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MAXIMUM PRINCIPLES AT INFINITY

William H. Meeks III & Harold Rosenberg

Abstract

We prove a general maximum principle at infinity for properly
immersed minimal surfaces with boundary in R

3. An important
corollary of this maximum principle at infinity is the existence
of a fixed sized regular neighborhood for any properly embedded
minimal surface of bounded curvature.

1. Introduction

Maximum principles play a fundamental and unifying role in the de-
velopment of many deep results in geometry and analysis. Special cases
of these general maximum principles, applied at infinity, have been used
in an essential way in classifying genus zero minimal surfaces in R

3 and
in R

3/Λ, where Λ is a discrete rank 2 subgroup (see [12, 15, 17]). The
main goal of this paper is to develop general maximum principles at
infinity for embedded complete minimal and constant mean curvature
surfaces that include all previous results of this type and that are suf-
ficiently powerful to have important applications to the global theory
of these surfaces. Results of this type and the barrier type arguments
used here first appeared in the proof of the strong halfspace theorem
in [9] and in the isometric classification of properly embedded minimal
surfaces in R

3 (see [4]). A maximum principle at infinity for minimal
surfaces of finite total curvature first appeared in [11]. A significant gen-
eralization was done in [16]. The explicit statement of the Maximum
Principle at Infinity appears in Theorem 5.1.

Some clever barrier arguments are also used to prove maximum prin-
ciples at infinity to study problems in other areas of differential geome-
try. Some earlier fundamental works on this topic can be found in the
papers of Ni and Tam [19], Omari [20], and Yau [25]

Our paper is organized as follows. In Section 2, we prove that an
injective minimal immersion of a complete surface of bounded Gaussian
curvature into R

3 is a proper mapping. In Section 3, we prove some
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results about the conformal structure of complete Riemannian surfaces
of nonnegative Gaussian curvature. We then apply these results to give
a new proof of Xavier’s theorem [24] that the convex hull of a complete,
nonflat minimal surface of bounded curvature is all of R

3. In Section 4,
we prove the maximum principle at infinity for minimal graphs over the
zero section of the normal bundle of a parabolic minimal surface. The
results in Sections 3 and 4 are applied in Section 5 to prove the maximum
principle at infinity for stable minimal graphs. Finally, in Section 5 we
reduce the proof of the general maximum principle at infinity to the
case of stable minimal graphs.

Our new maximum principle at infinity for proper minimal surfaces
is the strongest result of this type possible. In Section 5, we apply
this maximum principle to prove that a connected, properly embedded
minimal surface whose Gaussian curvature is bounded from below by a
constant −C has an embedded open regular neighborhood of radius 1√

C
.

An immediate consequence of this Regular Neighborhood Theorem is
that such a surface has at most cubical area growth with respect to the
radial coordinate. A consequence of our cubical area growth theorem is
that the space of connected, complete, embedded minimal surfaces with
a given uniform bound on the Gaussian curvature is essentially compact
in the topology of C1-convergence in compact subsets of R

3; this result
is given in the statement of Corollary 5.5.

In Section 6, we prove that an injective immersion of a surface of
constant mean curvature and bounded Gaussian curvature is a proper
mapping. Also, in Section 6 we prove a type of maximum principle
at infinity for constant mean curvature surfaces of bounded Gaussian
curvature and apply it to show the existence of an embedded ε-tubular
neighborhood on the mean convex side of the surface. As in the zero
mean curvature case, the existence of the ε-tubular neighborhood im-
plies the surface has at most cubical area growth in terms of the distance
R from the origin R

3. In Section 7, we prove that a properly immersed
minimal surface of finite topology and one end that intersects a plane
transversely in a finite number of components is recurrent for Brown-
ian motion, a condition that implies the surface is parabolic (bounded
harmonic functions are constant). Results in [5] and [17] imply that
every complete, embedded minimal surface of finite genus and one end
is properly embedded and intersects some plane transversely in a single
component, and so is recurrent for Brownian motion; in this case, our
theorem in this section gives an independent proof that the surface is
recurrent for Brownian motion without the additional assumption that
it is embedded (see [17]).

Some of the results in our paper related to minimal surfaces have
been found independently by Marc Soret [23], using somewhat different
techniques. We would like to thank Brian White for some suggestions
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on reducing the maximum principle at infinity for minimal surfaces to
the special case of stable minimal graphs.

2. A complete, embedded minimal surface of bounded

curvature is proper

In this section we will prove that a complete, embedded minimal
surface of bounded Gaussian curvature is proper.

Theorem 2.1. If f : M → R
3 is an injective minimal immersion of

a complete, connected Riemannian surface of bounded Gaussian curva-

ture, then the map f is proper.

Proof. Since there is a lower bound on the curvature of M and f :
M → R

3 is minimal, the principle curvatures of f(M) are bounded in
absolute value. Let Bε(p) denote the closed ball of radius ε centered
at p. Since the second fundamental form of f(M) is bounded, there
exists an ε > 0 such that for any point p ∈ R

3, every component of
f−1(Bε(p)) is compact with a uniform bound on the area. Furthermore,
for ε sufficiently small, we may also assume that every such compact
component that intersects Bε/2(p), when pushed forward by f , is a
disk and a graph over a domain in the tangent plane of any point on
it. It follows that if p is a limit point of f(M) coming from distinct
components of f−1(Bε(p)), then there is a minimal disk D(p) passing
through p that is a graph over its tangent plane at p, and D(p) is a limit
of components in f−1(Bε(p)). Embeddedness and the usual maximum
principle imply that any other such limit disk D′(p) agrees with D(p)
near p. These observations easily imply that the closure L(f(M)) of
f(M) has the structure of a minimal lamination, i.e., it is foliated by
the limits of f(M) and these limits are minimal surfaces.

The immersion f is proper if and only if L(f(M)) has no limit leaves.
Recall that a leaf L of L(f(M)) is a limit leaf if for some point p ∈ L and
all small δ > 0, Bδ(p)∩L contains an infinite number of disk components.
(Note that it may be the case that a leaf in L(f(M)) is a limit leaf of
itself.) Suppose now that L(f(M)) has a limit leaf L, and we shall derive

a contradiction. Let L̃ denote the universal cover of L. Since the second
fundamental form of L̃ is also bounded, there exists a δ > 0 such that

the δ-neighborhood of L̃, considered to be the zero section of its normal
bundle, submerses under the exponential map applied to those normal

vectors to L̃. Thus, we can lift or pull back the lamination L(f(M)) to

the δ-neighborhood of L̃. Note we are working with the pulled back flat

metric. Also note that L̃, considered to be the zero section, is a limit
leaf of the pulled back lamination.

We claim that L̃ is stable. The proof of this property is more or less
known in this setting but we outline the proof for the sake of complete-

ness. If L̃ were unstable, then there would exist a smooth, compact disk



144 W.H. MEEKS III & H. ROSENBERG

D ⊂ L̃ such that D is unstable. Since D is simply connected, a sequence

of the sheets of the lifted lamination L̃(f(M)) that limit to D can be
chosen to be graphs over D. Let N be the unit normal vector field to

L chosen so that the leaves of L̃(f(M)) limit to D on the side where N
points. Choose a positive eigenfunction f for the stability operator on
D corresponding to the smallest eigenvalue r1, which is negative. For t
small and fixed, consider the normal graph E(t) = tfN overD with zero
boundary values. For t sufficiently small, the mean curvature vector of
E(t) points away from D. One sees this as follows. If L denotes the
linearized operator of the mean curvature equation, then L(f)+r1f = 0
on D. So at a point x where f(x) > 0, we have L(f) > 0. Now L is
the first variation of the mean curvature of the variation of D given

by x 7→ x + tf(x)N(x); i.e., L(f)(x) =
•
H0(x). Hence,

•
H0(x) > 0 and

Ht(x) > 0 for t > 0, t small. Clearly, any sheet of L̃(f(M)) that is a
graph over D and is sufficiently close to D will intersect the family E(t)
a first time. The existence of such a first point of contact contradicts
the usual comparison principle for mean curvature. This contradiction

implies L̃ is stable. By [2], [21] or [8], L̃ is totally geodesic and hence
L is a plane.

