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T H E I S O P E R I M E T R I C P R O F I L E OF 
H O M O G E N E O U S R I E M A N N I A N MANIFOLDS 

CH. PITTET 

Abstract 
We compute, up to a multiplicative constant, the isoperimeric profile of 
(non-compact) homogeneous Riemannian manifolds by constructing "ex­
plicit" exhaustions which give estimates for the distribution of the volume. 
For those Riemannian manifolds only three very different isoperimetric pro­
files exist and the isoperimetric profile governs the asymptotic of the heat 
kernel decay on the diagonal and vice-versa. By discretisation, the isoperi­
metric profiles of finitely generated discrete subgroups of Lie groups are also 
computed. 

1. Introduction 

1.1 The classical isoperimetric profile 

Let X be a complete Riemannian manifold and let 0 < t < vol(X). The 
isoperimetric profile of X is 

Ix(t) = inf vol(dQ), 
vol(Q)=t 

where the infimum is taken over relatively compact domains Q, with 
regular boundary dû. Compare [5, pp. 140-143], [16, 4.74]. With the 
exception of the simply connected constant sectional curvature spaces 
IRn, Sn, Hn where the infimum is realised by balls, the exact computation 
of Ix(t) even for familiar Riemannian manifolds may be problematic. 
For example, in the case of real projective spaces with the locally spher­
ical metric, the answer is known and proved only in dimension 2 and 
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3 [5, p.141]. See [36], [35] for estimates in the case of periodic metrics 
covering the torus. 

1.2 A s y m p t o t i c invariants 

At the beginning of the 80s, M. Gromov [20], [17] initiated the study 
of non-bounded Riemannian manifolds and other metric spaces includ­
ing infinite finitely generated groups with word metrics, up to quasi-
isometry. The emphasis is then on the asymptotic invariants which 
capture the large scale geometry of the space [22] and not on the local 
structure of the space. For example, the universal cover of a compact 
Riemannian manifold and its fundamental group with a word metric 
are essentially viewed as the same object. On a finitely generated group 
r with finite symmetric generating set S, the discrete version of the 
isoperimetric profile is 

Ir(n) = min \dü\, 
|fi|=n 

where the minimum is taken over subsets Q, of F of cardinality n and 
where 

dû = {7 G fi : 3s G S : -ys G T \ Ü}. 

See [22] 0.5 and 5.E. From this unified viewpoint, the isoperimetric pro­
file becomes a computable asymptotic invariant -at least for homoge­
neous Riemannian manifolds and finitely generated discrete subgroups 
of Lie groups; see Theorem 2.1, which is strongly related to the heat 
kernel decay. On a finitely generated group F with finite symmetric 
generating set S, the discrete heat kernel is given by the probabilities 

Pn(x,y) = ^2 P(z0,Zl)--P(Zn~l,Zn), 
zo,--.,z„ 

where the sum is taken over the n + 1-uples of T with ZQ = x and zn = y, 
and where p(x,y) = | 5 | _ 1 if x~xy G S and p(x,y) — 0 if this is not the 
case. 

1.3 Amenabi l i ty according t o F0lner and K e s t e n 

In 1955 F0lner [14] proved that a finitely generated group F is non-
amenable if and only if for any finite symmetric generating set S there 
exists an e > 0 such that 

\dn\ > e\n\ 
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for all finite subsets Q in F. In 1959 Kesten [29] proved tha t a finitely 
generated group F is non-amenable if and only if for any finite symmetric 
generating set S of F, there is a constant C > 0 such tha t 

pn(e,e) < C e x p ( - — ) 

for all n G N. In 1968 Milnor [32] pointed out relations among the 
curvature of a compact Riemannian manifold, the growth of its funda­
mental group and the decay of pn{e,e). The problem he raised at the 
end of the paper, namely whether pn(e, e) has an exponential decay if F 
is the fundamental group of a compact negatively curved Riemannian 
manifold, has a natural solution relying on the isoperimetric profile. In­
deed, let xo be a base point in the universal cover X of X and consider 
the unit vector field 

Z(x) — grad(d(x,xo)) 

defined on X \ {XQ} where d(x,xo) is the distance between x and XQ. 
As the curvature of X is negative, it follows tha t there is an e > 0 such 
tha t for all x € X \ {xo} we have 

divZ(x) > e. 

Let (jo be the volume form on X. If fl is a domain in X with regular 
boundary dfl, then the divergence version of Stokes formula shows tha t 

e x vol(Cl) < / divZui = / izw < vol(d£l). 
Jn JdU 

This implies the corresponding inequality 

|öfi| > e | 0 | 

(with another constant e) for subsets 0 of the fundamental group of X . 
To prove it, consider the orbit of a ball of radius r = diam(X) in X under 
the action of the subset flcT and the generating set of F consisting of 
the elements 7 G F such that d(yxo,xo) < 2r + 1. The results of F0lner 
and Kesten mentioned above imply the exponential decay of pn(e,e). 
Compare with [3], [22, 0.5 C], [38]. Another proofreads as follows. The 
fundamental group of a compact negatively curved manifold contains 
a free subgroup on two generators [21, 5.3 E], [15, 1.32, 1.38] and the 
probability of returning to the origin cannot decrease when passing to 
a (finitely generated) subgroup [39]. 
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1.4 Varopoulos l inks b e t w e e n growth, i soper imetry and 
heat decay 

In 1982 Pansu [34] established the lower bound 

'«> >-1 
for t > 1 and C a constant for the isoperimetric profile of the 3-
dimensional Heisenberg group with a left-invariant Riemannian met­
ric and the corresponding lower bound for the lattices of this Lie group. 
Around the middle of the 80s Varopoulos [51] computed the asymptotics 
of the heat kernel diffusion on Lie groups with polynomial growth. He 
showed that the following conditions are equivalent on a connected Lie 
group with a left-invariant Riemannian metric: 

td 
3A > 1 : Vi > 1, — < vol(Bt) < Atd, 

3B > 1 : Vt > 1, — -̂ <pt(e,e) < Bri, 
B 

where d is an integer and Bt is the Riemannian ball of radius t. He also 
discovered close relations between the behaviour of the heat kernel dif­
fusion and Sobolev inequalities. A geometric application of this work is 
that on a Lie group with polynomial growth of degree d, the isoperimet­
ric profile (with respect to a left-invariant Riemannian metric) satisfies 

for t > 1 and a constant C. See [51] 0.6, p. 348 and references. 

1.5 T h e inequal i ty of Coulhon and Saloff-Coste 

In [11] Coulhon and Saloff-Coste give a direct proof, i.e., not using the 
heat kernel decay- of this inequality. Moreover, their argument gives 
a lower bound for the isoperimetric profile starting from an arbitrary 
growth of the balls. For example, if the growth is exponential, the lower 
bound they get is 

m s cïwr 
where t > 1 and C is a constant. In [37] and [41] it is shown that the 
above inequality is essentially optimal in the case of polycyclic groups 
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with exponential growth. This raises the question of the existence of 
finitely generated amenable groups with an isoperimetric profile bigger 
than 

t 

and shows also that to find such an example, the information on the 
growth is of no help. In [53], [54], [56], the asymptotic of the heat 
kernel decay for a general Lie group is computed. See also [24] and [2]. 
A surprising | exponent appears: 

exp(-Cti) à 
£ < p t ( e , e ) < C e x p ( - — ) , 

where t > 1 and C > 1 is a constant. Among connected Lie groups, 
these asymptotic characterises the unimodular amenable groups with 
exponential growth (see Theorem 2.1). 

1.6 T h e functional equat ion of Coulhon and Grigor'yan 

In [18] Grigor'yan and [7] Coulhon obtain, in an abstract setting, a 
refined link between the asymptotic of the heat kernel diffusion and the 
first eigenvalue of compact domains for the Dirichlet problem. See also 
[9]. Their result implies that, under suitable hypotheses on the space 
X, the isoperimetric profile I(t) is given (up to multiplicative constants 
and for t > 1) by 

where A(t) is defined by the functional equation 

| iog(Pr1) = A(pr1), 

where pt = pt(x,x) is the heat kernel and x € X is a base point. The 
present paper can be regarded as a first step to find out which spaces 
fulfil the above "suitable" hypotheses. On a homogeneous Riemannian 
manifold, the above relation between the isoperimetric profile and the 
heat kernel is true. We invite the reader to check the predicted corre­
spondences in the three cases of Theorem 2.1. The lambda functions are 

2 

respectively h.(x) = C where C > 0 is a constant, A(x) = x~d where d 
is a positive integer and A(x) = log(x)~2. To summarize, the first case 
corresponds (in the discrete setting of finitely generated groups) to the 
equivalence obtained by applying the theorems of F0lner and Kesten 



260 CH. PITTET 

cited above. The second case corresponds (for Lie groups) to the equiv­
alences first established through Sobolev inequalities by Varopoulos as 
mentioned above. The third equivalence gives a geometric explanation 
for the exponent 5 in the decay 

. 1. 
exp( -*3) 

if we succeed in making clear what a lo *, <. isoperimetric profile means. 
We also prove that the discrete analogous correspondence is true for 
finitely generated discrete subgroups of Lie groups. 

