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PROOF OF THE ANGULAR MOMENTUM-MASS

INEQUALITY FOR AXISYMMETRIC BLACK HOLES

Sergio Dain

Abstract

We prove that an extreme Kerr initial data set is a unique
absolute minimum of the total mass in a (physically relevant) class
of vacuum, maximal, asymptotically flat, axisymmetric data for
Einstein equations with fixed angular momentum. These data
represent non-stationary, axially symmetric black holes.

As a consequence, we obtain that any data in this class satisfy
the inequality

√
J ≤ m, where m and J are the total mass and

angular momentum of spacetime.

1. Introduction

An initial data set for the Einstein vacuum equations is given by a
triple (S, hij ,Kij) where S is a connected 3-dimensional manifold, hij a
(positive definite) Riemannian metric, and Kij a symmetric tensor field
on S, such that the vacuum constraint equations

DjK
ij −DiK = 0,(1)

R−KijK
ij +K2 = 0,(2)

are satisfied on S. D and R are the Levi-Civita connection and the
Ricci scalar associated with hij , and K = Kijh

ij . In these equations
the indices are moved with the metric hij and its inverse hij .

The manifold S is called Euclidean at infinity if there exists a compact
subset K of S such that S \ K is the disjoint union of a finite number
of open sets Uk, and each Uk is isometric to the exterior of a ball in R

3.
Each open set Uk is called an end of S. Consider one end U and the
canonical coordinates xi in R

3, which contains the exterior of the ball

to which U is diffeomorphic. Set r =
(
∑

(xi)2
)1/2

. An initial data set
is called asymptotically flat if S is Euclidean at infinity, the metric hij

tends to the euclidean metric, and Kij tends to zero as r → ∞ in an
appropriate way. These fall off conditions (see [2], [13] for the optimal
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fall off rates) imply the existence of the total mass m (or ADM mass
[1]) defined at each end U by

(3) m =
1

16π
lim

r→∞

∮

∂Br

(∂jhij − ∂ihjj)n
i ds,

where ∂ denotes partial derivatives with respect to xi, Br is the eu-
clidean sphere r = constant in U , ni is its exterior unit normal and ds
is the surface element with respect to the euclidean metric.

A central result concerning this physical quantity is the positive mass
theorem [37], [45]:

(4) m ≥ 0,

for asymptotically flat, complete, vacuum, data; with equality only for
flat data (i.e., the data for Minkowski spacetime).

We will further assume that the data are axially symmetric, which
means that there exists a Killing vector field ηi, i.e.,

(5) £ηhij = 0,

where £ denotes the Lie derivative, which has complete periodic orbits
and is such that

(6) £ηKij = 0.

For axially symmetric data there exists another well defined physical
quantity, namely the angular momentum J associated with an arbitrary
closed 2-surface Σ in S (the Komar integral of the Killing vector [28],
see also [38]). We define the angular momentum of Σ by the following
surface integral

(7) J(Σ) =

∮

Σ
πijη

inj dsh,

where πij = Kij −Khij and ni, dsh are, respectively, the unit normal
vector and the surface element with respect to hij . As a consequence of
equation (1) and the Killing equation (5), the vector πijη

j is divergence
free. Then, by the Gauss theorem, J(Σ) = J(Σ′) if Σ∪Σ′ is the bound-
ary of a region contained in S (i.e., J depends only on the homology
class of S). If S = R

3, it follows that J(Σ) = 0 for all Σ. In order to
have non zero J the manifold S must have a non trivial topology; for
example, S can have more than one end.

Let Σ∞ be any closed surface in a given end U such that it encloses
the corresponding ball in R

3. The total angular momentum of the end
U is defined by J ≡ J(Σ∞).

Physical arguments suggest the following inequality at any end

(8) m ≥
√

|J |,
for any complete, asymptotically flat, axially symmetric and vacuum
initial data set (see [17] and reference therein). Moreover, the equality
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in (8) should imply that the data set is a slice of the extreme Kerr
spacetime.

This inequality was proved for an initial data set close to an extreme
Kerr data set in [18], [17].

The main result of this article is the following:

Theorem 1.1. Let (hij ,Kij , S) be a Brill data set (see Definition

2.1) such that they satisfy condition 2.5. Then inequality (8) holds.

Moreover, the equality in (8) holds if and only if the data are a slice of

the extreme Kerr spacetime.

Another way of stating this theorem is to say: extreme Kerr initial

data is the unique absolute minimum among all Brill data set (which

satisfies Condition 2.5) with fixed angular momentum.

Let us discuss the hypotheses of this theorem. The first assumption
is that the data belong to the Brill class. This class of data is defined in
Section 2; it involves certain technical restrictions on both the topology
of the manifold and the behavior of the fields. As it was mentioned
above, Theorem 1.1 is expected to be true for general asymptotically
flat, axisymmetric, vacuum, complete data. Nevertheless, we empha-
size that the Brill class is physically relevant in the following sense: it
contains the Kerr black hole data, it also contains non stationary data
(in particular small deviations from Kerr), and gravitational radiation
is not constrained to be small in any sense. In Section 2 we review a
well known procedure for constructing a rich class of examples of this
class of data set.

The second assumption, Condition 2.5, implies that the data have non
trivial angular momentum only at one end. The theorem is expected to
be valid without this restriction; however, this generalization appears
to be quite difficult.

Theorem 1.1 generalizes the results presented in [18], [17] in two
ways. First, it does not involve any smallness assumptions on the norm
of the fields. In particular, the data is not required to be close to
extreme Kerr data. Second, the Killing vector η is not required to be
hypersurface orthogonal.

Theorem 1.1 will be a consequence of the following result in the cal-
culus of variations.

Let ρ denote the cylindrical radius in R
3 and Γ the axis ρ = 0. Define

(9) g = 2 log ρ.

It is important to note that g is an harmonic function in R
3 \ Γ. Let

x, Y : R
3 → R be two arbitrary functions. Consider the following

functional

(10) M(x, Y ) =
1

32π

∫

R3

(

|∂x|2 + e−2x−2g|∂Y |2
)

dµ,
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where dµ is the volume element in R
3 and the contractions are with

respect to the euclidean metric. The relation between this functional
and the mass of a Brill data set is discussed in Section 2; see also [21].

The extreme Kerr initial data (x0, Y0) are given by (see, for example,
[18])

(11) x0 = logX0 − g, Y0 = Ȳ0 −
2J2 cos θ sin4 θ

Σ
,

where
(12)

X0 =

(

r̃2 + |J | + 2|J |3/2r̃ sin2 θ

Σ

)

sin2 θ, Ȳ0 = 2J(cos3 θ − 3 cos θ),

and

(13) r̃ = r +
√

|J |, Σ = r̃2 + |J | cos2 θ.

In these equations, (r, θ) are spherical coordinates in R
3 (with ρ =

r sin θ) and J is an arbitrary constant.
Let H1

0 (R3 \ {0}) be the completion of C∞
0 (R3 \ {0}) under the norm

(14) ‖α‖1 =

(
∫

R3

|∂α|2 dµ
)1/2

,

and H1
0,X0

(R3 \ Γ) the completion of C∞
0 (R3 \ Γ) under the norm

(15) ‖y‖1,X0
=

(
∫

R3

X−2
0 |∂y|2 dµ

)1/2

.

We define the positive and negative part of a function α by α+ =
max{α, 0} and α− = min{α, 0}.

Theorem 1.2. Consider the functional M defined by (10). Let α ∈
H1

0 (R3 \ {0}), y ∈ H1
0,X0

(R3 \ Γ). Assume in addition that α−, yX−1
0 ∈

L∞(R3) and α,X−1
0 y → 0 as r → ∞. Then, the following inequality

holds:

(16) M(x0 + α, Y0 + y) ≥ M(x0, Y0),

where (x0, Y0) are the extreme Kerr data. Moreover, the equality in (16)
holds if and only if α = y = 0.

This theorem is a generalization of the results presented in [18] where
a local version has been proved.

Remarkably, α and y are not assumed to be axially symmetric in
this theorem (i.e., they can depend on the ϕ coordinate). However, we
emphasize that Theorem 1.1 is only valid for axially symmetric data
(see the remark after Theorem 2.2).
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It is important to note that for the extreme Kerr data the difference
Y0− Ȳ0 = y0 satisfies the hypothesis of Theorem 1.2 (see the appendix).
Then inequality (16) can be written in an equivalent form

(17) M(x0 + α, Ȳ0 + y) ≥ M(x0, Y0).

The function Ȳ0 fixes the angular momentum of the data and it also
fixes the origin of coordinates.