Since a plane in R
3 is proper, L is not equal to f(M). It follows that

the plane L is disjoint from f(M) and therefore f(M) is contained in
a halfspace of R

3. But a theorem of Xavier [24] states that a complete
nonflat minimal surface in R

3 of bounded Gaussian curvature is never
contained in a halfspace, which contradicts the previous statement and
completes the proof of Theorem 2.1. For the sake of completeness,
we now give a different proof of Xavier’s theorem in the case M is
embedded, which is the case of the theorem under consideration.

Suppose that M is a complete, connected, embedded minimal surface
of bounded curvature contained in the halfspace H+ = {x3 > 0} and
suppose M is not contained in a smaller subspace. Let P0 denote the
(x1, x2)-plane. Since we are assuming that M is connected, it follows
that M is either proper in H+ or M has one more limit plane P2 and
M is proper in the slab between P0 and P2. Since M has bounded
curvature, there is an ε > 0 such that Pε = {x3 = ε} intersects M
and such that the components of M in the slab defined by P0 and Pε

submerse to P0 under orthogonal projection to P0. Let C denote one of
these components and note that C is proper in the half open slab Sε =
{ε ≥ x3 > 0}. We claim that C is proper in Sε = {ε ≥ x3 ≥ 0}. If not,
there is a limit point p ∈ P0 for C. Since C is proper in Sε, it separates
Sε. However, consider an oriented vertical ray R above p, and note
that R ∩ C is a discrete set converging to p. Since C separates Sε, the
intersection signs of R with C are opposite on consecutive intersection
points, where we fix an orientation on C. But this contradicts the fact
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that the orientation normal of C with R has a fixed signed dot product
with (0, 0, 1). Hence, C is proper in Sε. Then the proof of the halfspace
theorem in [9] shows C is contained in Pε, which is impossible. This
contradiction proves thatM cannot be contained inH+. This completes
our proof of Xavier’s theorem in the case M is embedded. We refer the
reader to the end of Section 3 for a new proof of Xavier’s theorem
(Corollary 3.7) in the case of complete, immersed minimal surfaces of
bounded curvature. q.e.d.

Remark 2.2. There exist dense, complete, triply-periodic, minimally
immersed surfaces of bounded curvature in R

3, and so injectivity is a
necessary hypothesis in the statement of Theorem 2.1. In fact, consider
the classical triply-periodic Schwartz P -surface P ⊂ R

3. Fix θ ∈ [0, 2π].
Using the symmetries of P , it is not difficult to prove [13] that the image

surface M̃θ of the associate surface Mθ ⊂ R
3 of the universal cover of

M is either a proper or a dense triply-periodic minimal surface in R
3,

and that except for a countable number of angles θ, M̃θ is dense in R
3.

(See [14] for the definition of associate surface.)

3. The conformal structure of complete Riemannian surfaces

of nonnegative Gaussian curvature

Complete Riemannian surfaces with boundary and nonnegative
Gaussian curvature need not be parabolic (see Proposition 3.3 below for
several equivalent definitions of parabolic surface with boundary), even
when they have zero Gaussian curvature. See the end of Section 3 of [14]
for a sketch of the construction of such an example of a simply connected
non-parabolic (hyperbolic), complete flat surface (with boundary) due
to Pascal Collin. However, such flat non-parabolic surfaces come close
to being parabolic, as demonstrated by the following theorem, which is
the main result of this section.

Theorem 3.1. Let M be a complete Riemannian surface with non-

empty boundary and with Gaussian curvature function K : M → [0,∞).
For R > 0, let M(R) = {p ∈M | d(p, ∂M) < R}. Suppose that for each

R, the restricted function K|M(R) is bounded. Then, for every δ > 0,
Σ = M −M(δ) is a parabolic Riemann surface in the sense that the

boundary of Σ has full harmonic measure.

In what follows we will assume that M is simply connected. This
assumption does not change the validity of the theorem because a Rie-
mannian surface with boundary has full harmonic measure if and only
if its universal cover does. Note that this assumption and the fact that
K|M(R) is bounded for every R guarantees that there exists an ε0 > 0
depending on R such that the injectivity radius function IM of M re-
stricted to M(R) satisfies IM (p) ≥ min{dM (p, ∂M), ε0}. Henceforth, we
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will assume δ < ε0 for some fixed R. Making this assumption is alright,
since if 0 < r1 ≤ r2 and M −M(r1) is parabolic, then M −M(r2) is
also parabolic.

The above theorem motivates the next definition.

Definition 3.2. A Riemannian surface M is δ-parabolic if for every
δ > 0, Σ = M −M(δ) is a parabolic Riemannian manifold.

Before proving the above theorem, we recall some equivalent proper-
ties for a Riemann surface to be parabolic. We summarize these prop-
erties in the next proposition.

Proposition 3.3. Suppose M is a Riemannian surface with non-

empty boundary and fix a point p in the interior of M . Let µp denote

the associated harmonic or hitting measure associated to p. Then the

following properties are equivalent.

1.

∫

∂M
µp = 1.

2. If h : M → R is a bounded harmonic function, then h(p) =∫

∂M
h(x)µp.

3. A bounded harmonic function on M is determined by its boundary

values.

4. Let M̃ denote the universal cover of M with the pulled back Rie-

mannian metric. Then M̃ is conformally equivalent to the closed

unit disk with a closed set of Lebesque measure 0 removed from the

boundary. In particular, there exists a proper harmonic function

h : M̃ → [0,∞).

If M satisfies any of the above four properties, then M is called para-

bolic.

Proof. First recall the definition of the harmonic or hitting measure
in the special case that M is compact. Given an interval I ⊂ ∂M , the µp

measure of I is µp(I) = probability of a Brownian path in M beginning
at p of arriving for a first time on ∂M at a point of I. Note that µp is
also the harmonic measure on ∂M . In the case M is compact, almost
all Brownian paths beginning at p must eventually arrive at ∂M , so
property 1 always holds. Also in this case, it is straightforward to show
that properties 2 and 3 also hold.

Suppose now that M is noncompact and p ∈M(1) ⊂M(2) ⊂ . . . is a
compact exhaustion which induces a compact exhaustion of ∂M . The
hitting measure µp on ∂M is the limit of the hitting measures µp(i) of
∂M(i) restricted to ∂M . We now prove that 1 ⇒ 2 ⇒ 3 ⇒ 1.

Suppose now that 1 holds. Since M(i) is compact, for a bounded

harmonic function h : M → R, h(p) =

∫

∂M(i)
h(x)µp(i). Since µp(i) →

µp on ∂M , 2 holds. Statement 2 clearly implies statement 3.
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We check that if

∫

∂M
µp 6= 1, then 3 fails to hold. Suppose

∫

∂M
µp =

1−ε for some ε > 0. Define the bounded harmonic function H : M → R

by H(q) =

∫

∂M
µq. This bounded harmonic function has the same

boundary values as the constant function 1, but H(p) = 1 − ε and so
H is not constant. Therefore 3 fails and this contradiction proves that
3 ⇒ 1 and so, properties 1, 2, 3 are equivalent.

Since Brownian motion of the universal covering π : M̃ →M projects

to Brownian motion on M , then

∫

∂M
µp = 1 if and only if

∫

∂ fM
µep =

1, where p̃ ∈ π−1(p). The uniformization theorem implies that M̃ is
conformally the closed unit diskD with a closed set C removed from ∂D.
Taking p̃ to be the origin in D and noting that the Lebesque measure

of the closed set C in ∂D is equal to 2π times

∫

C
µep, we conclude that

C has Lebesque measure zero if and only if statement 1 holds.

To complete the proof of Proposition 3.3, it remains only to prove
that there exists a proper harmonic function D − C → [0,∞). Since C
is compact with Lebesque measure zero, there exist collections In, each
collection consisting of a finite number of disjoint closed intervals in ∂D
which cover C and such that the total Lebesque measure of In is less
than 1

2n .