1.7 The homogeneity assumption 

With no homogeneity assumption it is not true that the decay of the 
heat kernel determines the isoperimetric profile. For example, in [49] it 
is shown, under geometric finiteness assumptions that if 

d - l 

for t > 1 and for a constant C, then 

s u p p l y ) < Ct 2 

(for another constant C) but the best known converse seems to be that 
if 

suppt(x,y) < Ct~* 

then 

(again for another constant C). See [52]. In [6], Carron constructs 
a complete Riemannian manifold with positive injectivity radius and 
bounded sectional curvature with 

suppt(x,y) < t~2, 
x,y 

and he shows that the inequality 
q - l 

c 
for C a constant and t > 1 fails for any a > | . See also [10]. 
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1.8 Quest ions and speculat ions 

We conclude this introduction with a general question. Let X be a 
connected complete Riemannian manifold such that the isometry group 
G of A" acts quasi-transitively, that is, such that the orbit space G\X is 
compact. (Here we do not assume that G is connected.) Let x € X be a 
base point. Let pt = pt(x,x) be the heat kernel of X on the diagonal at 
x. Is the isoperimetric profile of X given (up to multiplicative constants 
and for large t) by 

ty/JUfy 

where A(i) is defined by 

| l o g ( p - 1 ) = A(pt-
1)? 

Notice that the case of quasi-homogeneous Riemannian manifolds (as 
defined above) contains (after suitable discretisations, see [39]) the case 
of finitely generated groups. Let us recall why. If F is a finitely gen­
erated free group and if T = F/R is our finitely generated group, let 
B be a compact Riemannian manifold with IT\{B) = F. The Galois 
group r of the covering X —» B corresponding to the normal subgroup 
R < F is quasi-isometric to X. Hence the asymptotics of the isoperi­
metric profile and of the heat kernel on X are essentially the same as 
the asymptotics of their discrete analogs on T. Already for metabelian 
groups, the asymptotics of pn(e,e) and I(n) can be quite complicated. 
It turns out that there are many solvable groups with an isoperimetric 
profile much bigger than l o^ n \ . See [42]. Finding the sharp lower bound 
for their isoperimetric profile seems to be a difficult task. For example 
the metabelian wreath products F\Zk where F is a finite abelian group 
have 

k 

pn{e,e) ~exp(-n*+2) , 

where ~ means bounded above and below up to multiplicative constants 
and up to periodicity problems. See [42], Hence A(x) = log(a;)~fc so 
that we expect 

I(n) ^ - p . 
log(ra)* 

What has been proved is that there exists a constant C > 1 such that 

I(n) > 2—3-
Clog(n)* 
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for all n G N and that for many n G N 

71 

I(n) < C — . 
log(n)k 
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2. Statement of the results 

2.1 Three classes of homogeneous Riemannian manifolds 

We will use the following notation. If / , g : M+ —> R+ are functions, we 
write 

if there exist constants A > 1 and B > 0 such that for alH > 1 we have 

/(*) < Ag(Bt). 

If f(t) d: g(t) and g(t) ^ f(t) we write f(t) ~ g(t) and we say that / 
and g have the same asymptotic behavior. 

Theorem 2.1. Let X be a connected non-compact Riemannian 
manifold which is homogeneous in the sense that its group of isome-
tries acts transitively on it. Then three cases occur and they can be 
distinguished either geometrically by the isoperimetric profile, or ana­
lytically by the large time decay of the heat kernel on the diagonal, or 
algebraically by the structure of the identity component G of the group 
of isometries of X as follows: 

1. I(t) ~ t 4=> pt ~ exp(—t) <=> G is non-amenable or non-unimodular. 

2. I(t) ~ \0ltt) ^ Pt ~ exp(—£s) ^ G is amenable unimodular with 
exponential growth. 

3. I(t) ~ t~d~,d G N &• pt ~ t~ï,d É N » G has polynomial growth 
of degree d. 
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In terms of the structure of G, cases 2) and 3) above have more 
algebraic descriptions but they are also more complicated to state. Up 
to taking quotients by compact subgroups and up to taking co-compact 
subgroups (see Proposition 3.6) we are left with a simply connected 
solvable Lie group S. To such a group correspond naturally a simply 
connected nilpotent group N and an abelian group T. The group T acts 
both on S and on N with the property that the corresponding semi-
direct products are equal: ST = NT. If T is non-compact, we are in 
case 2). If T is compact, we are in case 3) and the integer d is given by 

c 

d = J2i xrank(Nl/Nl+1), 

where Nl is the ith term in the descending central series of N. See [1]. 
(There is a missing hypothesis in Th. 4.2 in [1]. Nevertheless, as T acts 
via the adjoint action by semi-simple transformations, the semi-direct 
product NT has exponential growth if and only if T is non-compact.) 

2.2 Exhaust ions by F0lner sets and distr ibut ion of the 
vo lume 

Much of the paper is devoted to prove the upper bounds in 2) and 3) 
for the isoperimetric profile. We prove the following. 

Proposition 2.1. Let X be a connected homogeneous Riemannian 
manifold. There exists a family of compact submanifolds fit of maximal 
dimension (with corners) which exhaust the space, 

X=\Jflt 

and fls G fit if s < t. Moreover, each set fit is itself exhausted by a fam­
ily of compact submanifolds Atj£ of maximal dimension (with corners) 
with the following properties: 

fit= ( J At,e 
0<e<t 

and Ai)£< C A4i£ if e' > e, At,o = fit and there is a constant c > 0 
(depending on X only) such that 

d(dAttf.,dAt,e)>c(e'-e). 
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/ / the connected component of the identity G of the group of isometrics 
of X is unimodular amenable with exponential growth, then there is 
a simply connected unimodular solvable Lie group S which is quasi-
isometric to X and for all t > 1 

vol(At}€) = c(A* - e/i*)d(* - e)r, 

vol(dÜt) < C(A t)dtp_1, 

where c > 0 , C > 1, A > // > 1 are constants d is the growth degree 
of the simply connected nilpotent commutator group [S, S], and r is the 
rank of S in the sense that S/[S, S] ~ W. If G has polynomial growth 
of degree d, then for all t > 1 

vol(Att£) = c(t - e)d, 

vol(dSlt) < Ctd-\ 

where c > 0, C > 1 are constants. 

Remark 2.1. In the case of polynomial growth the sets At>£ are 
related to the Qt by 

A(,e = tit-tD 

for some D > 0. In the case of exponential growth there is no s — s(t, e) 
such that the sets At;6 which exhaust At)o are equal to AS)o-

Remark 2.2. In the case of a unimodular amenable Lie group G 
with exponential growth, the integers d > 1 and r > 1 are not naturally 
associated to the bilipschitz equivalence class of X. The simplest way 
to see this is perhaps to consider the universal cover of the connected 
component of the identity of the group of rigid motions of the plane. 
Any left-invariant Riemannian metric on it is bilipschitz equivalent to 
the three-dimensional Euclidean space (in fact both groups are regular 
covers of the 3-torus) but its commutator subgroup is isomorphic to 
R2. (To obtain an example with exponential growth we can take the 
Cartesian product of this group with a unimodular solvable group with 
exponential growth.) Nevertheless, the existence only of d > 1 and 
r > 1 is enough to imply the optimal lower bound 

Pt{e,e) > . 

See [8]. 
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2.3 Bal ls are not F0lner sets 

Notice that in the case where G is unimodular amenable with exponen­
tial growth, an exhaustion of the space by a family of balls gives no 
upper bound for the isoperimetric profile. The reason for this is easily 
explained in the discrete setting [30, 5.4. p.479]. See also [13, Ch.VII]. 
First recall the following from calculus. 

Lemma 2 .1 . Let an be a sequence of positive numbers. If 

lim an+i/an = a, 
n—>oo 

then 
lim a\[n = a. 

Lemma 2.2. Let V be a group generated by a finite symmetric set 
S. Let Bn be the ball of radius n in Y for the word metric associated 
with S. The growth of F is exponential if and only if there exists e > 0 
such that for all n G N 

\dBn\/\Bn\ > e. 

Proof. It is more convenient here to work with the external bound­
ary of subsets of T. That is if Q, C T we define 

where 

Notice that 

difì = Vi( f î ) \n , 

V1(n) = {1eT:ds(j,Ç})<l}. 

\diSl\/\S\ < |ÔO| < |5||ôifi|. 

As V\(Bn) = Bn+i we have 

|ßn+l | / |ßn | = 1 + |Ölß„| / |ß„ | . 

Hence, if \diBn\/\Bn\ > e, then |J5n+i| > (1 + e)|.B„| so that the growth 
is exponential. Suppose there exists A > 1, such that for all n G N, 
\Bn\ > A". Let bn = \Bn\. As bl/n > A for all n G N, the following 
statement is true. For any (small) e > 0 there exists Ne G N, such that 
if n > Ne then bn+\/bn > A — e. Hence if n > Ne 

\dlBn\/\Bn\>X-e-l. 

q.e.d. 
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The estimate 
vol(dÜt) < Cffi 

in case 3) of Theorem 2.1 above with Qt a ball of radius t, although 
probably true, has not been proved (to the best of our knowledge) for 
a general simply connected nilpotent Lie group. Compare [46], [41]. 
The fact that I{t) ~ t~d~ for a simply connected nilpotent Lie group of 
growth d is stated in [22] 5EB. 