In Theorem 1.2, we require the boundedness of the functions α− and
yX−1

0 . It is possible to prove the same result without the assumption on
α− and with a stronger assumption on y, namely ye−g ∈ L∞(R3) (see a
previous version of this article in [20]). The disadvantage of this choice
is that the function y0 defined above does not satisfy this assumption:
y0e

−g is not bounded at the origin. And hence, important examples
as non-extreme Kerr and the Bowen-York data (see Section 2) are not
included. Also, without the assumption α− ∈ L∞(R3) the proofs are
more involved. Nevertheless, I believe that for future generalization of
Theorem 1.2 these arguments which do not make use of the condition
α− ∈ L∞(R3) can be relevant.

In Section 3, we give an equivalent norm for the Sobolev spaces
H1

0 (R3 \ {0}) and H1
0,X0

(R3 \ Γ). In particular, this shows the equiva-

lence between H1
0 (R3 \ {0}) and the weighted Sobolev spaces studied in

[2].

2. Brill data

The purpose of this section is to define a class of axially symmetric
initial data sets. We will call it the Brill class because it is inspired in
Brill’s positive mass proof for axially symmetric data [5]. The point
in this definition is that in this class the total mass satisfies the lower
bound given by Theorem 2.2.

Axial symmetry implies certain local conditions on the fields hij and
Kij . Let us consider first the metric hij . For any axially symmetric
metric, there exists a coordinate system (ρ, z, ϕ) such the metric has
locally the following form

(18) h = e(x−2q)(dρ2 + dz2) + ρ2ex(dϕ+Aρdρ+Azdz)
2,

where the functions x, q, Aρ, Az do not depend on ϕ. In these coordi-
nates, the axial Killing vector is given by η = ∂/∂ϕ and its norm is
given by

(19) X = ex+g,

where g is given by (9).
Let Kij be a solution of equation (1) such that it satisfies (6). Define

the vector Si by

(20) Si = Kijη
j −X−1ηiKjkη

jηk,
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where ηi = hijη
j . Then, define Ki by

(21) Ki = ǫijkS
jηk,

where ǫijk is the volume element of hij . Using equations (1), (6) and
the Killing equation (5) we obtain

(22) D[jKi] = 0.

Hence, there exists a scalar function Y such that

(23) Ki =
1

2
DiY.

Summarizing, axial symmetry implies that locally the metric has the
form (18) and there exists a potential Y for the second fundamental
form.

Definition 2.1. We say that an initial data set (hij ,Kij , S) for the
Einstein vacuum equations is a Brill data set if it satisfies the following
conditions.

i) S = R
3 \∑N

k=1 ik where ik are points in R
3 located at the axis

ρ = 0 of R
3.

ii) The coordinates (ρ, z, ϕ) form a global coordinate system on S
and the metric hij is given by (18). The functions x, q, Aρ, Az are
assumed to be smooth in S. The functions x and q satisfy

x = o(r−1/2), ∂x = o(r−3/2),(24)

q = o(r−1), ∂q = o(r−2)(25)

as r → ∞, and

x = o(r
−1/2
(k) ), ∂x = o(r

−3/2
(k) ),(26)

q = o(r−1
(k)), ∂q = o(r−2

(k))(27)

as r(k) → 0. r(k) is the euclidean distance to the end point ik.

Let Γ′ be defined as Γ′ = Γ \
∑N

k=1 ik. We assume that

(28) q|Γ′ = 0.

iii) The second fundamental form satisfies

(29) £ηKij = 0, K = 0.

The corresponding potential Y is a smooth function on S such
that

(30)

∫

R3

|∂Y |2e−2x−2g dµ <∞.
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Let us analyze the definition of Brill data. Condition (i) implies that
S is Euclidean at infinity with N + 1 ends. In effect, for each ik, take a
small ball Bk of radius r(k), centered at ik, where r(k) is small enough
such that Bk does not contain any other ik′ with k′ 6= k. Take BR, with
large R, such that BR contains all points ik. The compact set K is given
by K = BR \∑N

k=1Bk and the open sets Uk are given by Bk \ ik, for
1 ≤ k ≤ N , and U0 is given by R

3\BR. Our choice of coordinates makes
an artificial distinction between the end U0 (which represent r → ∞)
and the other ones. This is convenient for our purpose because we want
to work always at one fixed end.

The fall off conditions (24)–(25) imply that the metric is asymptot-
ically flat at the end U0 (i.e., it satisfies the conditions given in [2],
[13]). At the other ends, the fall off conditions (26)–(27) are more gen-
eral; they include the standard asymptotically flat fall off and they also
include the fall off of the extreme Kerr initial data.

In a Brill data set there are two geometrical scalar functions, the
norm of the Killing vector X and the potential Y which is related to
the twist of the Killing vector (also called the Ernst potential [23]).
These scalars are well defined in the four dimensional spacetime which
results as the evolution of the data. In contrast, the function x depends
on a choice of coordinates on the data.

The total mass is essentially contained in the 1/r part of the confor-
mal factor x, due to our assumption on q.

The angular momentum is determined by the potential Y in the fol-
lowing way. Define the intervals Ik, 0 < k < N , to be the open sets in
the axis between ik and ik−1; we also define I0 and IN as z < i0 and
z > iN respectively. That is, Γ′ = ∪N

k=0Ik. Since g is singular at the
axis, the assumption (30) implies that the gradient ∂Y must vanish at
each Ik and hence Y is constant at Ik. If Y is a smooth function on R

3,
this of course implies that Y is constant at the whole axis. However, as
we will see, in order to have a non zero angular momentum, Y cannot
be continuous at the end points ik.

Let Σk be a closed surface that encloses only the point ik. From
equation (7) we deduce

(31) Jk ≡ J(Σk) =
1

8

(

Y |Ik
− Y |Ik−1

)

,

where Jk is the total angular momentum of the end ik. The total angular
momentum of the end r → ∞ is given by

(32) J =
1

8
(Y |I0 − Y |IN

) ,
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which is equivalent to

(33) J =
N
∑

k=1

Jk.

Finally, let us discuss the restrictions involved in Definition 2.1 with
respect to general asymptotically flat, axisymmetric, complete and vac-
uum data. Locally, there is no restriction on the metric and the only
restriction on the second fundamental form is the maximal condition
K = 0. Globally, we have assumed a particular topology on the compact
core K of the asymptotically flat manifold S. Also, we have assumed
that the metric has globally the form (18). The fall off conditions (24)
for x are a consequence of the standard definition of asymptotically flat-
ness; however, the fall off conditions (25) for q are an extra assumption.
Condition (28) for q on the axis is a consequence of the regularity of the
metric at the axis, and hence it is not a restriction.

The fundamental property of Brill data is the following:

Theorem 2.2. The total mass m of a Brill data satisfies the following

inequality

(34) m ≥ M(x, Y ),

where M(x, Y ) is given by (10).

This theorem extends Brill original proof [5] in two ways. First,
it allows for non zero A in the metric (18). This generalization was
recently given in [25], and we use this result in the following proof. The
second extension is that the topology of the data is non trivial; this was
introduced in [21]. In particular, this includes the topology of the Kerr
initial data. It is important to recall that we are not introducing any
inner boundary. The mass is obtained as an integral over S, that is, an
integral over all the asymptotic regions (see the discussion in [21]).

Proof. Under our decay assumptions on q, we have that the total
mass of a Brill data is given by

(35) m = − 1

8π
lim

R→∞

∮

∂BR

∂rx ds.

The Ricci scalar R of the metric hij is given by (see [25])

(36) −1

8
Re(x−2q) =

1

4
∆x+

1

16
|∂x|2 − 1

4
∆2q +

1

16
ρ2e2q(Aρ,z −Az,ρ)

2,

where ∆ is the Laplacian in R
3 and ∆2 is the 2-dimensional Laplacian

(37) ∆2q = q,ρρ + q,zz.

We want to integrate (36) over R
3. Let us analyze each term individu-

ally. Consider the first term in the right hand side of (36). To perform
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the integral, we take the compact domain K defined above, and we have

(38)

∫

K
∆x dµ =

∫

∂K

∂x

∂n
ds,

where ∂/∂n denotes a normal derivative. The boundary ∂K is formed
by the boundaries ∂Bk and ∂BR. Using the decay condition (26), we
get that the contribution of ∂Bk vanishes in the limit r(k) → 0. Using
(35), we get that the contribution of ∂BR in the limit R → ∞ is the
mass.

Take the Ricci scalar in the left hand side of (36). We use the hy-
pothesis that the data have K = 0 and the constraint equation (2) to
get

(39) R = KijK
ij .