After choosing a subsequence, we may assume that the intervals In are
contained in the interior of the intervals of In−1. Let hn : D−C → [0, n]
be a smooth nonnegative harmonic function which is zero on ∂D−∪In−1

and n on ∪In.
Note that H(k) =

k∑
i=2

hi is a sequence of smooth harmonic func-

tions that are uniformly bounded at the origin and which converge to a
smooth, proper harmonic function h : D−C → [0,∞), which completes
the proof of the proposition. q.e.d.

Proof. We now return to the proof of Theorem 3.1. Consider the
function d∂M : M → [0,∞) defined by d∂M (p) = distance of p to ∂M .
We will show that ln(d∂M ) : (M − ∂M) → R is superharmonic by prov-
ing that ln(d∂M ) satisfies the mean value inequality for superharmonic
functions.

Let p ∈ M and let γ be a minimizing geodesic joining p to y ∈ ∂M.
Suppose for the moment that p is not a conjugate point to y along γ.
In this case, there exist a small disk neighborhood D of p such that for
every point in D there is a unique geodesic joining this point to y and
close to γ. Let L(x) be the length of the geodesic joining y to x and
note that L is a smooth function on D.
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Since M has nonnegative Gaussian curvature, the Laplacian compar-
ison theorem implies ∆L(x) ≤ 1

L(x) . It follows that ∆ ln(L)(x) ≤ 0

for x ∈ D. Also, ln(L)(p) = ln(d∂M )(p) and d∂M ≤ L on D. Hence,
ln(d∂M ) satisfies the mean value inequality for superharmonic functions
at the point p.

Suppose now that p and y are conjugate along γ. Let z be on γ and
a small distance from y. Since p is not conjugate to z along γ, the

previous calculation shows that there is a neighborhood D̃ of p such

that the distance function L̃ from points in D̃ to z is smooth and ln(L̃)

is superharmonic in D̃. Since y and p are conjugate along γ, for z

sufficiently close to y, we have ∆L̃ < 0. It follows that the function

ln(L̃+d(y, z)) is superharmonic in some small neighborhood of p. Since

ln(L̃ + d(y, z)) ≥ ln(d∂M ) and L̃ + d(x, y) = d∂M at p, then ln(d∂M )
satisfies the mean value inequality for superharmonic functions at p.
Hence, ln(d∂M ) is superharmonic on M − ∂M . q.e.d.

Lemma 3.4. Let M and Σ be as in the statement of Theorem 3.1.
Fix a point q ∈ Σ. For R > δ and T > 0, let Γ(T,R) = set of Brownian

paths in M beginning at q and which enter the neighborhood M(R) for

some t ≥ T but do not ever intersect ∂Σ. Let µ be the Wiener measure

on the set of these Brownian paths. Then limT→∞ µ(Γ(T,R)) = 0.

Proof. Fix some R > δ and T1 > 0. We will show that there exists
a ε > 0 (independent of T1) that only depends on R, such that there
exists a T2 > T1 and µ(Γ(T2, R)) ≤ (1 − ε)µ(Γ, T1). Repeating this
construction n times shows that there exists at Tn with µ(Γ(Tn, R)) ≤
(1 − ε)µ(Γ(Tn−1, R)) ≤ (1 − ε)nµ(Γ, T1). This will imply the lemma.

Let γ0(p) be the points on a minimizing geodesic joining p to π(p) ∈
∂M , a distance greater than or equal to δ/2 from π(p). The injectivity
radius function of M(2R) is bounded away from 0, by a positive b =
ε(R)/2 say. So γ0(p) can be extended beyond p a distance b to a geodesic
γ(p). We can assume b ≤ δ/2.

Let W be the normal bundle of γ(p) of radius b/2 with the induced
metric and consider γ(p) to be the zero section of this bundle. Since
the image of W under the exponential map lies in M(2R), the induced
metric on W is c-quasi-isometric to the rectangle [0, length(γ(p))] ×
[0, b/2]. Furthermore, the constant c can be chosen independently of
p in M(R) ∩ Σ. It follows that the measure of the Brownian paths
beginning at p ∈ W and leaving W for a first time at the side of W
closest to π(p) at a time t, t ≤ 2R, is at least a fixed number τ > 0. This
is true since W is uniformly quasi-isometric to a flat rectangle whose
height is fixed and whose base is bounded. Hence, the measure of the
set of Brownian paths beginning at p in M and going to the boundary
of Σ at a time t ≤ 2R is at least τ .
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Now choose T ′ large enough so that at least half of the Brownian paths
in Γ(T1, R) enter M(R) between times T1 and T ′. Let T2 = T ′+2R and
ε = τ

2 . Of the paths in Γ(T1, R) that enter M(R) between the times T1

and T ′, τ of them go to the boundary in time at most 2R. Hence, τ of
them do not lie in Γ(T2, R). Hence, µ(Γ(T2, R) ≤ (1 − τ

2 )µ(Γ(T1, R)).
This completes the proof of the lemma. q.e.d.

Corollary 3.5. Let M and Σ be the surfaces defined in Theorem

3.1. Fix an interior point q ∈ Σ and R > δ. For n ∈ N, let D(n) be a

compact exhaustion of Σ by balls of radius n centered at q. Let C(n) =
(∂D(n) ∩ M(R)) − ∂Σ and let µq(n) be the corresponding harmonic

measure of ∂D(n). Then

∫

C(n)
µq(n) tends to zero as n goes to infinity.

Proof. Choose τ > 0. Choose k large enough so that

∫

∂D(k)∩∂Σ
µq(k)

<
∫
∂Σ µq − τ

2 . By the previous lemma, we can choose T large enough so
that µ(Γ(T,R)) < τ

2 . Since the Gaussian curvature of Σ is nonnegative,
the subset of image Brownian paths of time less than or equal to T is
contained in some D(n), where n > k. It follows from the definition

of Γ(T,R) that

∫

C(n)
µq(n) <

τ

2
+ µ(Γ(T,R)) < τ , which proves the

corollary. q.e.d.

We now complete the proof of Theorem 3.1. If Σ is not para-

bolic, then

∫

∂Σ
µq 6= 1 for some interior point q ∈ Σ. We will derive

a contradiction by constructing a sequence of positive bounded har-
monic functions h(n) on the geodesic balls D(n) ⊂ Σ that lie below a
fixed superharmonic function but for which the values of h(n)(p) are
unbounded. Fix R > δ and let C(n) = (∂D(n) ∩M(R)) − ∂Σ.

Let G : Σ → [0,∞) be the restricted superharmonic function G =
ln(d∂M )−ln(δ), which is zero on ∂Σ. Let µq(n) be the harmonic measure
on ∂D(n). Suppose

∫
∂Σ µq = 1 − a for some a > 0.

By the Corollary 3.5, there exists positive integer N depending on R,

so that for n ≥ N ,

∫

C(n)
µq(n) <

a

2
. Since

∫

∂D(n)−∂Σ
µq(n) > 1 −

∫

∂Σ
µq = a,

then, for n ≥ N ,

∫

∂D(n)−M(R)
µq(n) >

a

2
. Let h(n,R) be the harmonic

function on D(n) which has boundary values ln(R)− ln(δ) on ∂D(n)−
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M(R) and zero elsewhere. Then for n ≥ N :

h(n,R)(q) = (ln(R) − ln(δ))

∫

∂D(n)−M(R)
µq(n) ≥ a

2
(ln(R) − ln(δ)).

Since h(n,R) has boundary values below the superharmonic function
G, then h(n,R)(q) ≤ G(q). This is impossible for large n and R. This
contradiction completes the proof of the theorem. q.e.d.

Corollary 3.6. Suppose M is a complete, orientable stable minimal

surface with boundary in R
3 with a positive Jacobi function J . If J ≥ ε,

for some ε > 0, then M is δ-parabolic.