2.4 Discret i sat ions 

As explained in the introduction, on a finitely generated group with a 
chosen finite symmetric generating set, the discrete isoperimetric profile 
and the discrete heat kernel are easily defined. But the equivalence 
relations which turn them into quasi-isometric invariants are somewhat 
technical. In any cases, the explicit analog of Theorem 2.1 we are able 
to prove for finitely generated discrete subgroups of Lie groups is the 
following. (Proposition 2.1 also has a discrete version.) See Theorem 
3.5 in [58] for a statement in the case of quasi-transitive graphs. 

Corollary 2.1. Let T be a finitely generated group which is a dis­
crete subgroup of a Lie group having a finite number of connected compo­
nents. Then the following three cases occur. (We fix a finite symmetric 
generating set S and C is a constant which depends only on F and S. 
The following inequalities are true for all n € N.) 

1. \d£l\ > ^ , V f i C r <^>p„(e,e) < C e x p ( - g ) <£> T is non-amenable. 

2. 

and there is a family $ln such that 

ngN 

with Clm C Cln if m < n and 

^ < |fì„| < Cn, 

n , „^ , Cn 

< \dnn\ < Clog(n) n log(n)' 
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<=$ pn(e,e) < C e x p ( — ^ ) andp2n(e,e) > exp ^ n O T contains 
a finite index polycyclic subgroup but no finite index nilpotent sub­
group. 

3. There is a d G N such that 

. d - l 

|an|>J-^-,vficr, 

and there is an exhausting family as above with 

Th 

•ç < |îl»| < Cn, 

d-1 

^ < iaO.1 < Cn^r 

<3> there is ad G N such thatpn(e,e) < Cn~ï andp2n(e,e) > rLQ-
Ç$ r contains a (finite index nilpotent group) N and d = Yli=i * x 

rank(Nl/Nl+1) where Nl is the ith term in the descending central 
series of N. 

Remark 2.3. The reverse inequality \dQ,\ < \Q\ in 1) above is ob­
vious because by definition dO, C £1. The reverse inequality P2n(e, e) > 
exp\~ n) in 1) above is true because the number of edge paths in the 
Cayley graph of T with respect to 5 of length 2n which start at e is 
| 5 | 2 " and as 2n is even there are loops among them. 

According to Tits [47] a subgroup of a Lie group with a finite number 
of connected components either contains a free subgroup on two gener­
ators or contains a co-compact solvable group. According to Mal'cev, 
polycyclic groups are characterised among solvable ones by the prop­
erty of having all their abelian subgroups finitely generated [44] 15.2.1. 
A discrete abelian subgroup of a connected Lie group is finitely gener­
ated (take the image under the adjoint representation and consider its 
Zariski closure which is an algebraic-hence has finitely many connected 
components-abelian group). According to Mostow, up to finite index, a 
polycyclic group is a lattice in a simply connected solvable Lie group; see 
[43] 4.28, hence its growth is either exponential or polynomial [28], [23]. 
(Another possibility here is to apply the results of Wolf and Milnor on 
the growth of finitely generated solvable groups [59], [31].) According to 
Gromov the finitely generated groups with polynomial growth are the 
virtually nilpotent ones [19] so that their growth is given by the above 
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formula [4]. These facts together explain the algebraic description in 
the corollary. 

The remaining statements in the corollary will follow from the proof 
of the theorem and from discretisation procedures as in [39]. The crucial 
point allowing this strategy is the result of Mostow, cited above. With 
the exception of the upper bounds on the isoperimetric profiles, those 
results have been proved by several authors, directly in the discrete set­
ting. The lower bounds on the isoperimetric profiles follow from [11]. 
The wanted upper bound on the heat kernel for groups with exponen­
tial growth is established in [57, VII 1.1] and the lower bound for poly-
cyclic groups in [2]. For the heat kernel estimates of the type n~~ « ; see 
[57, VI.5] and [26] or [8] for the lower bounds. 

2.5 Remarks on "non-lattices" 

Even if we do not assume that the finitely generated group T is a discrete 
subgroup in a Lie group, the equivalence of the three conditions (that is 
the geometric one, the analytic one and the algebraic one) of the classes 
1) and 3) remains true, thanks to [14] and [29] for 1) and [57] VI.5 and 
[19] for 3). See [40] for more on this. Although the groups 

< a,b : aba-1 — bq > 

with q > 1 are not discrete subgroups in any (real) Lie group with a 
finite number of connected components, they have 

exp(—na) 

as diagonal heat kernel decay and 

n 
log(n) 

as isoperimetric profile. An algebraic description of finitely generated 
groups with exp(—nâ) as heat kernel decay would be interesting. See 
[40], [8] for more on this. 
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3. Preliminary material 

3.1 U n i m o d u l a r Lie groups 

Among Lie groups (with left-invariant Riemannian metrics), unimodu­
larity is not a quasi-isometric invariant. For example a simple Lie group 
G = KAN (with finite center) is quasi-isometric to the solvable part 
AN of an Iwasawa decomposition. If the real rank of G is non-zero then 
AN is non-unimodular. But the strong isoperimetric inequality implied 
by the non-unimodularity is invariant under quasi-isometries. We recall 
in the context of Lie groups well known properties of unimodularity (see 
for example [43, Ch.I], [45, Ch.10]). The following result is standard. 

Proposition 3.1. Let G be a connected Lie group. Then G is 
unimodular if and only if for any lefi-invariant vector field X on it 
divX — 0. More precisely, 

divX = —-A(exptX) | t = o, 
at 

where 

A : G -> m; 
is the modular homomorphism. Hence divX — 0 if and only if X(e) 
belongs to the kernel of the derivative TeA. 

Corollary 3.1 (compare [57, Ch. 9)]. Let G be a connected Lie 
group which is non-unimodular. Then for any left-invariant Rieman­
nian metric on G there is a constant e > 0 such that, for all domains £2 
in G with regular boundary, 

vol(ü) > e x vol(dü). 

Proof. Let X be a left-invariant vector field on G of unit norm 
such that divX = e > 0. Let u be the left-invariant volume form on G. 
Stokes formula shows that 

e x vol(Cl) — j divXu 
Ja 

= / ixu < vol(d£l). 
Jan 

q.e.d. 
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P r o p o s i t i o n 3 .2 . (see [43] 1.1.4) Let G be a connected Lie group 
and let H be a closed subgroup. Then there exists an invariant volume 
form on the G-space G/H if and only if the restriction of the modular 
homomorphism of G to H is equal to the modular homomorphism of H. 

Corol lary 3 . 2 . Let G be a connected Lie group. Let H be a closed 
subgroup. If H is normal and if G is unimodular then H is unimodular. 
If H is co-compact and unimodular then G is unimodular. 

Proof. If H is normal the G-homogeneous space G/H is a Lie group 
hence there is a G-invariant volume form on it. If Ü" is co-compact then 
G is an H-principal bundle with compact base B. Let B = UKX be a 
finite cover of B by compact sets Ki such tha t the bundle restricted to 
each Ki is trivial. Let Si : Ki —> G be continuous sections. The subset 
S = Usi(Ki) is compact in G and each element g € G can be writ ten as 
g = sh with s £ S and h € H. If H is unimodular then A G ( G ) = AQ(S) 
is a compact subgroup of MÜj_. q.e.d. 

P r o p o s i t i o n 3 .3 . Let G be a connected Lie group and let N be a 

closed normal subgroup. Let TV : G —» G/N be the projection. If the 

action by conjugation of G on N preserves a volume form on N, then 

AG/N 0 7T = Ac-

Proof If a non-zero top-dimensional differential form on a Lie 
group is left-invariant, we call it a volume form. Let i : N —» G be the 
inclusion. Let ß be a left-invariant form on G such that i*ß is a volume 
form on TV. Let a be a volume form on G/N. Then ir*a/\ß is a volume 
form on G. Let g € G. Then 

AG(<7)(7T*a A ß) =c*g(n*a A ß) = {-Kcg)*a A c*gß 

= (cn(g)^)*a A C*gß = 7!-*<(g)a A C*gß 

=7T*AG /Nn(g)a A c*gß = AG/Nir(g)(iv*a A c*gß) 

=AG/NTr(g)(TT*aAß). 

q.e.d. 

Corol lary 3 . 3 . Let G be a connected Lie group and let K be a 
compact normal subgroup. Then G is unimodular if and only if G/K is 
unimodular. 

Proof. The above proposition applies because the connected com­
ponent of Aut(K) is compact (the proof that this group is compact is 
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classical, the main point being tha t the component of the identity of the 
automorphisms group of a semi-simple Lie algebra contains only inner 
automorphisms [48] 3.10.8). q.e.d. 

3 .2 S t a b i l i t y o f t h e h e a t k e r n e l 

The techniques explained in [39] apply to show the following. Let X 
and Y be connected complete Riemannian manifolds which are quasi-
homogeneous (see Theorem 2.1 for the definition). If X is quasi-isometric 
to Y then 

Pt{x,x) ~ Pt{y,y)-

3 . 3 R i e m a n n i a n s u b m e r s i o n s 

The upper bounds on the isoperimetric profiles given by exhaustions 
are preserved if we pass from the base of a Riemannian submersion 
with finite constant volume fibers to the total space. Specifically, we 
will need the following statement which is a straigthforward application 
of the co-area formula. 

P r o p o s i t i o n 3 .4 . Let X and Y be connected Riemannian manifolds 
and let p : X —» Y be a Riemannian submersion. Assume that the 
volume of the fibers is constant equal to c. Then the following is true: 

1. If W is a submanifold (with corners) of Y and V =p~l{W), then 
vol(V) = c x vol(W) and vol(dV) = c x vol(dW). 

2. If Wt is a continuous family of submanifolds (with corners) in Y 

such that Wt C Ws if t < s and Y = (Jt>o W*> then the family 

Vt = p~l{Wt) has the same properties in X. 