We will get a lower bound to the left hand side of (39). The metric (18)
can be written in the following form:

(40) hij = qij +X−1ηiηj ,

where qij is a positive definite metric in the orbit space. Using this
decomposition we get

(41) KijK
ij = KijKkfqikqjf +X−2(Kijηiηj)

2 + 2X−1KijKkfηiηkqjf .

The first two terms in the right hand side of this equation are positive
defined. Using the definitions (20) and (21), the last term can be written
as follows:

KijKkfηiηkqjf = SiSi(42)

=
1

X
KiKi(43)

=
1

4X
DiY DiY(44)

=
1

4X
|∂Y |2e−x+2q.(45)

Then we get

(46) Re(x−2q) ≥ 1

2X2
|∂Y |2.

Take the term ∆2q in (36). Let Kδ be the cylinder ρ ≤ δ and consider
the following domain Aδ = K \Kδ. We integrate over Aδ and then take
the limit δ → 0. The integral over Aδ can be written in the following
form

∫

Aδ

∆2q dµ = 4π

∫

Aδ

dρ dz (q,ρρ + q,zz)ρ,(47)

= 4π

∫

Aδ

dρ dz ((ρq,ρ − q),ρ + (ρq,z),z) .(48)
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We use the divergence theorem in two dimensions to transform this
volume integral in a boundary integral, that is

(49)

∫

Aδ

dρ dz ((ρq,ρ − q),ρ + (ρq,z),z) =

∮

∂Aδ

V̄ · n̄ ds̄,

where n̄ is the 2-dimensional unit normal, ds̄ is the line element of the
1-dimensional boundary, and V̄ is the 2-dimensional vector given in
coordinates (ρ, z) by

(50) V̄ = ((ρq,ρ − q), (ρq,z)).

By (28) and the assumption that q is smooth on S (and hence the
derivatives q,ρ and q,z are bounded at Γ′) we have that the vector V
vanishes at Γ′. Then, using (47) and (49) we get

(51) lim
δ→0

∫

Aδ

∆2q dµ =

∮

∂K
V̄ · n̄ ds̄.

We now take the limit R → ∞ and r(k) → 0. We use the decay condi-
tions (25) and (27) to obtain

(52)

∫

R3

∆2q dµ = 0.

Since the last term in (36) is positive, collecting these calculations we
get (34). q.e.d.

Since the data should satisfy the constraint equations (1)–(2), it is
not obvious that we can construct non trivial examples of Brill data.
One can easily check that Schwarzschild data in isotropic coordinates
is in the Brill class. Other explicit examples are Brill-Lindquist data
and the Kerr black hole data (i.e., Kerr data with parameters such that
inequality (8) is satisfied), see [21].

Let us discuss a general procedure to construct a rich family of Brill
data. For simplicity, we will assume that A = 0 in equation (18).
Consider the metric

(53) h̃ij = e−2q(dρ2 + dz2) + ρ2dϕ2.

This metric will be used as a conformal background for the physical
metric hij , that is, hij = exh̃ij . We will take q in (53) and the potential
Y as given functions.

We first discuss how to construct solutions of the momentum con-
straint (1) from an arbitrary potential Y , and how to prescribe the
angular momentum of the solution. Consider the following tensor

(54) K̃ij =
2

ρ2
S̃(iηj),

where

(55) S̃i =
1

2ρ2
ǫ̃ijkηjD̃kY,
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ǫ̃ijk denotes the volume element with respect to h̃ij and D̃ is the con-

nexion with respect to h̃ij . The indices of the tilde quantities are moved

with h̃ij and its inverse h̃ij . The tensor K̃ij is symmetric, trace free,
and satisfies (see, for example, the appendix in [19])

(56) D̃iK̃
ij = 0.

Hence, for an arbitrary function Y we get a solution of equation (56)
given by (54). This, essentially, provides a solution of the momentum
constraint (1).

To control the angular momentum of the data, we will prescribe the
behavior of Y near the axis in the following way. Take spherical coordi-
nates (r(k), θ(k)) centered at the end point ik and consider the following
function

(57) Ȳk = 2Jk(cos3 θ(k) − 3 cos θ(k)),

where Jk are arbitrary constants. The normalization factor is chosen to
be consistent with equation (31). Define

(58) Ȳ =
N
∑

k=0

Ȳk.

Let Y = Ȳ + y, where y vanishes at the axis. Then, the angular mo-
mentum of Y at the ends ik is given by the free constants Jk in Ȳ .

We discuss now the conditions on the function q. Define the Yamabe
number of h̃ij to be

(59) λ = inf
06=ϕ∈C∞

0
(S)

∫

R3

(

8D̃iϕD̃iϕ+ R̃ϕ2
)

dµh̃
∫

R3 ϕ6 dµh̃

.

In order to construct a Brill data, the metric h̃ij should satisfy the
condition λ > 0, as we will see in the following theorem:

Theorem 2.3. Let q ∈ C∞
0 (S) such that λ > 0 and let Y = Ȳ + y,

where Ȳ is given by (58) and y ∈ C∞
0 (R3 \ Γ). Then, there exists a

function x such that

(60) hij = exh̃ij , Kij = e−x/2K̃ij

define a Brill data set, where h̃ij is given by (53) and K̃ij is given by

(54).

This theorem was proved in [6] and [7] (see also the correction in
[30] of this article). There exists a more general version of the theorem
[12], [31]. We have assumed that the functions involved have compact
support in order to simplify the assumptions, but decay conditions are
also possible.
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Sketch of proof. What follows is the rewriting of our setting in terms
of the one used in these references. To simplify the discussion, let us
follow the existence theorem in section VIII of [12].

Define the function ψ0 by

(61) ψ0 =
N
∑

k=1

1 +
1

r(k)
.

Consider the metric defined by the following conformal rescaling

(62) ĥij = ψ4
0h̃ij .

One can easily check that this metric is asymptotically flat with N + 1
ends. Moreover, the Yamabe number of the metric ĥij is the same as
the the one for hij because, by construction, it is a conformally invariant

quantity. Then, ĥij is in the positive Yamabe class. Hence, we can apply
the above mentioned theorem to conclude that there exists a solution
of the Lichnerowicz equation

(63) D̂iD̂iψ − R̂

8
= K̂ijK̂ijψ

−7,

such that ψ → 1 at the end point ik. Where K̂ij is given by K̂ij =

ψ−2
0 K̃ij with K̃ij given by (54), hat quantities are defined with respect

to the metric ĥij and the indices are moved with this metric and its
inverse.

Define x to be ex = (ψψ0)
4. Then it follows, by the standard con-

formal transformation formulas, that (60) define a solution of the con-
straint equations (1)–(2).

The singular part of x is given by ψ0, and at the end point ik we have

(64) x = O(−4 log r(k)), ∂x = O(r−1
(k)),

which is consistent with (24). q.e.d.

It remains to show how to achieve the condition λ > 0. This is given
by Theorem 4.2 in [7]. Applying this theorem to the present case we
get (see also [32]):

Theorem 2.4. Let q0 ∈ C∞
0 (S) and set q = Cq0, where C is a

constant. Then, for C small enough, we have λ > 0.

A simple but non trivial choice for q which satisfies λ > 0 is q =
0. This gives conformally flat solutions for the constraint equations.
These kinds of solutions are extensively used in numerical simulations
for black hole collisions (see the review article [16]). Two examples are
the Bowen-York spinning data [4] and the data discussed in [22].

The definition of Brill data is tailored to the hypothesis of Theorem
2.2. However, in order to prove Theorem 1.2 we need to impose more
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conditions. More precisely, we assume the following. Define y = Y − Ȳ0

and α = x− x0 where Ȳ0 and x0 are given by (11).

Condition 2.5. We assume y ∈ H1
0,X0

(R3 \ Γ) and α−, X−1
0 y ∈

L∞(R3) and X−1
0 y → 0 as r → ∞.

The conditions on y imply that y vanishes at the axis Γ and hence
there exists only one end with non trivial angular momentum. The lo-
cation of this end is fixed by the function Ȳ0. However, let us emphasize
that the data can have extra ends as long as they have zero angular
momentum.

We have also assumed that α− ∈ L∞(R3). This implies an extra
restriction on the behavior of x near the ends. In Definition 2.1 we have
assumed the fall off behavior (26) of x near the ends, on the other hand
for extreme Kerr we have x0 = −2 ln r + O(1) near r → 0. A relevant
class of fall conditions that satisfies both (26) and α− ∈ L∞(R3) is given
x = −β ln r+O(1) near r → 0, for β ≥ 2. In particular, this includes the
asymptotically flat ends β = 4 described in Theorem 2.3 (see equation
(64)).