Proof. First note that a Riemannian surface W is δ-parabolic if and
only if for all δ′ > 0, the surface W −W (δ′) is also δ-parabolic. Thus,
without loss of generality, we may assume that M has the form W −
W (δ′) for some δ′ > 0 and where W is a stable minimal surface with a
positive Jacobi function JW ≥ ε. In particular, by Schoen’s curvature
estimate for stable, orientable minimal surfaces, we may assume that
M has bounded Gaussian curvature. After multiplying J by 1

ε , we

may assume that J ≥ 1. Consider the new Riemannian manifold M̃ ,

which is the manifold M with the new metric 〈̃·, ·〉 = J〈·, ·〉, where 〈·, ·〉
is the Riemannian metric on M . Since J ≥ 1 and parabolicity is a

conformal property in dimension two, M is δ-parabolic if and only if M̃

is δ-parabolic; we will prove that M̃ is δ-parabolic.

If K, K̃ denote the Gaussian curvature functions for M, M̃ , respec-
tively, then the Jacobi equation gives:

K̃ =
K − 1

2∆M (lnJ)

J
=

1

2

|∇J |2
J3

.

Choose δ > 0 and let Σ̃ = M̃ − M̃(δ). Let Σ ⊂ M be the submanifold

corresponding to Σ̃. By the Harnack inequality [10], |∇J |
J is bounded,

and so one has that K̃ is nonnegative and bounded on Σ̃. It then follows

from Theorem 3.1 that Σ̃ is parabolic, which means that Σ is parabolic.
Since M −M(δ) ⊂ Σ and Σ is parabolic, M −M(δ) is parabolic. This
completes the proof that M is δ-parabolic. q.e.d.

Corollary 3.7 (Xavier’s Theorem). The convex hull of a complete,

connected minimal surface M of bounded Gaussian curvature in R
3 is

either a plane or all of R
3.

Proof. Suppose the theorem fails and that M is not a plane. In this
case, the convex hull of M is not a plane as well, so there exists a plane
P0 that is disjoint from M . Without loss of generality, we may assume
that P0 is the (x1, x2)-plane and that H+ = {x3 > 0} is a smallest
halfspace containing M .
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Since M has bounded curvature, there is an ε > 0 such that for every
component C of M in the slab between P0 and Pε = {x3 = ε}, the linear
Jacobi function 〈e3, NC〉 ≥ 1

2 , where NC is the unit normal to C, after
making a choice of orientation of C. Note that C satisfies the hypotheses
of the surface described in Corollary 3.6. Choose a positive δ < ε so that
C(δ) = {p ∈ C | x3(p) ≤ δ} is nonempty and note that C(δ) is parabolic
by Corollary 3.6. But x3 : C(δ) → (0, δ] is a bounded harmonic function
with the same boundary values as the constant function δ. Hence x3 is
constant on C(δ), which is a contradiction because C(δ) is not contained
in a plane. This completes our proof of the corollary. q.e.d.

4. Maximum Principle at Infinity for parabolic minimal

graphs

In this section we prove the maximum principle at infinity for par-
abolic minimal graphs of bounded curvature. This was proved by M.
Soret in [22].

Let M1 be an embedded parabolic minimal surface and M2 a small
graph over M1 in the normal bundle of M1 (here we consider M1 to be
the zero section of some small normal interval bundle which has a flat
induced metric under the exponential map). We denote by u the graph
function, u > 0, and we assume M1, M2 have bounded curvature. We
wish to prove that if u ≥ c > 0 on ∂M1, then u ≥ c̃ on M1, for some
c̃ > 0.

Since M1 and M2 are disjoint and of bounded curvature, the gradient
∇ of u and the Hessian Hess(u) tend to zero as u→ 0. More precisely,
for each δ < c, there exists a constant B (depending on the curvature
bounds) such that if u(p) < δ, then sup {|∇u(p)|, |Hess(u(p))|} ≤ Bδ.
Now if u tends to zero, then for δ < c, a part of M2 is a graph over
M1(δ) = {p ∈ M1 | u(p) ≤ δ}. We can assume M1(δ) is connected by
working with one of the components. On M1(δ), u = δ on ∂M1(δ) and
u ≤ δ in the interior.

Consider the metric ds on M1(δ) which is the pull back by u of the
metric on M2. Since ∇u is bounded, this metric is quasi-isometric to
the metric ds of M1, so M1(δ) is also parabolic in the ds metric. By
Lemma 5.1 of [22], we know that there exists a d > 0 such that on
M1(δ),∆u ≤ d|∇u|2. (We remark that u < 0 in [22]). Since M1 is
parabolic, M1(δ) is too, and so there exists a proper positive harmonic
function φ on M1(δ), φ ≥ 1 on ∂M1(δ). (The existence of such a proper
harmonic function was proved in statement 4 of Proposition 3.3 in the
case M1(δ) is simply connected, which, by lifting all the data to the
universal cover of M1(δ), suffices in the following argument.) Let ψ =

lnφ; then ∆ψ = − |∇φ|2
φ2 = −|∇ψ|2.
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Consider the function

h = u+ εψ,

where ε is chosen less than min{1, 1
d}. We now check that h achieves

its minimum value on ∂M1(δ). The function ψ is a proper positive
function and u is bounded, so there is a minimum p of h on M1(δ). If
this were an interior minimum, then ∇u = −ε∇ψ at p and 0 ≤ ∆h(p) =
∆u− ε|∇ψ|2 ≤ d|∇u|2 − ε|∇ψ|2 ≤ d|∇u|2 − 1

ε |∇u|2 = (d− 1
ε )|∇u|2 < 0.

So p must be on ∂M1(δ). Since there is some q ∈M1(δ) where u(q) <
δ and the above inequality holds for all small ε > 0, then h = u + εψ
will not have its minimum on ∂M1(δ) for ε sufficiently small, which
completes the proof of the Maximum Principle at Infinity for parabolic
minimal graphs of bounded curvature.

5. The Maximum Principle at Infinity for proper minimal

surfaces

In this section we prove the general maximum principle at infinity
holds for properly immersed minimal surfaces with boundary. We also
apply this maximum principle to prove the existence of a fixed size tubu-
lar neighborhood for any properly embedded minimal surface in R

3 with
bounded Gaussian curvature. We next apply this regular neighborhood
theorem to obtain further applications.

Theorem 5.1 (Maximum Principle at Infinity). Suppose f1 : M1 →
R

3, f2 : M2 → R
3 are disjoint, proper minimal immersions of surfaces

with boundary, and at least one of these surfaces has nonempty bound-

ary. Then the distance between M1 and M2 is equal to

d(M1,M2) = min{d(M1, ∂M2), d(M2, ∂M1)}.
Proof. We shall first show that if Theorem 5.1 fails to hold, then

it fails to hold for two surfaces M ′
1, M

′
2, where M ′

1,M
′
2 have bounded

curvature and are stable. Actually, the new M ′
1, M

′
2 are contained

in some flat three-manifold N3 that isometrically submerses to R
3,

d(M ′
1,M

′
2) = 0, and d(∂M ′

1∪∂M ′
2, ∂N

3) is positive; we shall then obtain
a contradiction in this more general setting. We will obtain these two
surfaces by solving Plateau problems in region between M1 and M2.

Arguing by contradiction, assume that the theorem fails for some M1,
M2. Without loss of generality, we may assume that the boundary of
each of these surfaces is nonempty. After a translation of M1, we may
assume that d(M1,M2) = 0 and min{d(M1, ∂M2), d(M2, ∂M1)} > 0.
The first step in the proof is to demonstrate that M1 and M2 can be
“separated” by a hypersurface F that is minimal and stable away from
a small neighborhood of ∂M1 ∪ ∂M2. The stability of F implies, by
curvature estimates, that this stable, minimal surface portion of F has
bounded curvature, a property which is used to construct a further
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barrier and the new M ′
1, M

′
2 referred to in the previous paragraph. We

now construct F .
Without loss of generality, we may assume that the boundaries of

M1 and M2 are smooth by coming slightly in from their boundaries.
Choose an ε0 > 0 with 10ε0 < min{d(M1, ∂M2), d(M2, ∂M1)} and such
that the ε0-neighborhood Bε0

(∂Mi) is a piecewise smooth manifold with
boundary for i = 1, 2. Let Wi(ε0) = Mi ∪Bε0

(∂Mi) for i = 1, 2.