Such submersions arise via group theory as follows. 

P r o p o s i t i o n 3 .5 . Let G be a connected Lie group, let K be a com­
pact subgroup and let O be a closed subgroup of K. For any G-invariant 
Riemannian metric on GjK, there exists a G-invariant Riemannian 
metric on G/O such that the projection 

p : G/O -> G/K 

is a Riemannian submersion. 
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Proof. The adjoint action of K on TeG stabilizes TeK and as K is 
compact we can find a stable complement He. Let p : G —> G/K be the 
projection. The restriction of 

Tep:He®TeK-+Te{G/K) 

to He is an isomorphism. On He we choose the scalar product which 
makes this isomorphism an isometry. This scalar product is Ad(K)-
invariant because if X G He and k € K, 

\\TeAd{k)X\\e = \\TePTeAd{k)X\\p{e) 

= llrfc(prfc-i)TeZjtX||p(e) = \\TkpTelkX\\p(e) 

= \\Tp(e)lkTePX\\p(e) = ||TepX||p(e) = | |X | | e . 

(We have denoted also by lg the action of g on G/K.) We choose a 
scalar product on TeK which is also Ad(K)-'mvaxmnt to get an Ad(K)-
invariant scalar product on the whole space TeG = He@TeK. It induces 
a left-invariant Riemannian metric on G and as p is G-equivariant, it is a 
Riemannian submersion. Moreover, this Riemannian metric, being left-
invariant under G and right-invariant under K, induces a G-invariant 
Riemannian metric on G/O such tha t the projection 

TT : G -> G/O 

is a Riemannian submersion. As p and IT are Riemannian submersions, 
the quotient map 

q : G/O -> G/K 

induced by p is also a Riemannian submersion. q.e.d. 

3 . 4 F r o m a m e n a b l e t o s o l v a b l e s i m p l y c o n n e c t e d 

Bilipschitz transformations are quasi-isometries. They obviously pre­
serve the asymptotic behavior of the isoperimetric profiles and the ex­
haustions. To handle amenable groups we will use the following. 

P r o p o s i t i o n 3 .6 . Let G be a connected Lie group and let R be its 
radical. Assume that G/R is compact (i.e., that G is amenable). Let 
K C G be a maximal compact subgroup and consider a G-invariant met­
ric on the homogeneous space G/K. Then there exist a simply connected 
solvable Lie group S and a compact homogeneous space B such that G/K 
is bilipschitz equivalent to Sx B endowed with the product metric of any 
left-invariant Riemannian metric on S and any Riemannian metric on 
B. Moreover, G is unimodular if and only if S is unimodular. 
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The first step in order to prove the above proposition is the following. 

Proposition 3.7. Let R be a connected solvable Lie group. There 
is a compact connected central subgroup T C R such that the quotient 
R/T contains a closed normal co-compact subgroup which is connected 
and simply connected. 

Proof. Let 7r : G —> R be the universal cover of R and let T ~ rri(R) 
be the corresponding discrete central Galois subgroup of G. Let N 
be the closure of the commutator subgroup of R. This is a connected 
nilpotent group (see [48] Th. 3.18.8 and [27] II.4.1 Cor. C). The identity 
component H of TT~1(N) contains the commutator subgroup of G, hence 
we have two exact sequences with commutative squares: 

1 -> H ->• G -> A -> 1 

4* 4* 4' 

1 -> N -> R -> B ->• 1 

with A and B abelian and connected. As G is simply connected and 
H is connected, A is simply connected hence isomorphic to a vector 
space. Viewing G as a iï-principal bundle with contractible basis A 
we deduce that H is also simply connected. As H is nilpotent and 
simply connected, its center Z is isomorphic to a vector space. Let E 
be the vector subspace of Z generated by Tfl Z. As Z is a characteristic 
subgroup of H and as H is normal in G and F central in G , we deduce 
that E is central in G. Let A be the subgroup generated by E and T. 
It is a closed central subgroup of G with identity component equal to 
E and the quotient 

T = A/r 

is a central connected compact Lie group. (To check that A is closed, 
notice that it is contained in the closed subgroup 7r_1(iV).) There is an 
exact sequence 

1 -> A / r -> G/T -»• G/A ->• 1. 

As iï = G / r we are looking for a simply connected co-compact subgroup 
in G/A. We have two exact sequences with commutative squares: 

1 -> H -> G -> A ->• 1 

4- 4- 4-

1 -> # / £ -> G/A ->• ß -> 1. 
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Notice that the group H/E is simply connected. We denote by 

p : G/A -> B 

the projection. Let X C B be a simply connected closed subgroup 
of maximal dimension. Hence X is isomorphic to a vector space and 
B/X is compact. The subgroup p~l{X) C G/A is closed normal and 
co-compact, and we can view it as a #/i£-principal bundle with con-
tractible basis X. Hence it is simply connected. q.e.d. 

We will need the following fact. 

Proposition 3.8. Let G be a connected Lie group. Let H be a 
normal subgroup. Let T be a compact connected subgroup of H. If T is 
central in H then T is central in G. 

Proof. The closure of H in G is normal and T is central in the 
closure of H. Hence we can assume that H is closed. Let Z be the 
connected component of the identity of the center of H. Let V ~ iri(Z). 
An automorphism of Z induces an automorphism of the universal cover 
Z of Z which preserves the Galois group T C Z. We get a continous 
map 

G^Aut(Z) 

9 i-> Cg 

where cg is the lift of the automorphism of Z given by the conjugation 
by g. As T is discrete in Z and as G is connected we get for each g G G 

cgh) = 7>V7 e r . 

Let E C Z be the vector subspace generated by I\ We have 

Cg(z) = z,Vz € E. 

Hence 
cg(z) = z,Vz <=E/r. 

Let A ~ 7Ti(T). By hypothesis T C Z so that f C Z and 

T = T/A C E/Y. 

q.e.d. 
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P r o p o s i t i o n 3 .9 . Let 1 —> S —ï G —> K —> 1 be an exact sequence 
of connected Lie groups with S solvable and K compact. The principal 
S-bundle G is isomorphic to the trivial bundle K x S. 

Proof. As the universal cover of a solvable Lie group is contractible, 
the only obstruction to the existence of a section lies in ^(K) which is 
trivial. q.e.d. 

Let G and S be as above. The following lemma implies tha t a left-
invariant metric on G is bilipschitz equivalent to a product metric on 
S x G/S. 

L e m m a 3 . 1 . Let E be a (left) principal H-bundle. If the bundle is 
trivial and the basis is compact, then any two H -invariant Riemannian 
metrics on E are bilipschitz equivalent. 

Proof. We fix a left-invariant Riemannian metric on H and a 
Riemannian metric on B and we consider the corresponding product 
metric on H x B. Let us show that any iî-invariant Riemannian metric 
on E is bilipschitz equivalent to this product metric. Let a : B —> E 
be a section. Let * : H x B —> E be the trivialisation of E defined by 
ty(h, b) = ha(b). We denote by l^ the left action of h on H x B and on 
E. There is a commutative diagram 

H x 

ih-l 

H x 

B 

B 

* 
—> 

* 
—> 

E 
•Ih 

E. 

Let p = (h,b) G H x B. Taking the derivatives we get the commutative 
diagram 

T{eM{H x B) ^ - U Ta{p)E 

Hence 

T(e,b)h\- -\-T<r(b)h 

Tp(HxB) ^ Tnp)E. 

| |T p t f | |<sup | |T ( e i 6 ) t f | 
beB 

| | T p * | | > i n f | | r ( e , 6 ) * | | 

q.e.d. 

P r o p o s i t i o n 3 .10 . Let G = NK be a semi-direct product of con­
nected Lie groups with K compact. Let p : G —> N be the map defined 
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by p(nk) = n. Assume that there is a subgroup S G G such that the 
restriction of p to S is a diffeomorphism. Then S and N (equipped with 
left-invariant Riemannian metrics) are bilipschitz equivalent. 

Proof. On G we forget for a while the group structure denned by 
the given semi-direct product NK and replace it by the direct product 
structure N x K. The projection p becomes a homomorphism and its 
restriction to the subgroup S is an isomorphism. But an isomorphism 
between two Lie groups (with left-invariant Riemannian metrics) is a 
bilipschitz transformation. According to Lemma 3.1, a left-invariant 
Riemannian metric on G for its original group structure is bilipschitz 
equivalent to a left-invariant Riemannian metric for the direct product 
structure. q.e.d. 

We prove Proposition 3.6. 

