\j..., Zi—i, Zi+ij..., Zj-i, Zj+ij..., zn) G C 

For each real rotation 7 G O(n), let 7 : C n —>• C n also denote the com
plex linear extension of 7. Thus each set (TTÌJ Æ 7)_ 1{y}, for 
y G C n _ 2 , is a complex affine 2 plane in C n . 

3.1 Lemma. For any nonconstant homogeneous polynomial 
p : Cn —> C having dime £ c (p) < n — 2; i/iere exists a rotation 
7 G 0(n) so that, for all integers 1 < % < j < n, 

E c (p)n(7r î i Æ 7 ) - 1 {0} = {0} 
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and each complex 2-plane ( ^ Æ 7 ) 1{0} is transverse to p 1 { 0 } \ E c ( p ) -
Hence 

[VPI^.Æ^-MO}]"1^} = {0}. 

Proof. For a G S " - 1 , let 7ra be the complex rank n — 1 projection of 
C n corresponding to the orthogonal projection of R n onto a^. Thus, 
Ka{z) = z — (z • a)a, and 7ra has kernel vr~1{0} equaling the complex 
span of a and image ira(C

n) equaling the complex span of aL in C n . 
We also define, for y G 7ra(C"), 

Da(y) = n [aiê"(z) + ""- + a«ê ( z )] ' 

which is the discriminant of p, with respect to the direction a. Then Da 

is a polynomial that is homogeneous because, for 0 7̂  A G C, 

z G ir~l{Xy) n p _ 1 { 0 } if and only if \~lz G ir'1 (y) n p _ 1 { 0 } , 

and gf:(z) = Xk~1-gf:(X~1z). Moreover, Da ^ 0, because, otherwise, 

Vp would vanish on a complex (n — l)-dimensional s t ra tum of p _ 1 { 0 } , 

contradicting that d ime £ c ( p ) < n — 2. 
For b G S"" 1 with a • b = 0, ^{0} C 7ra(Cn) and 

is the complex span of {a, 6} in C n . Note that this complex 2-plane is 
transverse to p " 1 { 0 } \ { 0 } if Da(b) ^0. In fact, if z G e a ) e ,np _ 1 {0}\{0}, 
then na(z) = Xb for some 0 / A G C . Since Da(Xb) ^ 0, a • (Vp)(z) ^ 0, 
and, by the complex implicit function theorem, p _ 1 { 0 } is locally near 
z, a holomorphic graph over a domain in 7r a(Cn) . In particular, p _ 1 { 0 } 
is transverse at z to 7T"1 [ir^ {0}] = eaj&. 

In the set of all pairs 

A = {(a, b) G S™"1 x S™"1 : a • b = 0} , 

we are now interested in the "bad" set 

B = {(a, b)GA: either S c ( p ) H ea,b \ {0} ^ 0 or Da(6) = 0} . 

Since ß is a semi-algebraic set [6], we may show that diniR B < diniR, A = 
(n — l ) (n — 2) by simply verifying that Ö contains no nonempty open 
subset U of A-
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Suppose, for contradiction, that there were such a U. Since p ^ 0, 
p\sn-i ^ 0, because the coeÆcients of p are determined by p\un- Thus, 

d i m R ( S n - 1 n p - 1 { 0 } ) < n - 2 , 

and we may choose a pair (a, b) G U with p(a) ^ 0. By homogeneity, 
p(Xa) ^ 0 for all 0 ^ A G C, hence, 

P - ' W H T T - H O } = {0}. 

By the Proper Mapping Theorem and Chow's Theorem [13, pp.162,170], 
the projection 7ra(Ec(p)) is a complex homogeneous algebraic subvariety 
of 7Ta(C

n) of complex dimension < n — 2. Moreover, the discriminant 
locus D~1{0} is also a complex homogeneous algebraic subvariety of 
7Ta(C") of complex dimension < n — 2. Thus, 

7r a(S c(p))Ui?-1{0} C q-'iO} 

for some non-identically-zero complex homogeneous polynomial q on 
7Ta(C"), and we may similarly find a point c G S" - 1 fi a1- near 6 so that 
(a, c) G [/" C B and <?(c) 7̂  0; hence, ç_1{0} n vrJ^O} = {0}. But then 