Let F be the collection of proper hypersurfaces in R3 −W1(ε0) ∪W2(ε0)

which are disjoint from M1 ∪M2 and separate M1 and M2. Let F̃ ∈ F
be a surface in F of least-area in the sense that compact subdomains
minimize area in the restricted region. Assume, by an appropriate small
choice of ε0, that W1(2ε0) ∪ W2(2ε0) is a piecewise smooth manifold

and F = F̃ ∩ R3 −W1(2ε0) ∪W2(2ε0) is a properly embedded, least-
area minimal surface with boundary in ∂(W1(2ε0) ∪W2(2ε0)) and F ∩
(M1 ∪M2) = Ø. Note that F is orientable and has uniformly bounded
curvature by Schoen’s curvature estimates for stable minimal surfaces.

Choose an ε, 0 < ε < ε0, sufficiently small so that exp: Nε(F ) → R
3

is a submersion where Nε(F ) denotes the closed ε-disk bundle of the
normal bundle of F . Note that (∂M1∪∂M2)∩exp(Nε(F )) = Ø, because
d(∂M1∪∂M2, F ) ≥ ε0 and ε < ε0. It follows that ∂(exp−1(M1∪M2)) ⊂
∂(Nε(F )). From now on we will consider Nε(F ) to be a flat three-
manifold with respect to the pulled back Riemannian metric, and we will
consider F to be the zero section of this bundle. F separates Nε(F ) into
two regions, N+

ε (F ) and N−
ε (F ), which respectively we refer to as the

regions above and below F . For i = 1, 2, let M+
i = exp−1(Mi)∩N+

ε (F )

and M−
i = exp−1(Mi) ∩N−

ε (F ). Let γ be a line segment of length less
than ε that joins a point of M1 to a point of M2. Since γ joins a point
of M1 to a point of M2, γ intersects F in R

3 by the separation property

defining F̃ . It follows that there is a component of exp−1(M1) and a
component of exp−1(M2) such that these components lie on opposite
sides of F ⊂ Nε(F ) and exp−1(γ) contains a lift of γ that joins these
two components. It follows, after possibly interchanging indices, that
we may assume d(M+

1 ,M
−
2 ) = 0. For simplicity of notation we let

M1 = M+
1 and M2 = M−

2 and keep in mind that M1 lies above F and
M2 lies below F in Nε(F ).

When projected into R
3, each boundary component of F comes close

to ∂M1 in R
3 or to ∂M2 in R

3. More precisely, for i = 1, 2, let ∂i

be the collection of boundary components of F such that exp(∂i) ⊂
∂B2ε0

(∂Mi). Choose δ, 0 < δ < ε. Define F (i, δ) = {p ∈ F | d(p, ∂i) ≤
δ} and let NF (i, δ) denote the restriction of Nε(F ) to F (i, δ). Let C be
a compact stable minimal catenoid bounded by two horizontal circles
and symmetric with respect to the origin O. Let C denote the convex
hull of C in R

3. Since F has bounded curvature, we can choose C
sufficiently small so that for any point p ∈ F (i, δ) with d(p, ∂i) = δ

2 ,
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C isometrically embeds in NF (1, δ) so that the origin O corresponds
to p and the tangent plane TpF corresponds to the horizontal plane of

symmetry of C in R
3. Let C(p) denote the image of such an isometric

embedding. Since the curvature of F is bounded, for some positive
η < ε, the top and bottom bounding disks of C(p) lie in the complement
of Nη(F ) in Nε(F ).

Consider the solid barrier B =
⋃

p∈F (1,δ)C(p)∩Nη(F ), where d(p, ∂1)

= δ
2 . Again let Mi = Mi ∩Nη(F ), as we will be working now in Nη(F ).

Note that by our previous choices M2∩NF (1, δ) = Ø. Since the barrier
B has a minimal thickness σ > 0, if Σ is a connected surface in a
component of Nη(F ) − (F ∪ B) that intersects M2 nontrivially, then
d(Σ, ∂M1) > σ in Nη(F ).

Choose a component C1 of M1 and a component C2 of M2 such
that d(C1, C2) is much less than σ. Let X2 denote the closure of the
component of N−

ε (F )− (F ∪B∪C2) having points of both F and C2 on
its boundary; similarly, define X1. Let Ci denote the proper subdomain
in ∂Xi corresponding to points of Ci for i = 1, 2.

Replace Ci by a least-area surface C̃i in Xi with ∂C̃i = ∂Ci and

C̃i homologous (with respect to locally finite chains) to Ci in Xi. Let

F̃ be the closure of the component of F − (F (1, σ
2 ) ∪ F (2, σ

2 )). Since

Nε(F ) submerses in R
3, translation is well-defined in Nε(F ). Define

M ′
1 = C̃1 ∩N η

2

(F̃ ) and M̃2 = C̃2 ∩N η
2

(F̃ ). Consider M ′
1 and M̃2 to be

contained in Nε(F ). By our choices of ε0, ε, ∂, η and σ, there is enough

room in Nε(F ) to translate M̃2 no further than d(C1, C2), which is much
smaller than σ, so that the translated surface M ′

2 and the surface M ′
1 are

disjoint, d(M ′
1,M

′
2) = 0, min{d(M ′

1, ∂M
′
2), d(M

′
2, ∂M

′
1)} > σ

10 , and for
i = 1, 2, M ′

i is stable and has bounded curvature and d(Mi, ∂Nε(F )) >
0.

This completes the proof of our claim at the beginning of the proof
of the theorem. Thus, we will henceforth assume that M1,M2 are both
stable, analytic and have bounded curvature. For future calculations,
it is convenient to relabel these surfaces as M0,M1. Similar arguments
as those given above show that after replacing by subdomains we may
consider M0 to be the zero section of Nε(M0) and M1 to be the positive
normal graph of a function ϕ : M0 → (0, ε) with ϕ|∂M0

= ε. After
a homothety of the metric, we may assume that ε = 1, and so, the
boundary of M1 is at height 1 over the boundary of M0 at height 0.

It remains to prove that there is a stable minimal surface Σ ⊂ N1(M0)
which is the graph of a positive function on M0 with constant boundary
values, which is not bounded away from zero and which is δ-parabolic.
In order to do this, we first observe that, without loss of generality, we
may assume that the absolute geodesic curvature of ∂M0 is bounded
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(but one needs to replace M1 by M ′
1 ⊂ M1 and M0 by M ′

0 ⊂ M0

so that M ′
1 is a graph over M ′

0 where ϕ|∂M ′

0
is the almost constant

function 1). This assumption of bounded geodesic curvature on ∂M0

is elementary to show to hold, once one notes that for every R > 0,
there exists a δ(R) > 0 such that for all p ∈M0 with dM (p, ∂M0) = R,
the graphing function ϕ satisfies ϕ(p) ≥ δ(R) (standard compactness
argument). (Actually, what one does to prove the bounded geodesic
curvature property for ∂M0 is first contract M0 a fixed small distance
from its boundary to obtain M ′

0 ⊂ M0; then one adds back onto M ′
0 a

locally well-defined smaller fixed size neighborhood in M0 to obtain an
abstractly defined analytic Riemannian surface M ′′

0 with C1,1 boundary
which satisfies a uniform geodesic curvature estimate almost everywhere.
The surface M1 can now be viewed as a graph M ′′

1 in the associated
normal bundle to M ′′

0 . After a small perturbation of ∂M ′′
0 inside M ′′

1 ,
the surface has bounded geodesic curvature.)

Note that we may assume by stability that the metrics of M0 and of
M1 are almost flat and that the gradient of ϕ is almost zero. We now
assume these properties for M0,M1 and ϕ and show how to construct
a new minimal graph M(h) between M0 and M1, for some h ∈ [0, 1],
which is δ-parabolic and has constant boundary values. Note that under
our combined normalizations, the boundary of M0 can be assumed to
have almost zero geodesic curvature (choose ε very small, apply the
uniform bound on the geodesic curvature of ∂M0, and then expand the
metric by 1

ε ).