Proof. Let r be the Lie algebra of the radical JR of G. Let 

g = r + m 

be a Levi decomposition of the Lie algebra g of G. As the quotient G/R 
is compact by hypothesis, the semi-simple group M associated to m is 
compact. Hence G = RM with RPiM finite (see [48] Th.3.18.13). As the 
maximal compact subgroups of G are conjugate (see [25] XV.3.Th.3.1) 
we can choose the above Levi decomposition such that M is contained 
in the given maximal compact subgroup K. Applying Proposition 3.7 
to R we get a compact connected central subgroup T in R and a simply 
connected solvable group S which is normal and co-compact in R/T. 
According to Corollary 3.2 and Corollary 3.3 the group G is unimodular 
if and only if S is unimodular. According to Proposition 3.8 the group 
T is also central in G hence T is contained in any maximal compact 
subgroup. In particular, the quotient R/T acts (properly by isometries 
on the left) on G/K = X. The action of S C R/T on X is free because 
in a simply connected solvable Lie group the only compact subgroup is 
the trivial one. Hence we get a (left) principal 5-bundle X —> B. As 
G = RM and M C K the action of R/T on X is transitive. This implies 
that the action of the quotient group Q of R/T by S is also transitive 
on B = X/S. By hypothesis Q is compact. Hence B is a compact 
homogeneous space. A simply connected solvable group is contractible 
hence the principal bundle is trivial. Applying Lemma 3.1 completes 
the proof. 
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4. From homogeneous Riemannian manifolds to simply 
connected solvable Lie groups 

With this preliminary material in mind we are ready to reduce the 
proofs of Theorem 2.1 and of Proposition 2.1 to the case of simply 
connected solvable Lie groups. 

4.1 T h e t h e o r e m of Myers and Steenrod 

Let X be a connected homogeneous Riemannian manifold and let G be 
its group of isometries. Myers and Steenrod [33] have shown that G is 
a Lie group and that the map 

G^X 

g ^ gxo 

where XQ is a base point is differentiable. Hence we get a diffeomorphism 
G/K ~ X where K C G is the isotropy group of XQ. As we assume, 
X is connected and G -» G/K is a fibration G°/G° n K ~ X where 
G° is the connected component of the identity in G. Denoting again 
by G this connected component and applying Proposition 3.5 we get a 
G-equivariant Riemannian submersion G —> X with compact fiber. In 
particular X is quasi-isometric to G with a left-invariant Riemannian 
metric. 

4.2 Non-un imodular i ty and non-amenabi l i ty for Lie groups 

On a connected Lie group G the Riemannian Laplacian (associated with 
a left-invariant Riemannian metric) has a spectral gap if and only if the 
corresponding heat kernel satisfies 

Pt(e,e) ~ exp(- t) . 

In terms of the Rayleigh quotient, the spectral gap is equivalent to the 
Sobolev inequality 

| |d/ l |2>6| | / | |2 , 

where e > 0 is a constant and / is any smooth function on G with com­
pact support. On G the local structure is the same at every point hence 
the local Poincaré inequality and the local doubling volume property 
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hold (see [50]). It follows tha t the above L2 inequality is equivalent to 
the following L\ inequality 

l l # | | i > e | | / | | i ; 

see [12]. This last inequality is equivalent to the strong isoperimetric 
inequality 

vol(dQ) > e x vol(ü), 

where £1 is any measurable domain with regular boundary. A unimodu-
lar connected Lie group G is non-amenable if and only if the Riemannian 
Laplacian has a spectral gap (see for example [55] ). In this case, apply­
ing Proposition 3.4 to the submersion G - > I w e get Ix(t) h t. Should 
G be non-unimodular, we apply Corollary 3.1 and deduce in the same 
way Ix (t) >z t. 

4 . 3 B i s h o p ' s t h e o r e m 

A homogeneous Riemannian manifold X has bounded curvature, hence 
we can consider the exhaustion of X by the balls centered at XQ G X 
and apply Bishop's theorem [16] 4.19, to deduce tha t Ix{t) ^ t- The 
submersion G —> X is a quasi-isometry, hence the asymptotic behavior 
of the heat kernel on X and on G are the same. Together with 4.1, 4.2, 
4.3 above, this explains the equivalences of the theorem in the case of 
non-amenable groups and in the case of non-unimodular groups. 

4 . 4 A m e n a b l e u n i m o d u l a r L ie g r o u p s 

If G is amenable, according to Furstenberg [60] 4.1.9, the semi-simple 
quotient G/R where R is the radical is a compact group. According to 
Proposition 3.6 and Proposition 3.5, the homogeneous space X is the to­
tal space of a G-equivariant Riemannian submersion with compact fiber 
and with basis bilipschitz equivalent to a Riemannian product S x B 
where S is a simply connected solvable Lie group which is unimodular 
if and only if G has this property, and where B is a compact homo­
geneous space. The lower bounds on the isoperimetric profile follow 
from the inequality of Coulhon and Saloff-Coste [11]. Notice tha t the 
hypothesis in their result involves the growth of the balls and tha t this 
growth is invariant under quasi-isometries. According to Auslander and 
Green [1], to each simply connected solvable Lie group S corresponds 
naturally a simply connected nilpotent Lie group iV. Should S have 



HOMOGENEOUS RIEMANNIAN MANIFOLDS 279 

polynomial growth, it is bilipschitz equivalent to a simply connected 
nilpotent Lie group. To prove it, we use the fact that a group of poly­
nomial growth is of type R [28]. Hence, according to Theorem 4.2 of 
[1] the abelian semi-simple group T associated to S is compact. Ac­
cording to Theorem 4.1 of [1] the projection p : NT —» TV from the 
semi-simple splitting of S onto N is a diffeomorphism when restricted 
to S C NT. Applying Proposition 3.10 completes the proof. Hence 
Pt(e,e) ~ t~ï where d is the degree of growth of N. See [57]. If the 
growth of S is not polynomial then S has exponential growth [23], [28] 
and pt(e,e) ~ exp(—£3); see [24], [56]. The rest of the paper is devoted 
to the construction of exhaustions for simply connected solvable uni-
modular Lie groups and their lattices. The exhaustions on X are then 
obtained by applying Proposition 3.4 to the Riemannian submersions 
I ^ 5 x ß a n d 5 x ß ^ 5 . 

5. Nilpotent Lie groups 

5.1 T h e Lie algebra as a Lie group 

Let A'' be a simply connected nilpotent Lie group of class c. We denote 
by L its Lie algebra. Let L1 = L, Lk+1 = [L, Lk] be the ideals of the 
descending central series. We choose supplementary subspaces L^ such 
that Lk = Lk 0 Lk+1 and we choose a norm on L which makes the 
decomposition L = ffi^Lfc orthogonal. If x G L we write x — X f̂c=i xk 
its orthogonal decomposition. We denote by |x| the norm of x. We 
transport, via the exponential map, the Lie group structure of N to the 
Lie algebra L of N. Hence for x,y e L the multiplication law is given 
by the Campbell-Haussdorf-Dynkin formula: 

xy = x + y + -[x,y\ + ... . 

5.2 Compar ing t h e left-invariant metr ic w i t h t h e Eucl idean 
one 

We can consider L as an Euclidean space with an orthogonal decompo­
sition L = L\ © ... © Lc. We can also consider L as a Lie group with 
the left-invariant Riemannian metric obtained by translating the above 
Euclidean metric on TQL ~ L. If h 6 TXL we denote by \h\x its Rie­
mannian norm. Let x G L. As the left translation by x is given by the 
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C.H.D. formula 
lx(y) = x + y + -[x,y] + ... 

we see that its derivative at 0 is 

TQIX = id + -ad{x) + ... + est x adc~l(x), 

where est is a constant, ad(x)(y) = [x,y], and ad^(x) denotes ad(x) 
composed j times. Let h € L. Writing h = YA=I hi w ^ t n hi G Li we 
have obviously 

T()lx(h)i = hi. 

The following lemma gives an upper bound for the Euclidean norm of 
Tolx(h)k when A; > 1 in terms of the Euclidean norms of x and h. We 
use the following notation. For x G L, x = YTi=i xi w e define ei(x) = 0 
if Xi = 0 and ei{x) = £j/ |zi | if this is not the case. We put ti = |xj|. 
Hence x = J2i=i Uei(x). 

Lemma 5.1. With the notation as above and if the class c is bigger, 
than 1, then Vfc G {2, .. . ,c}, Vx G L, V7i G L we have 

fc-i 

\Tolx(h)k\ <\hk\ + C^2 z2 *ù---^m+il-
j = l h + ...+ij+i<k 

Proof. In the formula for the derivative of the left-translation by x 

c - l 

TQIX = id + £ . CjadJ(x), 
3=1 

consider A = maxj \CJ\. The map 

L X . . . X L - > K ; 

(zi,...,zc-i) i-> \\ad{zi)...ad(zc-i)\\End(L) 

defined on the direct product of c — 1 copies of L is continuous. Hence 
when restricted to the direct product of c — 1 copies of the unit ball in 
L (for the Euclidean norm), it is bounded by a constant B. So 

fc-i 

T0lx(h)k = hk + Y^CjadJ(x)(h)k, 
i= i 
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and we have 

fc-i 

\T0lx(h)k\ < \hk\ + Aj2\adj(x)(h)k\. 

But 
ad3(x)h— ^2 ti1...tijad(eil(x))...ad(eij(x))(hij+1), 

hence 

\ad3{x){h)k\ < ^2 til...tij\ad(eil(x))...ad(eii(x))(hij+1)\ 
ii+...+ij+i<k 

<B 22 iii--Uj\hij+1\. 
ii+...+ij+i<k 

Choose C — AB. q.e.d. 

Corollary 5.1. With the notation as above, there exists a constant 
C > 1 such that Vfc G {1, ...,c}, \/t > 1. If x E L is such that U < tl for 
i < k — 1 and if h G L is such that \h\ < 1, then 

\T0lx(h)k\ < Ctk~\ 

Lemma 5.2. With the notation as above, there exists a constant 
D > 1 such that if t > 1, if x G L is such that U < t1 for 1 < i < c and 
if c : [0,e] —ïLisa differentiable path parametrised by the Riemannian 
arc length with c(0) = x then 

\c(e)i\ <(t + eDy. 