Sc(p)ne0)C c p-1{0}n7r-1[7ra(Ec(p))]n7r-1[7Tc-
1{0}] 

c p-'iojnn-^g-^ojnn-'io}} c p - » n TT-HO} ={0}, 

and Da(c) 7̂  0, contradicting that (a,c) G £>. 
Thus, diniR,£> < (n — l)(n — 2). For each pair of integers 1 < i < 

j < n, we deduce that, in the space C of ordered orthonormal bases of 
R", the set of ordered bases ( a i , . . . , an) with (aj, Oj) G £> has dimension 
< diniR,C = (n — 1)!. In particular we are able to choose a "good" basis 
( a i , . . . , a„) so that (a,, a,j) 0 £> for every 1 < i < j < n. Such a basis 
readily determines the desired rotation 7 G O(n). q.e.d. 

Corollary 3.2. Let P : C" —> C 6e a nonconstant homogeneous 
harmonic polynomial with real coefficients. Then for some real rotation 
7 G O(n), -P|(7rro7)-1{o} ^ a s a n isolated critical zero in the origin ofC2, 
Vi, j with 1 < i < j < n. 

Proof of Corollary 3.2. Because of Theorem 2.1, 

d i m c S c ( P ) < n - 2 . 

Therefore Lemma 3.1 is applicable and yields the desired result, q.e.d. 
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4. Stability under smooth perturbations 

Let u ^ const. satisfy (1.1'), i.e., 

C0u = 0 in fi, O C R". 

Without loss of generality, we assume that O e S ] , that 

a,ij(ö) = öij, 1 < i < j < n 

and that u has a critical zero in Ö. Then due to (1.2) 

(4.1) u{x) =PM(x) + 0(\x\M+1) for |x| ^ 0 

for some harmonic homogeneous polynomial PM ^ 0 of degree M > 2. 
Denoting the complexification of PM for simplicity again by PM it 

follows from Corollary 3.2 that 

PM\(WÌ•O7)-1{O} has an isolated critical zero 

in the origin of C , Vi, j . 

This will be essential to show 

Lemma 4.1. There exists R > 0 such that 

(4.3) cardY1(u)n(irijÆj)-1{y}nBR < (M - l ) 2 

for all y G B^ and for all i,j such that 1 < i < j < n. 

Proof of Lemma 4-1- The proof is similar to that of Lemma 2.3 in 
[19]. From there we use Proposition 2.2, namely: 

Proposition 4.2. Let p(zi, z^) be a homogeneous polynomial in 
C2 of degree k with real coefficients, and assume that p has an isolated 
critical point at the origin in C2 . Let further cj) G C°°{Dr(ö)), Dr(ö) = 
{y G R2 : \y\ < r}, and r > 0, with 

4>{y) = P(y) + o(\y\k) for\y\->0 

and let 4>t(y) G C°°(D(0) x i ) fort G I where I = [—to, to], with 4>o = (j>. 
Then there exists f, 0 < f < r such that for \t\ < to, to small enough, 
the number of critical points of 4>t{) in Df(0) is uniformly bounded by 
(k-lf. 

For the proof we use results in [1], namely: for a homogeneous poly
nomial p(z), z G C2 of degree k, with an isolated critical point at the 
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origin O the algebraic multiplicity of the gradient map of p in O is 
(k — l )2 . This together with the subadditivity of the algebraic multi
plicity yields the result, which can be stated as 

card(S(0 t) n Dr(ö)) < (k - l )2 Vi, \t\ < i0. 

We apply this to our case and identify Vi, j 1 < i < j'• < n 

P = ^ M | ( 7 r y O 7 ) - 1 { 0 } 

and 

00 = w|(7r ijO7)-1{0}-

Let a G C°° denote a curve in R " - 2 passing through the origin, parametrized 
such that CT(0) = Ö. We define for t G I, I being an interval about 0 in 
R, 

(l)t = u\(7Tijo7)-^{a(t)}-

Due to Lemma 3.2 and (4.1) we can apply Proposition 4.2 and obtain 
for some f > 0 

c a r d ( £ ( u | K . 0 7 ) - i H t ) } ) n Df(0)) < (M - l )2 

for t, \t\ < to, to small enough. This implies further that for some R > 0 
and t > 0 

(4.4) card(E(M)n(7T i io7)-1{cr(t)}nJB7j) < ( M - l ) 2 Vi, |t| < t. 