We claim that there exists a collection M ′ = {Mt}t∈[0,1] of disjoint

minimal graphs over M0 with ∂Mt = ∂M0×{t} ⊂ N+
1 (M0) = M0×[0, 1]

(in natural normal coordinates); this collection will be a subset of a re-
lated collection M. Using appropriate barriers, M 1

2

is constructed to

be a surface of least-area in N+
1 (M0) between M0 and M1. Appropriate

barriers here are the unique, almost flat minimal annuli that are close to
∂M1 and which have their boundary being ∂ 1

2

, and the 1-parallel curves

in M0,M1, respectively, which are parallel to ∂M0, ∂M1, respectively.
It is straightforward to check that M 1

2

is a graph of uniformly bounded

gradient over M0. Then, one obtains a similar graph M 1

4

between M0

and M 1

2

and a similar graph M 3

4

between M 1

2

and M1. Barrier ar-

guments again give a uniform bound on the gradient of the graphing
functions. Continuing this process yields a collection {Mt} of graphs
over M0 with t ∈ { k

2n | 0 ≤ k ≤ 2n, n ∈ N}. Taking the closure of this
set of graphs yields a collection of minimal graphs M with a uniform
bound on the gradient of their graphing functions and these graphs are
disjoint in their interiors.

For what follows, it is important to find an appropriate indexing set
for the surfaces in M. Fix a point p ∈ M0 of distance 1 from ∂M0.
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Each minimal graph M ∈ M is determined by h = h(M) ∈ [0, 1] equal
to the height of M over the point p ∈ M0; in this case we will denote
M by M(h). Let H be the set of all these heights and note that H
is an ordered compact subset of [0, 1]. Let F : H → [0, 1] be the onto
function defined by F (h) that is the constant boundary value of the
corresponding surface M(h) ∈ M. Note that F is at most 2 to 1.

Our next goal is to use the function F to construct a positive Ja-
cobi function on one of the surfaces M(h) in M. We will then use
this positive Jacobi function to prove that M(h) is δ-parabolic, thereby
obtaining our desired contradiction. Since F is order preserving (h1 ≤
h2 ⇒ F (h1) ≤ F (h2)), an elementary argument shows that there exists
a sequence {hn}n∈N ⊂ H converging to some fixed h ∈ H, so that

|F (hn+1) − F (hn)| ≥ |hn+1 − hn|

for all n ∈ N. [This elementary argument goes as follows. Let h1 =
h(M 1

2

). If h(M 1

2

) is closer to h(M0) than to h(M1), define h2 = h(M 1

4

);

otherwise, let h2 = h(M 3

4

). Once one defines h1, h2, then one defines

h3 and continues defining hn inductively. For example, suppose that
h2 = h(M(1

4)). If h(M(1
4)) is closer to h(M(1

2) than to h(M0), then

define h3 = h(M(3
8)); otherwise, h3 = h(M(1

8)).] The sequence of
paired graphing functionsHn, Hn+1 of the surfacesM(hn) andM(hn+1)
over M(h), under absolute difference and normalized by multiplying by
a constant cn so as to have the function have the value 1 at the point
ph ∈M(h) above the point p, yield in the limit a positive Jacobi function
J on M(h) with J(ph) = 1. The Jacobi function J is bounded away
from zero along ∂M(h) because of the above inequality and the fact
that the gradient of the graphing function for all of the surfaces in M
is uniformly bounded in any fixed size neighborhood of ∂M0.

By the Harnack inequality, |∇J |
J is bounded from above in any fixed

size neighborhood of ∂M(h), and so, J is also bounded from above and
away from zero in any fixed size neighborhood of ∂M(h). Consider the

metric 〈̃·, ·〉 = J〈·, ·〉 on M(h), let M̃(h) denote this new Riemannian

surface, and let K̃ denote its Gaussian curvature. Since |∇J | is bounded

in any fixed size neighborhood of ∂M(h), the metric of M̃(h) is complete
in some fixed σ-neighborhood of its boundary for some σ > 0 (incom-

plete geodesics in M̃(h) do not lie in σ-neighborhood of ∂M̃(h) unless

they hit ∂M̃(h)). By the formula given in the proof of Corollary 3.6,

K̃ =
1

2

|∇J |2
J3

,

so it is a nonnegative function. By the Harnack inequality, K̃ is bounded
on M(R) for any R > 0.
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In [7], Fischer-Colbrie showed that the metric on M̃(h) is complete if

∂M̃(h) were compact. In fact, since Mh is complete and J is bounded
away from zero onMh(1), geodesics only become incomplete at distances

at least a fixed positive distance from ∂M̃(h), and so her argument

applies to our case too to show that M̃(h) is complete. In fact, using

the fact that K̃ is bounded on some fixed size neighborhoods of both

M(h) and M̃(h), Fischer-Colbrie’s argument can easily be modified to
show that the distance function to ∂M(h) in M(h) and the distance

function to ∂M̃(h) in M̃(h)) are comparable in the following sense:
any fixed size neighborhood of the boundary of one of these surfaces
is contained in a fixed size neighborhood of the boundary of the other

surface. Hence, the function K̃, which is bounded on M(h)(R) for any

R, is bounded on M̃(h)(R) for any R. Thus, Theorem 3.1 implies M̃(h)
is δ-parabolic. Since J is bounded away from zero on M(h)(1), it follows
that M(h) is also δ-parabolic.

This completes the proof of Theorem 5.1. q.e.d.

Corollary 5.2. The Maximum Principle at Infinity holds for properly

immersed minimal surfaces in any complete flat three-manifold.

Proof. Suppose N3 is a complete flat three-manifold and M1, M2

are two disjoint properly immersed minimal surfaces in W 3 where ei-
ther M1 or M2 has nonempty boundary. Suppose d(M1,M2) + ε =
min{d(∂M1,M2), d(∂M2,M1)} for some ε > 0. In this case choose a
geodesic segment γ joining a point of M1 to a point of M2 of length
less than d(M1,M2) + ε

2 . Let π : R
3 → N3 denote the universal cover

of N3 and let L be a component of π−1(M1 ∪M2 ∪ γ). Let M̃1 be a
component of L − π−1(Int(γ)) that covers M1. Let γ̃ be a lift of γ to

R
3 such that an end point of γ̃ lies on M1. Let M̃2 be a component of

L − π−1(Int(γ)) such that M̃2 covers M2 and the other end point of γ̃

lies on M̃2.
Since the maximum principle at infinity holds in R

3 (Theorem 5.1)

and d(M̃1, M̃2) ≤ length(γ̃) < ε
2 + d(M1,M2), then without loss of

generality we can assume there exists a line segment α joining a point

of ∂M̃1 to M̃2 of length less than ε
2 +d(M1,M2). So π(α) is of length less

than ε
2 + d(M1,M2), which is a contradiction to our earlier hypothesis

that d(M1,M2) + ε = min{f(∂M1,M2), d(∂M2,M1)} for some ε > 0.
q.e.d.

Theorem 5.3 (Regular Neighborhood Theorem). Suppose M is a

nonflat, properly embedded, orientable minimal surface in a complete,

orientable flat three-manifold N3, and M has absolute Gaussian curva-

ture bounded from above by a constant 1
C2 . Then the open neighborhood

of M in N3 of radius C is a regular neighborhood of M . In other words,
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the exponential map on the open C-normal interval bundle of M is in-

jective.

Proof. This theorem is essentially a corollary of the maximum princi-
ple at infinity. We will let NC(M) denote the open C-interval bundle of
M in its normal bundle. Let exp: NC(M) → R

3 denote the exponential

map and ÑC(M) the image. Our goal is to prove that exp is injective.

Suppose M̃ is a lift of M to the universal cover R
3 of N3 and

exp: NC(M) → R
3 is injective. Then NC(M̃) can be thought of as

a regular neighborhood of M̃ of radius C. Since M is orientable, not
flat, and N3 is orientable, π1(M) maps onto π1(N

3) (see [9]). It follows

that π1(N
3), thought of as covering transformations on R

3, leaves L̃

invariant, and hence leaves NC(M̃) invariant. Therefore, the neighbor-

hood of M in N3 of distance C from M is the quotient NC(M̃)/π1(N
3).