Proof. If the class c is bigger than 1, let 1 < k < c — 1. (If c = 1 
we put k=l.) We have 

|c(e)fc| < |c(0)fc| + / \—c(s)k\ds. 

^ s lsc(s)lc(s) = I» by definition of the left-invariant Riemannian metric, 
there exists h G TQL (depending on s) such that \h\ = 1 and such that 

Tolc(s)h = -j-c(s). 
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As already mentioned Tolc^(h)i — h\. Hence | ^c ( s ) i | = \h\\ < 1 and 
|c(e)i | <t + e. We assume now that the inequality of the lemma is true 
for i < k and we will show that the inequality is true for k + 1 . Applying 
the induction hypothesis to the restrictions of the path c to [0, s] where 
0 < s < e, we obtain, if i < fc, the inequality |c(s);| < (t + eD)1. 
Corollary 5.1 implies that 

\-^c(s)k+1\<C(t + eD)k. 

Hence 
|c(e)fc+i| < tk+1 + eC{t + eD)k < (t + eM)k+\ 

where M is a constant depending on k, C and D only. As the induction 
process involves finitely many steps, the lemma is proved. q.e.d. 

6. Derivatives and commutators 

6.1 A universal commuta tor 

Let G be a group. Let r G N. Let a\,...,ar G G,b\, ...,br G G. We 
define for j G N, Pj = Yll-j ai if J < r* and P3; = e if j > r. We define 
also Qj = rii=i aibi a n d Qo = e. In groups we use the notation [x, y] for 
the commutator xyx~1y~1 and cx(y) = xyx~l for the conjugate of y by 
x. 

Lemma 6.1. With the above notation, 

r 

a\...arb\...br = (\\\aj,Pj+\Qj-\\)a\b\a2b2...arbr. 
3=1 

Proof. The equality of the lemma is obtained by putting i = 0 in 
the following formula: 

Pi+iQibi+i-..br = (JLJJaj+i.Pj+i+jQj-i+jDQr 
3 = 1 

If i = r — 1 the above equality reduces to 

Q>r*&i—l"r ~=z IP'Ti ^°cr—lj*<cr» 
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which is easy to check. We assume the formula is true for 1 < i < r — 1 
and we want to show that it is true for i — 1. It is easy to check that 

PiQi~ibi...br = [ai, Pi+iQi-x)Pi+iQibi+\...bT. 

Applying the induction hypothesis to Pi+iQibi+\...br completes the proof. 
q.e.d. 

For a given family of elements oi, ...,ar we may consider the com­
mutator 

r 
Y[[aj,Pj+iQj-i] 
j = l 

of the above lemma as a map 

C(ai,...,ar) :Gr^G. 

Notice that the equality of the lemma shows that 

C(oi, . . . ,a r)(e, ...,e) = e. 

6.2 T h e derivative of the commutator in Gl(n,W) 

Let G = Gl(n, E) (we use capital scripts A\, ...,Ar) and we denote the 
identity element by id. We need a bound on the norm of the derivative 

T{ld_ld)C(Au...,Ar) : M(n,RY -> M(n,R) 

in terms of the norms of the At. If M G M(n,R), we denote by ||M|| = 
supi^.^! |M(x)| its operator norm. 

Lemma 6.2. Let r > 2, let H € M(n,R)r, and H = Y,UiHf 
Then 

\\T{ld_ld)C{Au...,Ar){H)\\<2{r-l)2 sup P f | | 6 r + 2 sup \\Ht\\. 
l< i<r i-^iST 

Proof. The function from M. to M(n,R) defined by 

11-> C(Ai,..., Ar)(id + tHlf ...,id + tHT) 

is analytic in t with coefficients in M(n,M). In order to compute the 
coefficient of t, we write 

(id + tHk)-1 =id- tHk + t2Hl - tzHl + ... 
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and compute the coefficient of t in the expression 

[AuP2}f[AJPJ+1(]lAk(id+tHk))Aj\]l(id-tH^k)Ajlk)p-+\Ajl. 
j=2 fe=l fc=l 

For 2 < j < r let c°- be the constant coefficient and let c* be the 
coefficient of t in 

^ P . + x C n Ak(id + tHk))Aj\H(id - tH,_k)A-\)p-+\A-\ 
fe=i fc=i 

Then we have 

c°j = (Aj...ArA1...Aj-1)Aj\Aj...ATA1...Aj-1)-
1 

and 

j'-i 

c) = (J4 j . . .A r)(^A1 . . .^ fcÄ r
fc . . .A j)(A1 . . .A j_1)-1(v4J , . .A r)-1 

fc=i 
j - i 

-{Ay..Ar){Al...A].x)(YJA-\..HkA-k\..A^){A]...Arr
l. 

fc=i 

We denote by i2, . . . , i r indices with values in {0,1}: 

T{id_ld)C(Al,...,Ar)(H) = [Al,P2} ] T (%...<%-. 
»2+...+ir = l 

Therefore 

l|T ,
(id,..., îd)C(J41,...,Ar)(^)|| 

< sup K " l l 2 > - 1 ) sup | |48 | | . . . | |4 ' | | 
\<i<r Ì2 + ...tr = l 

< sup | |A l
± 1 | | 2 r ( r - l ) sup ||c]|| sup | | c ° | r 2 . 

\<i<r 2<j<r 2<j<r 

As 
||c°|| < sup \\A±l\\2r+1 

and 
| | c ) | | < 2 ( r - l ) sup II^H sup IIA^H2^1 , 

Ki<r K«<r 
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the inequality of the lemma is now immediate. q.e.d. 

We recall the following fact which is an obvious consequence of the 
inequality ||AB|| < | |A|| | |5| | . For t G IR we denote by [t] its integral 
value. 

Lemma 6.3. Let <p : R —> Gl(n,R) be a homomorphism. Let C > 1 
and assume that \\<p(t)\\ < C if \t\ < 1. Then \\<j>(t)\\ < C^+1. 

6.3 The derivative of the commuta tor in Lie groups 

Let G be a Lie group. We choose a norm on TeG. If X G TeG, we 
denote its norm by \X\. 

Corollary 6.1. If G is a simply connected Lie group, r G N, then 
there exists a constant a > 1 such that if X\, ...,Xr G TeG with \Xi\ < 1, 
ifai,...,ar G R and if H G TeG

r,H = E L i ^ then 

\T(e,...,e)C(exp(aiXi), ...,exp(arXr))H\ < a sup œai* sup \Hi\. 
l<i<r l<i<r 

Proof. Let TeG be the Lie algebra of G. Thanks to Ado's theorem 
(see for example [48]), it embeds into the Lie algebra M(n,R) of the 
Lie group Gl(n,R) for some n. The embedding of Lie algebras induces 
a morphism of local Lie groups. By hypothesis G is simply connected 
hence the morphism of local Lie groups extends to a homomorphism of 
Lie groups 

4>: G^Gl(n,R) 

with derivative at e 
Te4> : TeG -» M(n, K) 

given by the above embedding. Notice that 

1 = « A N . I|7>(ff>" 
is non-zero. Let 

a : Rr -> Gr 

a{a\,...,ar) = (exp(ai.X'i),...,exp(arXr)), 

and let 
<f>r :Gr -^Gl{n,R)r 
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be the obvious product map induced by <j>. We have the commutative 
square 

Gl(n,RY Cma(a))i Gl(n!m). 

Taking derivatives, we get the commutative square 
Ti. e)C(a(a)) 

(TeG)r ( ' > TeG 
Te4>ri ÌTe4> 

M(n,R)r - ^ — ^ >• M(n,R). 

Hence 

|T(e!...ie)c(a(a))iï|<5-1||r{idi...jid)c(^^(a)))(re^1,...,re^r)||. 
Applying Lemma 6.2, we see that this number is less then or equal to 

8-lc sup \\<f>(exp{±aiXl)\\
c sup \\Te<f>Hi\\, 

l < i < r l ^ ^ r 

where c = max(2(r — l ) 2 ,6 r+2) . The corollary now follows from Lemma 
6.3. 

7. Elementary inequalities 

We will need the following elementary inequalities. 

Lemma 7.1. Let X > ß > v > 0, n e N, and let t > e' > e > 0 
such that A* — e'/i* > 0. Then 

(A* - e'//*)" + (e' - e)^(A* - e^)n~l < (A* - e/ / )n . 

Proof. If A* — e// = 0 it is obvious. If not, 

(A* - ey ) (^- eVV-i + (£, _ e y < A* _ e y + (e/ _ e y < xt _ y 
A1 — e/r 

and we multiply by (A* — e / / ' ) n _ 1 . q.e.d. 

L e m m a 7.2 . Lei d, r > 1 and let X > // > 0, Zei e e l . Then there 
exists C > 1 SUC/Î. £/m£ if t > I then 

( A t - ( e - l ) ^ ) d ( i - ( e - l ) ) r - ( A i - ( e + l ) / x t ) d ( i - ( e + l ) ) r < C(A')d* r-1 . 
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Proof. The function f(x,y) — xdyr is C 1 hence, given K > 0, there 
exists C > 1 such tha t if p, q G R, |p| < K, \q\ < K then \f(p) - / ( g ) | < 
C|p — q|. Hence we obtain C > 1 such tha t 

( l - ( 6 - l ) ( / x / A ) t ) d ( l - ( e - l ) A r - ( l - ( e + l ) ( / , / A ) t ) d ( l - ( e + l ) A r < C / i 

and we multiply by (Xi)dtr. q.e.d. 