Let us discuss important examples of Brill data that satisfies Condi-
tion 2.5. First, extreme Kerr data. In this case, we have α = 0 and
y = y0 = Y0−Ȳ0. In the appendix we prove that the function y0 satisfies
the assumptions in 2.5. Second, non-extreme Kerr black hole data (for
the explicit form of the functions X and Y for these data see the appen-
dix of [21]). These data are asymptotically flat at the end r → 0 and
hence, by the discussion above, we have α− ∈ L∞(R3). Using a com-
putation similar to the one presented for extreme Kerr in the appendix,
we conclude that the function y also satisfies 2.5. Finally, two other
examples of Brill data that satisfy Condition 2.5 are the Bowen-York
data for only one spinning black hole (i.e., Y = Ȳ0 and q = 0) and the
data constructed in [22] in which Y = Y0 and q = 0.

3. Global Minimum

The crucial property of the mass functional defined in (10) is its
relation to the energy of harmonic maps from R

3 to the hyperbolic plane
H

2: they differ by a boundary term. Let g be an arbitrary harmonic
function on a domain Ω in R

3. Define the mass functional over Ω as

(65) MΩ =
1

32π

∫

Ω

(

|∂x|2 + e−2x−2g|∂Y |2
)

dµ.

Then, using that g is harmonic, we find the following identity

(66) MΩ = M′
Ω −

∮

∂Ω

∂g

∂n
(g + 2x) ds,
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where M′
Ω is given by

(67) M′
Ω =

1

32π

∫

Ω

( |∂X|2 + |∂Y |2
X2

)

dµ,

and we have defined the function X by

(68) X = eg+x.

The functional M′
Ω defines an energy for maps (X,Y ) : R

3 → H
2 where

H
2 denotes the hyperbolic plane {(X,Y ) : X > 0}, equipped with the

negative constant curvature metric

(69) ds2 =
dX2 + dY 2

X2
.

The Euler-Lagrange equations for the energy M′
Ω are given by

∆ logX = −|∂Y |2
X2

,(70)

∆Y = 2
∂Y ∂X

X
.(71)

The solutions of (70)–(71), i.e., the critical points of M′
Ω, are called

harmonic maps from R
3 → H

2. Since MΩ and M′
Ω differ only by a

boundary term, they have the same Euler-Lagrange equations.
Harmonic maps have been intensively studied; in particular, the Di-

richlet problem for target manifolds with negative curvature has been
solved [27], [35], [34]. However, these results do not directly apply in
our case because the equations are singular at the axis. In effect, the
function X represents the norm of the Killing vector (see equation (19))
which vanishes at Γ′, and this function appears in the denominator of
equations (70)–(71). This singular behavior implies that the energy of
the harmonic map is infinite as it can be seen from equation (67).

Solutions of equations (70)–(71), with this type of singular behavior
at the axis, represent vacuum, stationary, axially symmetric solutions
of Einstein equations. This equivalence was discovered by Carter [11]
based in the work of Ernst [23]. The relation between the stationary,
axially symmetric equations and harmonic maps was discovered much
later by Bunting (the original work by Bunting is unpublished, see [9]).
In General Relativity, equations (70)–(71) are important because they
play a central role in the black hole equilibrium problem (see [9] and the
review articles [14], [10]). Motivated by this problem, G. Weinstein in a
series of articles, [39], [40], [41], [42], [44], [43] (see also [29]), studied
the Dirichlet problem for harmonic maps with prescribed singularities
of this type. Weinstein’s work will be particularly relevant here; let us
briefly describe it.

Weinstein constructs solutions of (70)–(71) which represent station-
ary, axially symmetric, black holes with disconnected horizons. To prove
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the existence of such solutions, he defines the energy MΩ, with an ap-
propriate harmonic function g. This energy plays a role of an auxiliary
functional in order to “regularize” the singular energy M′

Ω of the har-
monic map. The solution is a minimum of MΩ and the existence is
proved with a direct variational method.

Our problem is related: we have a solution of (70)–(71) (i.e., the
extreme Kerr solution given by (11)–(12)) and we want to prove that
it is a unique minimum of M. There exist, however, two important
differences from Weinstein’s work.

The first one, which is a simplification, is that we do not want to
prove existence of a solution. We already have an explicit solution; we
just want to prove that it is a minimum.

The second difference, which introduces a difficulty, is that we deal
with the extreme Kerr solution. Extreme means that m =

√

|J |, where
m is the mass and J the angular momentum of the black hole; this
definition can be also extended for multiple black holes (see [41]). This
is a degenerate limit for black hole solutions, and it is excluded in the
hypotheses of Weinstein existence theorems. Hence, these results do not
directly apply to our case.

The extreme limit presents important peculiarities with respect to
the non extreme cases. Remarkably enough, in this case (and only in
this case) the functional M is the mass of the black hole (see [21]). In
the non extreme cases, the functional defined by Weinstein is not the
same as our definition because the choice of the harmonic function g
is different. In particular, if we take the extreme limit of the Wein-
stein functional for one Kerr black hole, we get zero and not the total
mass. Perhaps, Weinstein’s functional describes the interaction energy
of multiple black holes and this is related to the non zero force between
them. The existence of this force in the general case is an open ques-
tion. This question is relevant for the black hole uniqueness problem
with disconnected horizons.

Another peculiarity of the extreme case is that the relevant manifold
is complete without boundary; in the non extreme case the manifold has
an inner boundary: the horizon of the black hole (there is no horizon in
the extreme Kerr black hole).

Let us give the main ideas of the proof of Theorem 1.2. Theorems
3.1 and 3.2 establish that extreme Kerr is the unique minimum in an
annulus centered at the origin, with appropriate boundary conditions.
The choice of the domain is important to avoid the singularity of the
extreme Kerr solution at the origin (this is the main technical differ-
ence with the non extreme case). These two theorems are analogous
to Proposition 1 and Proposition 3 of [40] and use similar techniques.
The main idea in the proof of Theorem 3.1 is the a priori bounds found
by Weinstein. In Theorem 3.3 we prove a uniqueness result for extreme
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Kerr in the whole domain R
3 under appropriate decay conditions. This

theorem is interesting by itself. Finally, to prove Theorem 1.2, we cover
R

3 with annulus and use a density argument together with the previ-
ous theorems. This argument will work because we know a priori the
solution in R

3. This is an important point: in this theorem we are not
proving the existence of the extreme Kerr solution. Note that in [40],
Theorem 1, where the existence of solution for the non extreme cases
was proved, this proof requires the a priori bounds given by Proposition
2, which are not valid in the extreme case.

Let BR be a ball of radius R in R
3 centered at the origin. We define

the annulus A = BR \Bǫ, where R > ǫ > 0 are two arbitrary constants.
Let H1

0 (A) be the standard Sobolev space on A, that is, the closure of
C∞

0 (A) under the norm

(72) ‖α‖1;A =

(
∫

A
|∂α|2 dµ

)1/2

.

And define the weighted Sobolev space H1
0,h(A) to be the closure of

C∞
0 (A \ Γ) under the norm

(73) ‖y‖1,h;A =

(
∫

A
e−2g|∂y|2 dµ

)1/2

.

Since the function x0 is smooth on A, the norm (73) is equivalent to the
norm (15) restricted to A.

Theorem 3.1. Consider the functional defined by (65) on the an-

nulus A, with g = 2 log ρ. Let x0 and Y0 be the extreme Kerr solution

given by (11). Then, there exist

(74) α0 ∈ H1
0 (A), y0 ∈ H1

0,h(A),

such that

(75) MA(x0 + α, Y0 + y) ≥ MA(x0 + α0, Y0 + y0),

for all α ∈ H1
0 (A) and y ∈ H1

0,h(A). Moreover, the minimum (α0, y0)
satisfies

(76) α0 ∈ L∞(A), e−gy0 ∈ L∞(A),

and the functions

(77) X = eg+x0+α0 , Y = Y0 + y0,

define a harmonic map from (X,Y ) : A \ Γ → H
2; that is, they satisfy

equations (70)–(71) on A \ Γ.

Remark. The choice of the domain is important because the function
x0 is not bounded at the origin. The proof fails if the domain includes
the origin.
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Proof. Define

(78) m0 = inf
α∈H1

0
(A), y∈H1

0,h(A)
MA(α, y).

Since M is bounded below, m0 is finite. Note that the functional MA

is not bounded for arbitrary functions in H1
0 (A) ×H1

0,h(A).

Let (αn, yn) be a minimizing sequence, that is

(79) MA(αn, yn) → m0 as n→ ∞.

To prove the existence of a minimum we will prove that there exists
some subsequence of (αn, yn) which converges to an actual minimizer
(α0, y0). To prove this, we will show that for every minimizing sequence
it is possible to construct another minimizing sequence such that αn is
uniformly bounded. Then, the existence of a convergent subsequence
follows from standard arguments (see [39]).