Suppose now for contradiction that Lemma 4.1 is false. Then for some 
i,j there are sequences {Rk} and {y^k'} with y(k> G R n _ 2 , R^ —> 0, 
\y\k)\ —>• 0 for k —> oo such that 

card(S(n) n (ntj o 7 ) - 1 { y W } n 5 Ä J > (M - l ) 2 . 

Proposition 4.3. Let {y1-^} denote a sequence in R" convergent 
to some y. Then there is a subsequence which is a subset of a C°°-curve 
in TV1. 

Proof of Proposition 4-3. We use a result of Kriegl [21] (see also 
Lemma 4.2.15 in [12]): 
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Let xm G R" , xm —> ~x for m —> oo and let tm G R, tm \. 0 for 
m —> oo. If VA;, fceN, {(œTO — £ m +i ) (£ m — tT O + i )_ f c} is bounded, then 
for some C°°-curve 7, j(tm) = xm, Vm and x^'{tm) = 0, Vj G N . 

From any convergent sequence {y(k'} it is easily seen that we can pick 
a subsequence converging fast enough so that the assumptions above are 
satisfied, q.e.d. 

Returning to the proof of Lemma 4.1, we conclude that we can pick 
a subsequence of {y^k'} (again denoted by {y^k'}) such that for some 
CTGC00, a(tk) = y{k\ VA; and 

(4.5) card(E(w) n (7^ Æ 7 ) _ 1 { ^ ( ^ ) } n BRJ > (M - l ) 2 VA;. 

On the other hand given a, there are R, t > 0 such that (4.4) holds. But 
this contradicts (4.5) and completes the proof of Lemma 4.1. q.e.d. 

5. F in i teness of t h e measure of t h e critical set 

We first need 

L e m m a 5.1. Let u ^ const satisfy (1.1') and B be a ball with 
B C $1. Then T,(u)nB decomposes into the countable union of subsets of 
a pairwise disjoint collection of smooth n — 2 dimensional submanifolds, 
i.e., E(u) fi ß is a countably (n — 2)-rectifiable subset in the sense of 
Fédérer [11]. 

Proof of Lemma 5.1. The proof in principle is the same as the one 
of Lemma 1.9 in [20]: Thereby the argument is essentially that used by 
Cafarelli and Friedman [7]: 

Let for q = 1, 2, 3 , . . . 

Sq = {x\Dau(x) = 0,Va with 0 < \a\ < q, Dq+1u(x) ^ 0}. 

For any ball B^R with B^R C O and any point Xo G BR, consider 
the equation CQ{U — U{XQ)) = 0. Since the coeÆcients are smooth, it 
follows via unique continuation that u — u(xo) vanishes to some finite 
order M{XQ) at xo and 

sup M(XQ) = M < 00 . 

XO&B2R 

Thus y a G £ (u) n BR, 

M 
BR(a) n {x\Vu(x) = 0} = BR(a) n | J Sq. 

q=l 
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The remaining part of the proof is the same as in e.g. [20] or [7]. 
q.e.d. 

Due to Lemma 5.1 we have in particular 

s(«)nßR = u:=1Em, 

where E\ C E% C . . . are Borei subsets of £(«) of finite %n_2-measure. 
Without loss of generality we change coordinates to make 7 = Id in 

Lemma 4.1. Then we use the integral geometric inequality 3.2.27 in [11] 
and Lemma 4.1 to obtain the following estimate: 

With R > 0 given in Lemma 4.1 

Hn-1(E(u)nBR)= lim nn-2(EmnBR) 
m—s>oo 

<l imsup V / caxd[jr^1{y}nEmn^R]dHn-2y 

< fnW-2CB™-2)(M - l)2. 

This finishes the proof of Theorem 1.1. q.e.d. 
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