L e m m a 7 . 3 . Let A > ß > 1 suc/i i/iai A/^i > e = exp( l ) . Let 
d,r G N. There is a constant C > 1 suc/i i/iai, if t > 1 and 0 < e < 
t, A* - e/x* > 0 </ien 

(A*)dtr - (A* - e/i*)d(t - e) r < eC(A t ) d i r ~ 1 . 

Proof. Dividing by (A*)d£r we see tha t the inequality is equivalent 
to 

(1 - e(M/A) t)d(l - e/t)r > 1 - Ce/t. 

As X/fi > e we have (ß/X)1 < l/t hence it is sufficient to find C such 
that 

(l-e/t)d+r > (I-Ce/t). 

We can choose C = d + r as shown by calculus. q.e.d. 

8. Solvable Lie groups 

8 .1 T h e g r o u p l a w i n c o o r d i n a t e s 

Any simply connected solvable Lie group S is an extension 

N -> 5 ->• R r 

of a simply connected nilpotent Lie group N by an an abelian Lie group 
W (see for example [48]). Let p be the projection. Let X\,...Xr G 
TeS such tha t T ep(X;) = d/dxi where d/dxi for 1 < i < r is the 
canonical basis of W. The projection does not split in general but we 
can nevertheless write any element of S in a unique way 

x e x p ( a i X i ) . . . e x p ( a r X r ) , 

where x G N and (a\,...,ar) G W. We identify N with its Lie algebra 
L as previously explained. We put 

a : R r -> 5 r 
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(ai , . . . ,a r) —> (exp(aiXi), ...,exp(o rX r)) 

a = (ai, ...,a r) G Rr 

>1 = exp(aiXi).. .exp(a rX r) G 5. 

We have global coordinates on 5 

LxRr 

(x,a). 

In those coordinates the multiplication law of 5 is given, thanks to 
Lemma 6.1, by 

(x,a)(y,b) = {xAyA-lC{a(a)){a{b)),a + b). 

8.2 Comparing the left-invariant metr ic w i th the 
Eucl idean one again 

We also write p(x, a) = a and define p(x, a) = x. Recall that we have 
chosen a Euclidean structure on L. On Rr we choose the canonical 
one. On L X Rr we choose the product structure. As usual, when doing 
computations in Euclidean spaces, for any point (x,a) G L x R r, we 
identify the Euclidean spaces T(xa)L x W, with LxW, the linear maps 
T(Xia)P with p, and the maps T(x aj/9 with p. 

Lemma 8.1. There exists a > 1 suc/i i/iai if I < k < c, if t > 1, 
if x G L zs suc/i £/ia£ x = X^i=i tiei(x) with ti < t* /or i < fc — 1 and i/ 
a G R r , £/ten £/ie derivative of the left translation l(x,a) by (x, a) & LxW 
at the identity satisfies 

(h,u))k\<a sup ^aikk-l{\h\ + \u\), 
l<i<r 

where (h,u) G T(00)L x R r . 

Proof. As explained above, 

Pkx,a)(y,b) = xAyA-lC{a{a))(a(b)). 

Hence taking the derivative of the composition 

L x {0} -» L x Rr '-^4 L x Rr A L 
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at the identity and remembering tha t C(a(a))(e, ...,e) = e, we obtain 

pT(o,o)l(x,a)(h,0) = T0lxT0CA(h). 

As L is the kernel of the projection p : S —¥ W, the image of the map 
C(a(a)), which contains only commutators, is included in L. As 

lxC(a(a))(a(b)) = plM(0,b), 

taking the derivative at the identity of the composition 

r A 5 r c_Wo)| L iA L 

gives 

PT(o,o)kx,a-)(°>u) = T0lxT(e!...te)C(o(a))(uiXi,...,urXr). 

Applying Corollary 5.1 to 7b/x , Lemma 6.3 to TQCA and Corollary 6.1 
to T(e ^C(a(a)) completes the proof. q.e.d. 

P r o p o s i t i o n 8 .1 . There exists v > 0 such that if A > fj, > v, if 
t > 1, if e > 0, if e < e' is such that e' < t, A* — e'ß1 > 0, if (with the 
notation as above) x G L is such that U < (A* — e'/i*)* for 1 < i < c, if 
A G 5 is such that |a,| < t — e' for 1 < i < r , and if c : [0, /] —>• 5 , raf/i 
0 < £ < e' — e, is a differentiable path parametrised by the Riemannian 
arc length with c(0) = xA then 

1. 

|pc(/)i| < t — e, 1 < i < r, 

2. 

\pc{l)i\ < (A* -erf)*,! <i<c. 

Proof. Consider a pa th c parametrised by the Riemannian arc 
length, that is if s G [0,/] then | ^c (s ) | c ( s ) = 1. As the Riemannian 
metric is left-invariant there is 

(h,u)eT{mLxRr 

(depending on s) such tha t |(fo,u)| = 1 and with 

T(o,o)lc(s)(h,u) = -T-C(S). 
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We first prove that |pc(£)i| < t — e. According to the formula 

(x,a)(y,b) = {xAyA-lC(a{a)){a{b)),a + b) 

we see that for any (x, a) g L x f 

pT(o,o)l(x,a)(h,u) =u. 

Hence for 1 < i < r 

|P^c(s ) i | = \pT(0fi)lc(s)(h,u)i\ = \ui\ < 1 

and 

rl d 
\pc(l)i\ < \pc(0)i\ + / \p—c(s)i\ds <t-e' + l<t-e. 

Jo as 

We apply Corollary 6.1 to the simply connected group S = L xW and 
the integer r = rank(S/L) to get a constant a > 1 as explained. Let 
v = 2a2 and let A > fi > v. If the class c of L is greater than 1, let 
1 < k < c - 1. (If c = 1, let k = 1.) We have 

fl d 
\pc(l)k\ < \pc{0)k\ + / \p—c(s)k\ds 

If A; = 1, (we apply the above-proved inequalities 1) to the restrictions 
of the path c to [0, s], 0 < s < e' — e and Lemma 8.1 to get 

\pc(s)i\ <\*- e V + (e' - e)ul < A* - e/i*.) 

We assume now that the inequalities 2) are true for i < k and we show 
that this implies they are also true for i < k + l. Applying the induction 
hypothesis to the restrictions of the path c to [0, s] with 0 < s < e' — e, 
we obtain, if i < k, 

The inequalities 1) above and Lemma 8.1 imply that 

\p—c(s)k+1\ < i/(A< - e/i')fc. 

Hence 

M 0 * + i | < (A4 - eV) f e + 1 + (e' - e)^(A4 - e /i')
fc < (A* - €/i*)fc+1 

according to Lemma 7.1. q.e.d. 
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8 .3 T h e L e b e s g u e a n d t h e H a a r m e a s u r e s 

Recall tha t our simply connected solvable group S has global coordi­
nates (x, a) G L x W in which the group law is 

(x,a)(y,b) = (xAyA-lC(<r(a))(<T(b)),a + b). 

Recall tha t we have chosen a Euclidean structure on L x R r . Let (j, be 
the corresponding Lebesgue measure. 

P r o p o s i t i o n 8 .2 . 7 / 5 is unimodular then /j, is left-invariant. 

Proof. By hypothesis, it is enough to show that ß is right-invariant. 
The Jacobian at the identity of the right translation by (y, b) is equal 
to the product 

det(T0ry)det(T0rb), 

where Tory is the derivative at the identity of L of the right translation 
in L by y, and Tori, is the derivative at 0 G R r of the translation by b. 
The derivative of a translation in a nilpotent group is a linear unipotent 
transformation, hence it has a determinant equal to 1. q.e.d. 

9. F0 lner s equences 

9 .1 N e i g h b o r h o o d s a n d t h e c o - a r e a f o r m u l a 

With the same notation as in Section 5 let I be a simply connected 
nilpotent Lie group. We define for t > 1 

c 

Clt = {x G L : x = ^2tlel{x),tl < t1}. 
i=i 

This is a polydisc. We normalise the Lebesgue measure on L in order 
to get vol(Çït) = td where d is the growth of L, tha t is 

c 

d = 2_. kdim.Lk-

Let S be a simply connected solvable Lie group. We have S = L x W 
for some L as above and some r. Let A > /i be large enough so tha t 
Proposition 8.1 applies. We define 

Ft = nxt x It, 
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where 
It = {a£Rr : \cLi\ <t,l<i<r}. 

For t > 1, e > 0 such that t - e > 0, A* - erf > 0, let 

A*,e = ^A ' - e / i ' x h-e-

With that notation we obtain the following. 

Proposition 9.1. There is a constant D > 0 such that ift> 1, e > 
0, * - eD > 0, tfien 

d(ôOt,ôOt_£jD) > e. 

Proof. This follows from Lemma 5.2. q.e.d. 

Proposition 9.2. Let e' > e > 0. T/ien 

rf(ÔAt,e',OAtl£)>e'-€. 

Proof. This follows from Proposition 8.1. q.e.d. 