We define xn, Yn by

(80) xn = x0 + αn, Yn = Y0 + yn.

We first obtain a lower bound for xn. Let

(81) C1 = min
∂A

x0,

the constant C1 depends on R and ǫ, in particular C1 → ∞ as ǫ → 0
because x0 is singular at the origin. This is the reason why the proof fails
if the domain includes the origin. Given (xn, yn), define a new sequence
(x′n, yn) as x′n = max{xn, C1}. Then one can check that M(α′

n, yn) ≤
M(αn, yn). Moreover, α′

n ∈ H1
0 (A). This gives lower bounds for α′

n on
A:

(82) α′
n ≥ C1 − x0 ≥ C1 − max

A
x0 = C ′

1.

Using this lower bound, we want to prove that the minimizing sequence
can be chosen such that αn ∈ C∞

0 (A) and yn ∈ C∞
0 (A \ Γ). This is an

important step in the proof, it will be used in the following to calculate
boundary integrals that are not defined for generic functions in H1.
Also, it plays an essential role in the proof of Theorem 1.2.

Define the set H as the subset of H1
0 (A) such that the lower bound

(82) is satisfied. The functional MA is bounded for all functions y ∈
H1

0,h(A) and α ∈ H. By definition, for every α ∈ H1
0 (A) and y ∈ H1

0,h(A)

there exists a sequence αn ∈ C∞
0 (A) and yn ∈ C∞

0 (A \ Γ) such that
αn → α and yn → y as n→ ∞ in the norms (72) and (73) respectively.
If α ∈ H, then by Lemma 5.1, we can take αn such that αn ∈ H for all
n. For such a sequence, we claim that

(83) lim
n→∞

MA(αn, yn) = MA(α, y).

To prove this we compute

(84) |MA(αn, yn) −MA(α, y)| ≤ I1 + I2,
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where

I1 =
1

32π

∫

A

∣

∣|∂xn|2 − |∂x|2
∣

∣ dµ,(85)

I2 =
1

32π

∫

A
e−2g

∣

∣e−2xn |∂Yn|2 − e−2x|∂Y |2
∣

∣ dµ.(86)

For I1 we have

I1 =
1

32π

∫

A
|∂(xn + x) · ∂(xn − x)| dµ,(87)

≤ 1√
32π

(

M1/2
A (αn, yn) + M1/2

A (α, y)
)

‖α− αn‖1;A,(88)

where in the last line we have used Hölder inequality. The first factor in
the right hand side of (88) is bounded for all n and αn → α in H1

0 (A),
and we obtain that I1 → 0 as n→ ∞.

A similar computation for I2 leads to

I2 =
1

32π

∫

A
e−2g

∣

∣

(

e−xn∂Yn + e−x∂Y
)

·
(

e−xn∂Yn − e−x∂Y
)
∣

∣ dµ(89)

≤ 1√
32π

(

M1/2
A (αn, yn) + M1/2

A (α, y)
)

(I2,1 + I2,2) ,(90)

where

I2,1 =

(
∫

A
e−2g−2x0 |∂Y |2

∣

∣e−αn − e−α
∣

∣

2
dµ

)1/2

,(91)

I2,2 =

(
∫

A
e−2g−2x0−2αn |∂(y − yn)|2 dµ

)1/2

.(92)

The function x0 is positive on A, so it can be trivially bounded by
e−2x0 ≤ 1 and hence suppressed from the definitions of I2,1 and I2,2.
However, for later use in the proof of Theorem 1.2, we keep it in equa-
tions (91)–(92).

We have αn ∈ H, thus the integrand in I2,1 is bounded by a summable
function for all n. Since αn → α a.e. we can apply the dominated
convergence theorem to conclude that I2,1 → 0 as n → ∞. For I2,2 we
use again that αn ∈ H to bound the exponential factor e−αn for all n,
and then the assumption yn → y in H1

0,h(A) to conclude that I2,2 → 0

as n→ ∞. Hence, we have proved (83).
Let αk ∈ H1

0 (A), yk ∈ H1
0,h(A) be a minimizing sequence. Let αk,n ∈

C∞
0 (A) and yk,n ∈ C∞

0 (A \ Γ) such that αk,n → αk and yk,n → yk as
n→ ∞. Then we have

(93) |MA(αk,n, yk,n) −m0|
≤ |MA(αk,n, yk,n) −MA(αk, yk)| + |MA(αk, yk) −m0|.
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For an arbitrary ǫ, by (78), there exists k such that

(94) |MA(αk, yk) −m0| ≤ ǫ/2.

For this k, by (83), there exists n such that

(95) |MA(αk,n, yk,n) −MA(αk, yk)| ≤ ǫ/2.

Hence, we conclude that

(96) m0 = inf
k,n∈N

MA(αk,n, yk,n).

In order to obtain upper bounds, we exploit the symmetries of the
hyperbolic plane. Define the following inversions

X̄ =
X

X2 + Y 2
,(97)

Ȳ =
Y

X2 + Y 2
.(98)

We have (see [39])

(99)
|∂X|2 + |∂Y |2

X2
=

|∂X̄|2 + |∂Ȳ |2
X̄2

.

Let ḡ be an arbitrary harmonic function, and define x̄ by

(100) X̄ = eḡ+x̄.

Using equations (66) and (99), we obtain the following identity

(101) MA = M̄A +

∮

∂A

(

∂ḡ

∂n
(ḡ + 2x̄) − ∂g

∂n
(g + 2x)

)

ds,

where M̄A = MA(x̄, Ȳ ).
Take g = ḡ. Denote by Kδ the cylinder ρ ≤ δ. Since g is singular on

the axis, in order to perform the integrals we will consider the domain
Aδ = A \Kδ for some small δ > 0 and then take the limit δ → 0. The
boundary integral in (101) reduces to

(102) CA = lim
δ→0

∮

∂Aδ

2
∂g

∂n
(x̄− x) ds.

From (97) and (100) we deduce

(103) x̄− x = − log(e2g+2x + Y 2).

Then we have

(104) lim
ρ→0

(x̄− x) = −2 log |J |,

where we have used that y ∈ C∞
0 (A \ Γ) and Y 2 = Y 2

0 = 4J2 at Γ. We
assume J 6= 0, the case J = 0 is trivial. Hence we obtain

(105) MA = M̄A + CA,
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where

(106) CA = −16π(R− ǫ) log(4J2) −
∮

∂A
2
∂g

∂n
log(e2g+2x0 + Y 2

0 ) ds.

The important point is that CA is finite.
We can use the same argument as above to obtain lower bound for

the function x̄ in A. Take

(107) C2 = min
∂A

x̄ = min
∂A

{x0 − log(e2g+2x0 + Y 2
0 )}.

As in the case of C1, here we also have that C2 → ∞ as ǫ → 0. Note
that C2 and C1 are independent of α and y.

As before, we can define a new function x̄′ = max{x̄, C2}, and the
energy of x̄′ is less or equal the energy of x̄. Then x̄′ ≥ C2. In the
following we redefine x̄′ by x̄. From (97) we have

(108) X̄ ≤ 1

X
,

and then

(109) ex ≤ e−2g−x̄ ≤ e−2g−C2 ,

in A. Also, from (97) we have

(110) X̄ ≤ X

Y 2
,

and then we deduce

(111) Y 2 ≤ e−2g−2C2 .

We have obtained the bounds (109) and (111) which are singular at
the axis. To get bounds in a neighborhood of the axis we will split this
neighborhood in two disconnected domains: the upper part and the
lower one. More precisely, fix δ > 0 (we emphasize that in this case we
will not take the limit δ → 0 as before), define K+ = A ∩Kδ ∩ {z ≥ ǫ}
and K− = A ∩Kδ ∩ {z ≤ ǫ}; see Figure 1. We will obtain estimates for
K+ and K− independently.

On K+ we define the following modified inversions

X̄ =
X

X2 + (Y + 2J)2
,(112)

Ȳ =
Y

X2 + (Y + 2J)2
.(113)

Take ḡ = −g and integrate (101) over K+. The boundary term is given
by

(114) CK+
= −2

∮

∂K+

∂g

∂n
(x̄+ x) ds,

where

(115) x̄ = − log
(

ex + e−2g−x(Y + 2J)2
)

.
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A

ǫ

δ

Γ

R

K+

K−

∂1

∂1

∂2 ∂2

Figure 1. Domains.