Thus, we may assume that N3 = R
3.

We first check that exp−1(M) = M2 where M2 is the zero section
of NC(M). Suppose this property fails to hold. Let N be a unit nor-
mal field to M . Since exp−1(M) consist of components that are proper
minimal surfaces, one of which is M2 = zero section, there is another
proper component M1. The proof of the maximum principle at infinity
applied to M1 and M2 in NC(M) gives a contradiction, since the dis-
tance between these surfaces is not obtained as the distance of one to the
boundary of the other one. This contradiction shows exp−1(M) = M2

and, by the triangle inequality, exp|N C
2

(M) is injective. This proves the

existence of a regular neighborhood of M of radius half of that required
in the theorem.

If exp: NC(M) → R
3 is not injective, then there exists ε, 0 < ε < C

2 ,

such that exp: NC−ε(M) → R
3 is not injective. It follows that there

is a t ∈ (−C,−C
2 ) or (C

2 , C) such that exp−1(exp(t · N)) contains a

component W with ∂W ⊂ ∂(NC−ε(M)). Furthermore, W separates
NC−ε(M) into two regions. Let R denote the region containing M2 and
W in its boundary. Note that W is mean convex when considered to be
part of the boundary of R. Replace W by a least area current S homolo-
gous to W in R with boundary ∂W . Note that S(δ) = S∩NC−(ε+δ)(M)
is embedded and minimal for any δ > 0 and nonempty for δ sufficiently
small. Assume that δ is chosen sufficiently small so that S(δ) = Ø. The
existence of S(δ) and M2 contradict the maximum principle at infinity
given in Theorem 5.1. This contradiction implies exp: NC(M) → R

3 is
injective, which completes the proof of the theorem. q.e.d.

Corollary 5.4. Suppose M is a properly embedded minimal surface

in R
3 with Gaussian curvature bounded from below by −K. Then M

has area growth A(r) ≤ cr3, where r is the radial function in R
3 and c

is a constant that depends only on −K.
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Proof. Suppose K is the supremum of the absolute Gaussian curva-
ture of M . Let C = 1/

√
K. Note that the area of M(r) = M ∩ B(r)

is less than or equal to the volume of NC/2(M(r)) times a constant.
Since the volume of B(r) grows cubically in r, the area of M(r) must
be bounded from above by cr3 for some constant c. q.e.d.

Note that a sequence M(i) of properly embedded minimal surfaces
in R

3 always has a convergent subsequence if there are uniform local
bounds on the area and curvature. Hence, our next corollary is a con-
sequence of the previous one.

Corollary 5.5. Let M(k1, k2) be the space of properly embedded min-

imal surfaces in R
3 with the supremum of the absolute Gaussian curva-

ture of the surface lying in [k1, k2], where k1, k2 are positive numbers.

Suppose these surfaces are further normalized so that every surface in

M(k1, k2) passes through the origin at a point where the absolute Gauss-

ian curvature is at least k1. Then M(k1, k2) is compact in the topology

of C1-convergence on compact sets of R
3.

6. Surfaces of constant mean curvature and bounded

Gaussian curvature

In this section we will prove results similar to the previous Theo-
rem 2.1 and Theorem 5.3, but in the case of constant mean curvature
surfaces. We begin with the following properness theorem.

Theorem 6.1. Suppose N3 is a complete flat three-manifold and M
is a complete surface of bounded Gaussian curvature. If f : M → N3 is

an injective immersion of constant mean curvature, then f is proper.

Proof. By covering space arguments, we may assume N3 = R
3. By

Theorem 2.1, the theorem is known if the mean curvature is zero. As-
sume now that the mean curvature is a positive constant C. As in the
minimal case, the second fundamental form of M is bounded. As in
the proof of Theorem 2.1, if f is not proper, then there is limit leaf1

L of f(M) which is complete, has bounded Gaussian curvature and has
constant mean curvature C. As in the proof of Theorem 2.1, we lift all
questions to some ε-neighborhood Nε(L) of the normal bundle of L. We
assume that ε is chosen small enough so that Nε(L) submerses into R

3

under the exponential map, and we pull back M to a surface L̃(f(M))
that limits to L. We wish to show that L is stable. Since L has non-
zero mean curvature, Nε(L) is trivial and L is stable if and only if the
natural projection of the universal cover is stable. Thus, as in the proof

1The closure of f(M) has the structure of a ”CMC-lamination”, which consists
of immersed nontransversely intersecting surfaces of constant mean curvature C. See
[18] for an explicit definition and applications of this concept.
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of Theorem 2.1, we may assume, after possibly lifting to the universal
cover of Nε(L), that L and Nε(L) are both simply connected.

In order to prove that L ⊂ Nε(L) is stable, it is sufficient to show
that for every smooth, compact, simply connected subdomain K ⊂ L,
there is no function u : K → R

3, such that
∫
K u dA = 0 and S(u) = λu

for some λ < 0, where S is the stability operator for area for L. Suppose
that such a K exists with a u with S(u) + λu = 0 and λ < 0.

Consider the family of surfaces K(t), 0 ≤ t ≤ δ, given by exp(tuNK)
where NK is the unit normal vector field to K. The negativity of λ
is equivalent to the property that for t small, the surface K(t) has
mean curvature greater than C at points where u is positive and mean
curvature less than C where u is negative. Here we are taking the
orientation of K(t) induced from the orientation of K. Since L is a

limit leaf of M , for η > 0 and sufficiently small, M̃ intersects the η-
neighborhood of K in a sequence of graphs that converge to K. It is
clear that the family K(t) must intersect one of these component graphs
for a smallest t0. A comparison principle of mean curvatures at such a
first point of contact gives a contradiction of the usual comparison of
mean curvature for surfaces that intersect in their interiors at a point
where one surface lies locally on one side of the other surface. This
contradiction proves that L is stable.

Since L is stable, L is a round sphere [3]. Since L is compact and
simply connected, a standard holonomy argument implies that L cannot
be a limit of a connected embedded surface in R

3 with bounded second
fundamental form; one can lift the sphere to the nearby leaves of the
lamination by the holonomy so they are also spheres. Hence, we have
proven that the surface M must be proper. q.e.d.

Remark 6.2. If f : M → N3 is a proper isometric immersion of a
surface into a flat three-manifold, then for any compact ball B ⊂ N3,
f−1(B) is compact. It follows that f(M) ⊂ N3 has locally bounded
Gaussian curvature in N3. The proof of Theorem 6.1 implies more
generally that if f : M → N3 is an injective immersion of a complete,
nonzero constant mean curvature surface of locally bounded Gaussian
curvature, then f is proper.

We now prove that a properly embedded, constant mean curvature
surface of bounded Gaussian curvature has a tubular neighborhood on
its mean convex side. Our next theorem was discovered together with
Antonio Ros. Also, see the paper of Meeks and Tinaglia [18] for some
related applications of the proofs of Theorems 6.1 and 6.3 in other Rie-
mannian three-manifolds.

Theorem 6.3. Suppose M is a properly embedded, constant mean

curvature surface of bounded Gaussian curvature in R
3. There exists

an ε > 0 such that the exponential map exp: N∗
ε (M) → R

3 embeds,
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where N∗
ε (M) are those vectors in Nε(M) on the mean convex side of

M .