We normalise the Lebesgue measure on W such that vol(It) = tr. 
Hence vol(Ft) = (A*)d£r. As an application of Proposition 8.2 the vol­
umes induced by left-invariant Riemannian metrics are also given (up 
to renormalisation) by 

vol{Qt) = td 

and, if S is unimodular by 

vol(Ft) = (A*)dir. 

A left-invariant Riemannian metric on L or on S induces on dflt
 o r 

dFt a structure of Riemannian manifold (with corners). We want upper 
bound for their volumes. 

Proposition 9.3. There exists a constant C > 1 such that if t > 1 
then 

vol{dnt) < Ctd-\ 

voZ(aFt)<C(A*)d*'-1. 

Proof. We define the corona 

Ct = {x e Qt : d(x,düt) < e} 
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to be the inner open e-neighborhood of <?Ot. According to Lemma 5.2 
or to Proposition 9.1 there is a constant D > 0 such tha t if e > 0 and 
t - eD > 0 then 

Ct,c C fit \Çit-eD-

Hence 
vol(Ct,e) <td-(t- eD)d. 

This shows tha t there exists a constant C > 1 such tha t for all i > 1 
and max(l, t/D) > e > 0 

vol{Ct,e) < eCtd~l. 

For each t > 1 consider the distance function to d$lt 

/ ( x ) = d(x,Ôfît). 

The co-area formula shows tha t 

vol(Ct,e)= f v o l i f - ^ s ^ d s . 
Jo 

The function 
[ 0 , e ] ^ M + 

is continuous. Hence there is a £ between 0 and e such tha t 

e x W O Z C T H O ) = f volif-^s^ds. 
Jo 

As 9f2( is a compact submanifold 

limvolif-1^)) =vol(düt). 

Hence, making e tend to zero, we obtain vol(dQ.t) < Ctd~l. In the case 
of solvable groups ( that is when r > 0) we choose A > /J, as in Proposition 
8.1 and also such tha t A > efj, so that Lemma 7.3 also applies. We define 
the corona 

Ct,e = {x€Ft:d(x,dFt)<e} 

to be the inner e-neighborhood of dFt. According to Proposition 9.2, 

C t , e c F t \ A t ) £ . 
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Hence 
vol{Ct,e) < vol{Ft) - vol{At,e) 

so that, applying Lemma 7.3, there is a constant C > 1 such that 

vol(Ct,e) < eCiXYf-1. 

For each t > 1, let / : Ft ->• R+ defined by 

f(x) = d(x,dFt). 

Applying the co-area formula gives 

vol{CtJ= f vol{f-\s))ds. 
Jo 

Making e tend to zero we obtain, by the same arguments as above, 

voi(dFt) < cixYf-1. 
q.e.d. 

10. Discretisation 

10.1 Discrete subgroups 

The inequalities we need and explain here for a co-compact lattice are 
true in a more general setting. Namely, we could replace the Lie group 
with a Riemannian manifold with bounded geometry and the lattice 
with a suitable net. Let G be a connected Lie group with a left-invariant 
Riemannian metric. Let F be a discrete co-compact subgroup in G. Let 
R > 0 such that 

VR(T) = {geG:d(g,F)<R} = G. 

Let R > ô > 0 such that if x,y € V and d(x,y) < 28 then x — y. Let f 
be a small perturbation of T. That is f = r ( r ) where 

T-.FcG^G 

is a map such that d(j,T(j)) < Ô for all 7 e r . Notice that r is 
injective. To a mesurable subset Si £ G and a small perturbation F of 
r we associate two subsets of F 

Int(uj) C LU c r 
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defined as follows. First we consider 

w = v2R(n) n f, 

Int(ü) = ü\VR{G\Ü) 

then we define 
W = T - 1 ( W ) , 

Int(u>) = r_1(7nt(ô>)). 

Lemma 10.1. There is a constant C > 1 such that for all measur­
able subsets Q,, 

\u\ > voi(n)/c, 

\Int(u)\ < CW(fi) . 

Proof. As 

n c (J ßÄ(7), 

choosing C = vol(BR(e)) proves the first inequality. As F is a (uni­
formly) discrete subspace in G there is a constant C > 0 such that 

\F\ < Cvol( (J ßÄ(7)) 
7GF 

for any subset F c F . As 

U £A(7)C! Ì 
7€/n t ( t j ) 

the second inequality is proved. q.e.d. 

We choose S = S""1 a finite generating set for F. Recall that for 
w e r 

du = {j e cu : 3s € S : -ys e F \u}. 

Proposition 10.1. With the above notation there exists a constant 
C > 1 such that if Q C G is a submanifold of maximal dimension (with 
or without corners) then 

\du\ < Cvol(Vi(dü)). 
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Proof. Let B — max s es d(e, s) where d is the Riemannian distance 
on G. Let 7 G du. By definition, ^(7, U) < 2R + 8 and there exists 
s e S such that d(7s,fi) > 2i? - S > 0. As ^(75, tt) — d(^s,dQ), we 
have 

din, dÜ) < d(7,7s) + d(7s, ofì) 

< 5 + d(7s, ft) < IB + 2R + Ô. 

Hence, to each 7 G dui we can associate a point x G dfl with d(7, x) < 
2B + 2R + Ö and we may consider the ball B\{x) C Vi((9r2). Hence, as T 
is discrete in G it follows that there exists a constant C > 1 such that 

|ôw| < Cvol{Vx{dÜ)). 

q.e.d. 

10.2 Fini te ly generated ni lpotent groups 

Proposition 10.2. Let V be an infinite finitely generated nilpotent 
group with finite generating symmetric set S. There is a constant C > 1 
and a family f2n, n G N of finite subsets of T such that 

ftn C ÎV+-1, l̂ J Qn = r , 

n/C < \Çln\ < Cn, 

n^r/C < \dün\ < Cn^, 

where d is the degree of growth ofT. 

Proof. The existence of such a family is a quasi-isometric invari­
ant among finitely generated groups [37]. Hence, taking a finite index 
subgroup without torsion, we can assume that T is a lattice in a simply 
connected nilpotent Lie group N [43] 2.18. Let Çtt be the F0lner se­
quence of N defined in Section 9. Let R > ô > 0 as in Subsection 10.1. 
We choose a small perturbation T of T as explained in Subsection 10.1 
with the property that for all t > 0, 

Ifnöfitl < 1. 

The existence of such a perturbation is clear because T is countable 
and each neighborhood of a point x G dQ.t meets uncountably many 
dQs, s e l . Hence the non-decreasing function 

M+ ->N 
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ÌH> i fn ì ì t l 

has only unit jumps. Let ut be the subset of F corresponding to Qt and 
r as explained in Subsection 10.1. According to Lemma 10.1, there is a 
constant C > 1 such tha t 

\ut\ > vol(Qt)/C, 

hence 

\"t\>td/C, 

where d is the growth degree of N. We choose e = 3R + 1 and apply 
Proposition 9.1 to get 

d(ojt,dQt+eD) > R 

for some D > 0. This shows tha t 

üt C cZ>(+££, \ VR(N \ Üt+€D) = Int(ü>t+eD), 

hence 

ut C Int{ut+€D). 

Applying the second inequality of Lemma 10.1 we get, for t > 1, 

\ut\ < Ctd 

for some (other) constant C. Applying Proposition 10.1 and Proposition 
9.1 we get 

\dut\ < CvoliViidÜt)) < Cvol(Üt+D \ nt-D) = C((t + D)d - ( t - D)d). 

Hence there is a constant C such that 

|ôw t | < Ctd~l. 

It follows from [11] tha t there is a constant C such tha t 

\dut\ > td-l/c. 

Now we forget the notation $lt for the continuous family and define the 
discrete family we are looking for as Qn = ut where t > 0 is such that 
\ut\ = n. q.e.d. 



298 CH. PITTET 

10.3 Polycycl ic groups 

Propos i t ion 10.3. Let F be a polycyclic group of exponential growth 
with finite symmetric generating set S. There are constants C > 1, 
A > 1 and r 6 N and a family fin,n G N of finite subsets of F such that 

fin C fin+i, 

(J fi„ = r, 
neN 

n / C < |fi„| < Cn, 

n Cn 
C*log(n) - ' ' - î o ^ H ' 

Proof. The proof is similar to the proof of Proposition 10.2. Up to 
finite index, we can assume that T is a discrete co-compact subgroup of 
a simply connected solvable Lie group S; see [43] 4.28. Let A > // > 1 as 
in Section 9. Let R > 0 as in Section 10. Consider (for t large enough) 
the set At)£ C S defined in Section 9 with e = 3R + 1. Let ujt^ C F be 
the set associated with Ati£ and a small perturbation F of T as in the 
proof of Proposition 10.2. By Lemma 10.1 there is a constant C > 1 
such that |wti£| > uoZ(At>e)/C. Hence |wt,e| > (A*)d*r/C where C > 1 is 
(another) constant not depending on £ (being large enough). According 
to Proposition 9.2, 

d(dAt,£,dAtfi)>e>3R. 

Hence cji)£ C Int(ujt,o)- Applying the second inequality of Lemma 10.1 
we get |u>ti£| < C(Xt)dtr for some constant C. Applying Proposition 
10.1, Proposition 9.2 and Lemma 7.2 we get 

|ÖWt,e| < CiX'ff-1 

for some constant C. According to [11], as the growth of F is exponen­
tial, there is a constant C such that 

\duu\ > {X'ff^/C. 

For n large enough, let t be such that |o;ti£| = n. We define 

fin = Wt)£. 

q.e.d. 
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