We want to prove that CK+
is finite and the difficulty is of course that

g is singular at Γ. We decompose the boundary ∂K+ into two pieces.
The first one intersects the axis and is given by ∂1 = ∂K+ ∩ ∂A, and
the second does not intersect the axis and is given by ∂2 = ∂K+ ∩ ∂Kδ;
see Figure 1. On ∂2 the function g is regular and hence the integral is
finite. On ∂1 we have y = α = 0. Using that y vanishes near the axis
and the following limit

(116) lim
ρ→0

e−2g(Y0 + 2J)2 = 0,

we conclude that the integral is also finite in this piece of the boundary.
Equation (116) is in fact the reason why in equations (112)–(113) we
have modified the inversions (97)–(98) with the extra term 2J .

We can use now the same idea as before to obtain upper bounds. Set

(117) C3 = min
∂K+

x̄ = min
∂K+

{− log(ex + e−2g−x(Y0 + 2J)2}.

By (116) we have that this constant is finite. Then, we get that x̄ ≥ C3

in K+ and we can use the inversion to get upper bounds for x in K+.
However, here C3 does depend on α and y because these functions do
not vanish on ∂2. The key point is that nevertheless we can get lower
bounds to C3 which does not depend on α and y. In order to do this we
will use the previously defined constants C2 and C1. The estimates are
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done in ∂1 and ∂2 independently. We decompose C3 = C1
3 + C2

3 where

C1
3 = min

∂1
{− log(ex0 + e−2g−x0(Y0 + 2J)2},(118)

C2
3 = min

∂2
{− log(ex + e−2g−x(Y + 2J)2}.(119)

The constant C1
3 does not depend on α and y. For C2

3 we use the
previous estimate (109)

(120) C2
3 ≥ Ĉ2

3 ,

where

(121) Ĉ2
3 = − log

[

δ−4
(

(e−C2 + e−C1(2δ−4e−2C2 + 8J2)
)]

does not depend on α and y. Then, we conclude that C3 ≥ C1
3 + Ĉ2

3 .
Hence, on K+ we have

(122) ex ≤ e−x̄ ≤ e−C3 ≤ e−(C1
3
+Ĉ2

3
),

and

(123) (Y + 2J)2 ≤ e−2C3e2g ≤ e−2(C1
3
+Ĉ2

3
)e2g.

From (123), using |a| − |b| ≤ |a + b|, we obtain that e−gy is bounded.
A similar procedure can be used for K−, replacing J by −J in the
inversions (112)–(113). q.e.d.

We now turn to uniqueness. Let (X1, Y1) and (X0, Y0) be two points
in H

2. The distance d between these points in H
2 is given by (see, for

example, [3])

(124) cosh d = 1 + δ,

where

(125) δ =
1

2

(X1 −X0)
2 + (Y1 − Y0)

2

X1X0
.

In our case, (X,Y ) defines a map (X,Y ) : R
3 → H

2, hence d defines a
function d : R

3 → R. Assume that (X1, Y1) and (X0, Y0) are harmonic
maps; we then have the following two fundamental inequalities proved
in [36]

(126) ∆d2 ≥ 0,

and

(127) ∆σ ≥ 0,

where σ =
√

1 + d2. These inequalities constitute the basic ingredient
in the uniqueness proof.

Following [39], we deduce from (126)

(128) ∆δ ≥ 0,
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because δ is a convex function of d2. Note that δ has a simpler expression
in terms of X,Y than d.

Uniqueness proofs for the harmonic map equations (70)–(71) con-
stitute a fundamental step in the black hole uniqueness theorems in
General Relativity. The first result in this subject was proved by Carter
[8] at the linearized level. Robinson [33] obtained an identity for equa-
tions (70)–(71) which lead to the first uniqueness proof. The content
of the Robinson identity is essentially given by (128). However, Robin-
son discovered this identity independently of (126). We emphasize that
(126) implies (128) but the converse is not true.

In the context of black hole theory, (126) is called the Bunting identity
(see equation (6.48) in [9]). This identity is not only more general than
the Robinson one but allows to extend the uniqueness proof to the
charged case.

The following uniqueness theorem in based on (128).

Theorem 3.2. The solution found in Theorem 3.1 is unique and is

given by (0, 0).

Proof. Let (X0, Y0) be the extreme Kerr solution and let (X1, Y1) be
another solution of the harmonic map equations (70)–(71) on A \ Γ,
which satisfies (77), (74) and (76).

As usual, let x0 and x1 be given by

(129) X0 = eg+x0 , X1 = eg+x1 ,

and define

(130) y = Y1 − Y0, α = x1 − x0.

Let δ be given by (125) and set

(131) δ = δx + δy,

where

(132) δx = coshα− 1, δy =
1

2
y2e−2g−2x0−α.

Note that by hypothesis δ = 0 on ∂A.
Below, we will prove that δ ∈ H1(A). Let us assume that this is true.

Since δ satisfies (128) in A\Γ we can apply Lemma 5.3 to conclude that
(128) is satisfied in A. Hence, we can use the weak maximum principle
for weak solutions (see [26]) in A. The function δ is non negative in A
and vanishes at the boundary, so the weak maximum principle implies
that δ = 0 in A and hence the conclusion follows.

It remains to prove that δ ∈ H1(A). In fact we will prove a stronger
result: δ ∈ H1(A) ∩ L∞(A). Recall that x0 and α are bounded on A.
Then, it follows that δx ∈ L∞(A). From (132) we get

(133) ∂δx = sinhα∂α;
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since α ∈ H1(A) it follows that δx ∈ H1(A).
Consider δy. Since x1 and e−gy are bounded in A, we conclude that

δy ∈ L∞(A). Its derivative is given by

(134) ∂δy = y∂ye−2g−2x0−α − y2(∂g + ∂x0 +
1

2
∂α)e−2g−2x0−α.

Then, we have

(135) |∂δy|2 ≤ C

(

|∂y|2e−2g + (|∂x0|2 +
1

2
|∂α|2) − y4e−4g|∂h|2

)

,

where the constant C depends only the L∞ norm of α, x0 and ye−g.
When we perform the integral, the first three terms are bounded since
y ∈ H1

0,X0
(R3 \ Γ) and α, x0 are in H1(A). For the last term we use a

Poincaré type inequality (see Lemma 1 of [40] and Lemma 2.2 in [18]).
We conclude that δy, and hence δ, is in H1(A) ∩ L∞(A). q.e.d.

Remark. The proof of Theorem 3.2 fails if we extend to the domain
to R

3 because the function δx is not in H1(Bǫ).

In order to extend this theorem to R
3 (or, in other words, in order

to generalize the uniqueness proofs to the extreme cases) we will use
inequality (127) instead of (126) and (128).

It is convenient to have an equivalent expression for d in terms of δ.
A straightforward computation gives

(136) d = 2 log(
√
δ +

√
δ + 2) − log 2,

and hence the following expression for the derivative

(137) ∂d =
∂δ

√

δ(δ + 2)
=

∂δ

sinh d
.

From (136) we deduce the following important inequalities

(138) d ≥ |α|,
where α is given by (130) and

(139) d ≤ |α| + C,

where the constant C depends only on the L∞ norm of δy in R
3.

Let us analyze the derivatives of d2. Using (138) and (137) we obtain

(140) |∂d2|2 ≤ 8d2|∂α|2 + 8d2|∂δy|2.
From this expression we get

(141) |∂σ|2 ≤ 2
(

|∂α|2 + |∂δy|2
)

.

Before proving Theorem 3.3, we give an equivalent norm for the rel-
evant Sobolev spaces.
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Using a Poincaré type inequality (see Theorem 1.3 in [2]), it follows
that the norm (14) on functions in C∞

0 (R3 \ {0}) is equivalent to the
following weighted norm

(142) ‖α‖1 =

(
∫

R3

|∂α|2 dµ
)1/2

+

(
∫

R3

α2

r2
dµ

)1/2

.

Then, the Sobolev space H1
0 (R3 \ {0}) is equivalent to the weighted

Sobolev space W ′1,2
−1/2 studied in [2]. In particular, from (142) we deduce

that if α ∈ H1
0 (R3 \ {0}), then α ∈ H1

loc(R
3). We also mention that the

Sobolev inequality

(143)

(
∫

R3

α6 dµ

)1/6

≤ C

(
∫

R3

|∂α|2 dµ
)1/2

is satisfied for all functions α ∈ H1
0 (R3 \ {0}).

Analogously, we can use another type of Poincaré inequality
(see Lemma 5.4) to obtain an equivalent norm to (15) for functions
in C∞

0 (R3 \ Γ)

(144) ‖y‖1,X0
=

(
∫

R3

X−2
0 |∂y|2 dµ

)1/2

+

(
∫

R3

|∂X0|2
X4

0

y2 dµ

)1/2

.