Proof. By Theorem 5.3, we may assume that M has nonzero mean
curvature. Suppose now that no ε > 0 exists. First note that since
M has constant mean curvature and bounded Gaussian curvature, then
the second fundamental form of M is bounded. The boundedness of
the second fundamental form implies that there exists an ε > 0, so
that exp: N∗

ε (M) → R
3 is a submersion. Assume ε is sufficiently small

so that the ε-disk Dε(p) of M is a graph over its tangent space. If
exp−1(M) equals the zero section of N∗

ε (M), then an application of the
triangle inequality shows that N∗

ε/2(M) → R
3 would be an embedding,

contrary to our supposition that exp: N∗
ε (M) → R

3 is not an embedding
for any ε > 0. Hence, arguing by contradiction, for any δ > 0, δ < ε,
exp: N∗

δ (M) → R
3 satisfies exp−1(M) is not the zero section of N∗

δ (M).
Let pi, qi be distinct pairs of points onM such that qi = exp(tiN(pi)),

where N(pi) is the unit normal of pi in N∗
ε (M), ti → 0, ti is the smallest

positive number such that exp(tiN(pi)) is in M and limi→∞d(pi, qi) = 0.
Since the fundamental form of M is bounded, then, for i large, the
tangent space Tpi

M to M at pi is almost parallel to the tangent space
to Tqi

M . Since M is proper, M separates R
3 and so the orientations of

Tpi
M and Tqi

(M) are opposite of each other.
Next translate M so that qi is at the origin in R

3. Since M has
bounded second fundamental form, a subsequence of the disks Dε(qi)
converge to a disk D of constant positive mean curvature. By construc-
tion, the corresponding subsequence of the Dε(pi) also converge to a
disk D′ on one side of D. However, thought of as a limit of the Dε(qi)
with orientation given as normal graphs over D, D′ has negative mean
curvature, which is the opposite sign it would have been from being
below D. This inconsistency of sign gives a contradiction since we are
in the special case where the mean curvature of M is not zero. This
contradiction implies the theorem. q.e.d.

As in the minimal case, the existence of a one-sided tubular neighbor-
hood for a properly embedded, constant mean curvature surface gives
rise to area estimates.

Corollary 6.4. Suppose M is a properly embedded surface in R
3 of

constant mean curvature. If M has bounded absolute Gaussian curva-

ture, then M has at most cubical area growth with respect to the radial

function.

Remark 6.5. The same argument that we applied in the proof
of Theorem 6.3 works to prove that any properly embedded, co-
dimension–one submanifold of R

n with nonzero constant mean cur-
vature and bounded second fundamental form has a fixed size regular
neighborhood on its mean convex side.
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7. A special result concerning recurrent minimal surfaces

Recall that a connected Riemannian surface is recurrent, if almost all
Brownian paths on the surface are dense in the surface. Being recurrent
implies, among other things, that every positive harmonic function on
the surface is constant. In the case of finite topology, being recurrent
is equivalent to being conformally diffeomorphic to a closed Riemann
surface punctured in a finite number of points.

Theorem 7.1. Suppose M is a surface of finite topology and one

end and f : M → R
3 is a proper minimal immersion. Suppose there is a

plane P ⊂ R
3 such that f is transverse to P except at a finite number of

points, and f−1(P ) contains a finite number of components. Then, in

the underlying conformal structure, M is conformally a closed Riemann

surface punctured in a single point.

Proof. After a rotation, we may assume that the plane P is the
(x1, x2)-plane. In [6], it is shown that the surfaceM(+) = {(x1, x2, x3) ∈
M | x3 ≥ 0} is parabolic. We will use this parabolicity property ofM(+)
to prove that when M has finite topology and satisfies the hypothesis in
the theorem, then it is conformally a closed Riemann surface punctured
in one point.

Suppose that E is an annular end representative which does not have
conformal representative that is a punctured disk. Such an end is called
hyperbolic and has a representative which is conformally diffeomorphic
to E = {z ∈ C | ε ≤ z < 1} for some positive ε < 1. In this conformal
parametrization of E, the unit circle corresponds to points at infinity
on E. After restricting to a subend of E, we may assume that f |E
intersects P transversely in a finite positive number of arcs. We may
also assume that each noncompact arc of the intersection has one end
point on the compact boundary circle of E.

We wish to prove that each of the finite number of noncompact arcs
α1, . . . , αn in (f |E)−1(P ) has a well-defined limit on the unit circle S1

of points at infinity. If we can prove this, then there is an open arc
δ ⊂ S1 which does not contain limit points of α1, . . . , αn. Hence, there
would be a half open disk D ⊂ E centered at a point in δ, such that
D ∩ (f−1(P )) = Ø, a contradiction of the fact that M(+) is parabolic.
(D does not have full harmonic measure but D is a proper domain
which is contained in the parabolic surface M(+).) Thus, to prove
the theorem, we need only show that each of the arcs α1, . . . , αn has a
well-defined limit point in S1.

Suppose α1 has two distinct limit points p1, p2 ∈ S1. We first prove
that at least one of the two interval components I1, I2 of S1 − {p1, p2}
consists of limit points of α1. Suppose not and let s1 ∈ I1, s2 ∈ I2 be
points which are not limit points. Since they are not limit points, there
exists a δ > 0 such that the radial arcs β1 and β2 in E of length δ and
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orthogonal to S1 at s1, s2, respectively, are disjoint from α1. Since α1 is
proper and α1 is disjoint from β1∪β2, the parameterized arc α1(t) must
eventually be in one of the two components of {x ∈ E− (β1∪β2) | |x| ≥
1 − δ}. Thus, α1 cannot have both p1 and p2 as limit points, contrary
to our hypothesis. This contradiction proves that at least one of the
intervals, say I1, consists of limit points of α1.

Next choose a closed half disk D ⊂ E = E ∪ S1, centered at a point
p ∈ I1, where from above I1 consists entirely of limit points of α1, and
suppose that the disk D is chosen sufficiently small so that ∂D∩S1 ⊂ I1.
Consider the holomorphic function g = x3 + ix∗3 : E → C, where x∗3 is
the conjugate harmonic function to x3. Note that x∗3 is well-defined on
E, by Cauchy’s Theorem, since the generator of the homology of E is
a boundary in M . Since the plane P is transverse to E and x3 = 0
on f−1(P ), g restricted to any of the finite number of components in
f−1(P ) ∩ E monotonically parameterizes an interval on the imaginary
axis R(i) ⊂ C. Let ξ be the finite collection of these interval images
in R(i). Thus, it is possible to find a compact interval β ⊂ R(i) that
is disjoint from the end points of the intervals in ξ. Since g−1(β) is
compact, one can choose D, defined above, sufficiently small so that
D ∩ g−1(β) is empty. Assume that D has been so chosen.

Let D be the interior of D. Since g|D : D → C − β, the function
g|D is essentially bounded in the sense that it maps the disk D into
a domain that is conformally equivalent to an open subset of the unit
disk (via the Riemann mapping theorem). It follows from Fatou’s lemma
that the holomorphic function g|D has radial limits almost everywhere.
Note that each limit value is a point in C∪ {∞}− β. Since α1 contains
the limit set I1 ⊂ ∂D and g◦α1 : [0,∞) → R(i) is monotonic, the points
of I1 with radial limits for g have a constant value which corresponds
to the limiting endpoint of the curve g ◦ α1 in R(i) ∪ {∞}. But by
Privalov’s theorem, a nonconstant meromorphic function on the unit
disk cannot have a constant radial limit on a set of ∂D with positive
measure. This contradiction proves that α1 must have a unique limit
value on the circle S1 corresponding to the points at infinity in E. As
we observed earlier, this completes the proof of Theorem 7.1. q.e.d.

Remark 7.2. Every properly immersed minimal surface in R
3 with

one end can be seen to be a limit of a sequence of properly immersed
minimal surfaces which are conformally hyperbolic2 minimal surfaces of
finite topology and one end (see [1]). It follows from Theorem 7.1 that
for any plane P which intersects transversely such a properly immersed,
hyperbolic finite topology surfaceM , the set P∩M consists of an infinite
proper collection of immersed arcs of which only a finite number are
closed immersed curves.

2A surface is hyperbolic if it is conformally diffeomorphic to the complement of
some disk in a compact Riemann surface.
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We end this paper with the following conjecture related to Theorem
7.1.

Conjecture 7.3. If f : M → R
3 a proper minimal immersion of a

complete surface such that there exists a plane P that intersects M
transversely, except at a finite number of points, and f−1(P ) consists
of a finite number of components, then M is recurrent.
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