Theorem 3.3 (Uniqueness of extreme Kerr). Let (X,Y ) be a solution

of the harmonic map equations (70)–(71) in R
3 \ Γ. Define (α, y) by

X = eg+x, Y = Y0 + y, x = x0 + α. Assume that α ∈ H1
loc(R

3),

y ∈ H1
0,X0

(R3 \ Γ), yX−1
0 , α− ∈ L∞(R3) and that α, yX−1

0 → 0 as

r → ∞. Then, α = 0 and y = 0.

Proof. Let us analyze the function δy given by (132). The computa-
tions are similar as in Theorem 3.2; the difference is that here we have
to take care of the singular behavior of the functions at the origin. In
terms of X0, the function δy is given by

(145) δy =
y2e−α

2X2
0

≤ y2e−α−

2X2
0

.

Using the hypothesis yX−1
0 , α− ∈ L∞(R3) we obtain δy ∈ L∞(R3).

Take a ball BR in R
3 and consider the the derivative of δy in BR

(146) ∂δy = e−α

(

y∂y

X2
0

− y2∂α

2X2
0

− y2∂X0

X3
0

)

.

Using our assumptions, we conclude that the first two terms on the right
hand side of equation (146) are in L2(BR). For the third term we use
the assumption yX−1

0 ∈ L∞(R3) and the Poincaré inequality given by
Lemma 5.4. Then, we conclude that δy is in H1(BR).

Using inequality (139) (which holds because we have proved that δy
is bounded) it follows that σ ∈ L2(BR); then, using (141), we obtain
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σ ∈ H1(BR). Applying the maximum principle to the inequality (127),
we get

(147) sup
∂BR

σ ≥ sup
BR

σ ≥ 1.

Using the decay conditions we get that sup∂BR
σ → 1 as R→ ∞. Then

it follows that d = 0, and hence α = y = 0. q.e.d.

Proof of Theorem 1.2. We first prove the inequality (16) using theorems
3.1 and 3.2. The crucial step is to prove that the minimizing sequence
can be chosen among functions with compact supports in annulus cen-
tered at the origin.

Let α ∈ H1
0 (R3 \ {0}) and y ∈ H1

0,X0
(R3 \ Γ). By definition, there

exists a sequence yn ∈ C∞
0 (R3 \ Γ) such that yn → y in H1

0,X0
(R3 \ Γ)

as n → ∞. Let R be the radius of a ball that contains the support of
yn. The radius R depends on n and we have that R → ∞ as n → ∞.
For ǫ = 1/R, let χǫ,R be the cut off function defined in equation (179)
of the appendix. Set αn = αχǫ,R. This function has compact support
contained in the annulus An = BR \ Bǫ and αn ∈ H1

0 (An). By Lemma
5.2 we have that αn → α in H1

0 (R3 \ {0}) as n→ ∞. We claim that

(148) lim
n→∞

M(αn, yn) = M(α, y).

This is similar to equation (83) in the proof of Theorem 3.1. Replacing
the domain A by R

3, we define the same integrals as in equations (85)–
(86). Using (87)–(88) we conclude that I1 → 0 as n→ ∞.

For the integrals I2,1 and I2,2 we use the hypothesis α− ∈ L∞(R3)
(which plays the same role as the lower bound (82) in the proof of
Theorem 3.1) and

(149) e−αn = e−α+χǫ,R−α−χǫ,R ≤ e−α−χǫ,R ≤ e−α−

,

to bound the terms with e−αn by constants independent of n. Using
the assumption y ∈ H1

0,X0
(R3 \ Γ) we conclude that these two integrals

tend to zero as n→ ∞, and hence we have proved (148).
Using a similar argument as in the proof of Theorem 3.1, from equa-

tion (148) we conclude that the minimizing sequence (αn, yn) can be
taken among functions with compact support in annulus An.

We apply Theorem 3.1 and Theorem 3.2 on An. We get

(150) MAn(x0 + αn, Y0 + yn) ≥ MAn(x0, Y0).
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Using this inequality we obtain

M(x0 + αn, Y0 + yn) = MR3\An
(x0, Y0) + MAn(x0 + αn, Y0 + yn)

(151)

≥ MR3\An
(x0, Y0) + MAn(x0, Y0)(152)

= M(x0, Y0)(153)

=
√

|J |.(154)

And then we get (16).
We now prove the rigidity part. Assume that there exist α ∈ H1

0 (R3 \
{0}) and y ∈ H1

0,X0
(R3 \ Γ) such that

(155) M(x0 + α, Y0 + y) = M(x0, Y0) =
√

|J |.

From inequality (16) it follows that (α, y) is a minimum of M; hence it
satisfies the harmonic maps equations. We use Theorem 3.3 to conclude
that α = y = 0. q.e.d.

Finally, let us mention that Theorem 1.1 follows directly from Theo-
rem 1.2 and Theorem 2.2. Note that in the existence proofs of Section 2
the free data are the functions q and Y ; on the other hand, in Theorem
1.1 the free functions are x and Y . Also, we emphasize that x and Y
are not necessarily axially symmetric in 1.2; however, the bound given
by Theorem 2.2 require this condition.
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5. Appendix

Lemma 5.1. Let Ω be a bounded domain in R
n with C1 boundary

∂Ω. Suppose that u ∈ H1
0 (Ω) and

(156) u ≥ K,

almost everywhere in Ω, where K ≤ 0 is a constant. Then, there exists

a sequence un ∈ C∞
0 (Ω) such that

(157) un ≥ K,

for all n and un → u in the H1
0 (Ω) norm.

Proof. The proof follows similar arguments as the proof of the trace
zero theorem for functions in H1

0 (Ω); see, for example, Theorem 2 in
Chapter 5 of [24]. We will follow this reference. We will first prove the
statement for functions in the half plane which vanishes at the boundary,
and then we will extend this to the domain Ω.

Let (x′, xn) be coordinates in R
n and denote by R

n
+ the subset xn > 0.

Let us assume that u ∈ H1(Rn), it has compact support in R̄
n
+ and van-

ishes on ∂R
n
+. Then, we can approximate u by smooth functions with

compact support in R̄
n
+ which vanishes at the boundary ∂R

n
+. Integrat-

ing these functions and taking the limit to u, we obtain the following
estimate (see eq. (9), Chapter 5, [24])

(158)

∫

Rn−1

|u(x′, xn)|2 dx′ ≤ Cxn

∫ xn

0

∫

Rn−1

|∂u|2 dx′dt,

for a.e. xn > 0.
Let χ : R → R be a cut off function such that χ ∈ C∞(R), 0 ≤ χ ≤ 1,

χ(t) = 1 for 0 ≤ t ≤ 1, χ(t) = 0 for 2 ≤ t and |dχ/dt| ≤ 1, and write
χǫ(x) = χ(xn/ǫ), uǫ = (1 − χǫ)u. We want to prove that uǫ → u in
H1(Ω) as ǫ→ 0. We have

(159) ‖uǫ − u‖2
L2(Ω) =

∫

Ω
u2χ2

ǫ dµ,

since u2χ2
ǫ ≤ u2 (where, by hypothesis, u2 is measurable) and u2χ2

ǫ → 0
a.e. as ǫ → 0 by the dominated convergence theorem we conclude that
the integral converges to zero as ǫ→ 0. Consider the derivative

(160) ‖∂uǫ − ∂u‖L2(Ω) ≤ ‖χǫ∂u‖L2(Ω) + ‖u∂χǫ‖L2(Ω).

Using the same argument as above, we have that the first term in the
right hand side of this inequality goes to 0 as ǫ → 0. The delicate
term is the second one. Note that the derivative of χǫ has support in
ǫ ≤ xn ≤ 2ǫ and that |∂χ| ≤ ǫ−1, so we have

(161) ||u∂χǫ||2L2(Ω) ≤ ǫ−2

∫ 2ǫ

ǫ

∫

Rn−1

u2 dx′dt.
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Using the estimate (158) we obtain

ǫ−2

∫ 2ǫ

ǫ

∫

Rn−1

u2 dx′dt ≤ Cǫ−2

∫ 2ǫ

0
t dt

∫ 2ǫ

ǫ

∫

Rn−1

|∂u|2 dx′dxn(162)

≤ C

∫ 2ǫ

ǫ

∫

Rn−1

|∂u|2 dx′dxn,(163)

and this integral tends to zero as ǫ→ 0. Then we conclude

(164) uǫ → u in H1(Rn
+).

Let ηδ be a mollifier. Since the functions uǫ have compact support
in R

n
+, we can mollify them to construct smooth functions uǫ,δ in R

n
+.

Moreover, if u satisfies the lower bound (156), then uǫ,δ satisfies it also.
Indeed,

uǫ,δ(x) =

∫

Rn

ηδ(x− y)uǫ(y) dy ≥ K

∫

Rn

ηδ(x− y)(1 − χǫ)(y) dy(165)

≥ K,(166)

where in the last line we have used that K ≤ 0 and

(167)

∫

Rn

ηδ dx = 1.

To show that the functions uǫ,δ converges to u as ǫ, δ → 0, we write

(168) ||u− uǫ,δ||H1 ≤ ||u− uǫ||H1 + ||uǫ − uǫ,δ||H1 ,

and then use that uǫ,δ → uǫ as δ → 0 (this is the standard interior
approximation in H1 by smooth functions, see for example, Theorem 1,
Chapter 5, of [24]) and that uǫ → u as ǫ→ 0.

We now extend this result to the domain Ω using a partition of
unity and flattering out the boundary. Since ∂Ω is compact, we can
find finitely many points x0

i ∈ ∂Ω and radii ri > 0, such that ∂Ω ⊂
∪N

i=1B(xi, ri). Define Vi = Ω ∩ B(xi, ri) and let V0 ⊂⊂ Ω, such that
Ω ⊂ ∪N

i=0Vi.
Let {ζ}N

i=0 be a smooth partition of unity of Ω̄ subordinate to Vi.
Define ui = uζi, we have

(169) u =
N
∑

i=0

ui.

Consider ui for i ≥ 1, since the boundary is C1, it possible to make
a coordinate transformation such that it straightens out ∂Ω near xi.
Then, we can assume that each ui has compact support in R̄

n
+ and

vanishes on ∂R
n
+. We use the result proved above to approximate each

ui by smooth functions with compact support which satisfy the lower
bound (156). Using (169) we obtain the desired conclusion. q.e.d.
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The following function will be essential in the proofs of lemmas 5.2
and 5.3. It was taken from [29], Lemma 3.1. Define

(170) tǫ(ρ) =
log(− log ρ)

log(− log ǫ)

and

(171) χǫ(ρ) = χ(tǫ(ρ)),

where χ is the cut off function defined above. The function tǫ is defined

for 0 < ǫ < 1 and 0 < ρ < 1. We have that tǫ ≥ 2 for ρ ≤ e(log ǫ)2 and
0 ≤ tǫ ≤ 1 for ǫ < ρ < e−1 (we assume ǫ small enough). It follows that
the function χǫ defines a smooth function in for 0 ≤ ρ <∞ (we trivially
extend the function to be zero when ρ ≥ 1). Moreover, χǫ(ρ) = 0 for

ρ ≤ e−(log ǫ)2 and χǫ(ρ) = 1 for r ≥ ǫ.

The derivative of χǫ has support in e−(log ǫ)2 ≤ ρ ≤ ǫ and is given by

(172) ∂ρχǫ = −dχǫ

dt

1

log(− log ǫ)ρ log ρ
.

Assume ǫ ≤ 1/2, then we have

(173)

∫ ∞

0
|∂ρχǫ|2ρdρ ≤ 1

(log(− log ǫ))2

∫ 1/2

0

dρ

ρ(log ρ)2
.

The integral on the right hand side is bounded since

(174)

∫

dρ

ρ(log ρ)2
= − 1

log ρ
.

Then we obtain

(175) lim
ǫ→0

∫ ∞

0
|∂ρχǫ|2ρdρ = 0.

Take cylindrical coordinates (ρ, z, φ) in R
3, the integral (175) is equiv-

alent to

(176) lim
ǫ→0

∫ ∞

0
|∂χǫ|2 dµ = 0.

This equation will be the crucial property of χǫ used in the proof of
Lemma 5.3.

Consider now the spherical radius r, define χǫ(r) using the function
tǫ(r) given by (170). For R > 1, we also define

(177) tR(r) =
log(log r)

log(logR)
,

and

(178) χR(r) = χ(tR(r)).
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Then the following function has support in an annulus of radii e(log R)2

and e−(log ǫ)2

(179) χǫ,R(r) = χR(r) + χǫ(r) − 1.

A similar computation as above leads to

(180) lim
ǫ→0

R→∞

∫

R3

|∂χǫ,R|3 dµ = 0.

Lemma 5.2. Let u ∈ H1
0 (R3 \{0}). Then the functions uǫ,R = uχǫ,R

where χǫ,R is the cut off function defined in (179) converges to u in the

H1
0 (R3 \ {0}) norm, as R→ ∞, ǫ→ 0.

Proof. We have

(181) ||∂uǫ,R − ∂u||L2(R3) ≤ ||(1 − χǫ,R)∂u||L2(Ω) + ||u∂χǫ,R||L2(Ω).

The first term in the right hand side of this inequality goes to 0 as ǫ→ 0,
R→ ∞. For the second term, we have

||u∂χǫ,R||2L2(R3) ≤ ||u2||Lp(R3)|||∂χǫ,R|2||Lq(R3)(182)

≤ ||∂u||L2(R3)|||∂χǫ,R|2||L3/2(R3),(183)

where in the first line, we have used Hölder inequality with 1/p+1/q = 1
and in the second line, we chose p = 3 and q = 3/2, and use the Sobolev
inequality (143). Then we use (180) to obtain the desired conclusion.

q.e.d.

Lemma 5.3. Let u ∈ H1(Ω) be a weak subsolution of the Laplace

equation in Ω \ Γ. Then u is also a weak subsolution of the Laplace

equation in Ω.

Proof. By definition of weak subsolution in Ω \ Γ, we have

(184)

∫

Ω
∂u∂v dµ ≥ 0,

for all v ∈ C∞
0 (Ω \ Γ). We want to prove that this inequality holds also

for all v ∈ C∞
0 (Ω).

Take cylindrical coordinates in R
3 where ρ is the distance to the axis

Γ. Consider the cut off function χǫ(ρ) defined in (171). Let v ∈ C∞
0 (Ω)

and set v = v(1 − χǫ) + vχǫ. Then we have
∫

Ω
∂u∂v dµ =

∫

Ω
∂u∂(v(1 − χǫ)) dµ+

∫

Ω
∂u∂(vχǫ)) dµ(185)

≥
∫

Ω
∂u∂(v(1 − χǫ)) dµ,

where we have used (184) since vχǫ ∈ C∞
0 (Ω \ Γ). We have

(186)

∫

Ω
∂u∂(v(1 − χǫ)) dµ ≤ C‖u‖H1(Ω)‖∂χǫ‖L2(R3).
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We take the limit ǫ → 0 and use equation (176) to conclude that the
integral goes to zero. Hence we conclude that

(187)

∫

Ω
∂u∂v dµ ≥ 0,

for all v ∈ C∞
0 (Ω). q.e.d.

The following lemma gives a Poincaré type inequality for functions
in H1

0,X0
(R3 \ Γ).

Lemma 5.4. Let y ∈ C∞
0 (R3 \Γ) and Y0, X0 be given by (12). Then

the following inequality holds
∫

R3

X−2
0 |∂y|2 dµ ≥

∫

R3

(|∂Y0|2 + |∂X0|2)
X4

0

y2 dµ(188)

≥
∫

R3

|∂X0|2
X4

0

y2 dµ.(189)

Proof. We use the following general identity proved in Proposition
C.2 of [15]

(190)

∫

R3

e2v|∂y|2 dµ ≥
∫

R3

e2v(∆v + |∂v|2)|y|2 dµ,

for v = x0 + g. Using equation (70), the conclusion follows. q.e.d.

Finally, let us prove that the function

(191) y0 = Y0 − Ȳ0 = −2J2 cos θ sin4 θ

Σ
,

defined in the introduction satisfies the hypothesis of Theorem 1.2. Note
that y0 ∈ C∞(R3 \{0}). Using equation (12) we obtain the lower bound

(192) X0 ≥ |J | sin2 θ.

Then we get

(193)
|y0|
X0

≤ 2|J |
(r +

√

|J |)2
,

which implies |y0|/X−1
0 ≤ 2 and |y0|/X−1

0 → 0, as r → ∞. This bound

also implies that y0/X
−1
0 ∈ Lp(R3) for 3/2 < p.

Remains to show that y0 ∈ H1
0,X0

(R3 \Γ). From (191), we can explic-

itly compute the norm (15) to prove that it is finite. Take the sequence
yǫ,R = y0χǫ(ρ)χR(r) where χǫ(ρ) and χR(r) are given by (171) and
(178). We have that yǫ,R ∈ C∞

0 (R3 \ Γ). To prove that yǫ,R → y in
H1

0,X0
(R3 \ Γ), as R → ∞, ǫ → 0, we use the same argument, as in the

proof of Lemma 5.2 and the fact that y0/X
−1
0 ∈ L6(R3).
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